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Using Faddeev’s form of time-dependent scattering theory, we give an abstract definition of time delay
valid for multichannel scattering. For the three-body scattering problem we find an explicit relation, that is
valid on the energy shell, between the time-delay operator and the S operators and their energy derivatives.

1. INTRODUCTION

This paper studies the time-delay problem as it oc-
curs in three-body scattering. ! Roughly speaking, the
time-delay effect is the advancement or retardation of
wavepacket motion due to the presence of interactions
not contained in the asymptotic Hamiltonians. In the
following we first give a rigorous definition of multi-
channel time delay. This definition is an extension to
the multichannel case of the one employed by Gold-
berger and Watson. ? Using then Faddeev’s® results in
time-dependent scattering theory, together with the
primary singularity structure®® of the exact stationary
wavefunction, we construct an explicit solution of the
time-delay problem by following an approach similar to
Jauch and Marchand’s treatment® of two-body time de-
lay. Specifically, we obtain a relation between the time-
delay operator and the different S operators and their
energy derivatives, that is valid on the energy shell. It
is the proof of this relation that is the main objective
of this paper,

The physical interpretation of the time-delay opera-
tor we define is only touched upon very briefly. Because
of the controversy that clearly exists already for two-
particle time delay regarding the different defini-
tion, #% 7 which might or might not be equivalent, ® that
are given in the literature, and because of the length
of the present paper, we prefer to discuss the physical
aspects of the problem elsewhere.

This paper is organized into five sections. Section II
introduces those features of three-body time-dependent
scattering theory which are necessary in this problem.
In Sec. III we define a set of reduced S operators which
have an explicit energy dependence because the solution
of the time-delay problem cannot be expressed directly
in terms of the usual S operators. In Sec. IV we con-
struct the time-delay operator starting from first
principles and state the problem we want to solve.
Section V gives the main body of the derivation of the
time-delay relation. Finally, Appendix A contains a dis-
cussion of the projection operators and their moment-
um-—space representations. Appendix B collects some
of the details needed in Sec. V. Appendix C discusses a
class of terms which vanish and do not contribute to the
result derived in Sec. V.
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Il. TIME-DEPENDENT SCATTERING THEORY

This section gives an outline of the aspects of three-
body time-dependent theory that are necessary in the
analysis of our problem. The physical scattering prob-
lem is taken to be that studied by Faddeev, namely the
scattering of three distinct nonrelativistic particles in-
teracting via short range forces. Furthermore, the
interaction in each two-body channel is assumed to be
such that there is only one two-body boundstate,

Let us briefly describe the coordinate systems we
employ. After the center-of-mass motion has been
eliminated from our problem there remain six degrees
of freedom. In coordinate space we choose the Jacobi
variables’® X., Vo to describe these. The variable x, is
the separation of particle « from the center-of-mass of
the (By) cluster. The independent variable y, gives the
vector separation of the constituents of the a cluster
namely the spatial separation of particles 8 and y. The
canonically conjugate momenta related to x, and y, are
denoted by p, and q,. The momenta p, describes the
relative motion of particle o and cluster @. The kinetic
energy of this motion is given by pi/2na where n,
= o (my+ my)/(m o+Mg+m,) represents the reduced
mass of particle « and cluster a. The internal moment-
um of cluster « is just q,. The kinetic energy associat-
ed with this motion is q%/2u, where i, =mgm,/(mg+m,)
is now the reduced mass for particles S8 and y relative
to their own center-of-mass system. It is clear that we
have three distinet (o =1,2, 3) Jacobi coordinate sys-
tems each of which provides a complete description of
the degrees of freedom.

The behavior of any physical system is determined by
its Hamiltonian., The free Hamiltonian related to the
total kinetic energy is given by

2 2
_Pa 9o -

H; Zna+2ﬂa , =123, 2.1)
We shall employ an abbreviated notation for these
kinetic energies, viz.

2 2
72 _Pe 2 da
pa Zna’ o 2“’(1. (2.2)

The right-hand side of Eq. (2.1) is independent of the
index a. We shall take notational advantage of this in-
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variance of H, by frequently omitting the & label, There
is a similar invariant quantity in coordinate space. If we
define

®o=om g, V4 =20,75 (2. 3a)
and
pe=5% + 3%, (2. 3b)

then p is a coordinate space invariant for all a.

The complete Hamiltonian is then obtained by adding
to H, all the interactions possible in the system. So
for the system Faddeev studies we get

3

H:f10+aE_1 Ve (2. 4)
where V, is the potential acting between the particles
B and y. The Hamiltonians H and H, are operators acting
in the Hilbert space of square integrable functions of
our six degrees of freedom, i.e., L%(p,,q,). We shall
denote this Hilbert space by #, the inner product related
to /by (,) and the identity operator on // by E. Acting
on //, Hy and H are both self-adjoint operators. 3

We next want to consider the different kinds of
asymptotic motion because these will finally specify the
solutions of the scattering problem. Because of the
short-range nature of the forces we may expect that as
t —+ = the three-body problem is characterized by free-
ly moving clusters. We have two distinct types of clus-
ter motion, First, there are three possible cases of
motion involving two clusters, each of which can be
labeled by the index «, indicating the particle that
moves in isolation. Secondly, there is a single motion
involving three clusters, labeled by the index a =0,
namely when all three particles move independently.
With each cluster description of the asymptotic motion
there is an associated asymptotic Hamiltonian, deter-
mined by including all the intracluster potentials and
omitting the intercluster potentials. For the two-cluster
type of motion these Hamiltonians are given by

H,=H,+V,. (2.5)

For the three-cluster motion the asymptotic Hamil-
tonian is clearly H,.

At this point we recall that each two-body interaction
is capable of supporting only one boundstate. We shall
let ¥,(q,) be this unit normalized two-body boundstate
wavefunction in the space of square integrable functions
of q,, i.e., 1%(g,). The corresponding boundstate en-
ergy is — x%. So we have

(5%1 +U g = — X%xwou a=1,2,3.

The symbol v, represents the potential found in the
two-body problem involving the particles 8 and y. As
we know V, and v, are integral operators in momentum
space whose kernels are related in the following way:

2.7

2.6)

V(!(pc” qa;p:!’ q:)z) :v(x(qa’ q:x) 6(pa - p:x)-

Because of this tact that there is only one boundstate
for a pair, each of the different cluster geometries

will specify a scattering channel. We now want to de-
scribe the wavepackets that characterize the asymptotic
channel motion. Let us consider, e.g., the a channel
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(a+0). The cluster (By) will be described by the bound-
state wavefunction ,(q,). To describe the relative mo-
tion of o and the center-of-mass of the pair (8y) we
shall need the appropriate wavepacket indicated by
foPo). In effect this function f, is like a two-particle
wavepacket except that one of the particles is a cluster.
So for f, to be an acceptable wavepacket it must lie in
the Hilbert space of square integrable function of Pas
i.e., L%(p,) which we denote by //,. The inner product
for this space will be (,), and E, will be the identity
operator. So the « channel motion is described by
falPo)balds) and since ¥, is a known function, all the
nontrivial information about this channel is given by f,.
For the three free particle cluster we have all six de-
grees of freedom present and the related wavepacket
will have the form f(p, q). The space for f, will be
L*(p,q) =/{,, its inner product (,), and its identity E,.
Of course, //, is mathematically identical with 4.

It is useful now to construct Hamiltonians that act in
the channel spaces //,. These new Hamiltonians are
suggested by utilizing Eqs. (2.5), (2.6), and (2.7) to
get

Hyfo0)a(da) = (D% + 35+ Vo) o Pa)¥alda)
= (% = X2 a(Pa)¥e @), 2.8)

Eliminating the multiplicative factor ,(q,), we are
lead to define the channel Hamiltonian H, by

ﬁafa: (E%x" Xza)fae Hay a>0,

For the ¢ =0 case the channel Hamiltonian ﬁo does not
differ from the asymptotic Hamiltonian H,. Thus

By fy= (B +a)fy € Hy-
We then introduce a single Hilbert space to describe
all these possible asymptotic motions of the three-body

system, This space, denoted by [77, must clearly be the
following product space:

H=Hy®H D HL® Ky

The inner product of jJ will be (,)., its identity will be
E. This inner product is given in terms of previous

inner products as
3

(F,fe= 20 (foy fd)ar

=0
An important remark we have to make here is that for
multichannel scattering this Hilbert space describing
free asymptotic motion, namely }7, is different from the
Hilbert space describing the exact solution, namely A.
So, if the channel functions f, are set in # by writing
Ffolle, then the channels are not orthogonal, viz.

(fabas fE¥)#0 (a, B> 0).
To conclude this part, we first define a projection
operator P, from # into / by
Pof=foda€ #,
where

FolPo) = | ¥ol@a)* f®arUo) dda-

The subspace associated with the range of P, consists

of all separable functions in p, and q, where the func-
tion of q, is ¥,. Secondly, we define an operator I, from
# onto 4, by

a >0,

2.9)

(2.10)

(2.11)

(2.12)

a >0, (2.13a)

(2.13b)
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Iof=fu€ Ha {2.14)

We now turn to the discussion of the Moller operators
U which are the basic elements of scattering theory,
Faddeev’s work® establishes that U%’ may be construct-
ed from the solutions of a Fredholm integral equation
that contains the same physics as the three-body time-
independent Schrddinger equation, with the supple-
mentary advantage that the boundary conditions are built
into the structure of the equation.

The U operators which map #, into /#/, have the
following three properties:

(1) ULTUL =8,,E; 1 Hs—Has (2.15)
@) EUL*’U,‘;":E-pd CH—H, (2.16)
() HUY =UXPH, H,—~H. (2.17)

We shall refer to these basic statements as the funda-
mental theorem. Property (1) is a statement of the
channel orthogonality of the exact wavefunction solution,
when o =3 it becomes a statement of probability conser-
vation, Property (2) is the asymptotic completeness of
the exact scattering states. P, is the projection opera-
tor onto the subspace spanned by the eigenfunctions of
the discrete spectrum of H. Property (3) is the inter-
twining property and states that the exact wavefunction
will have the same energy as the incident wavefunction,
i.e., energy conservation. Furthermore, the function
(Palal US| p,) has the following structure:

(Pallel US| DY) = ¥0(da) 5Dy~ Ph) = (Pulle | KE | pL).
2.18)

The first term on the right represents the unscattered
portion of the wavefunction. The second term is the
scattered wave and can be written as

<puqa |Boe 1D

K(t) no—
Puta| K100 =2 T (2.19)
where
(Dol |Be% DL = - <<paqa 1G5 [t
(@ Xpy | 155 1 Pt
- pp?drir_La i HO) @. 20)

Here the functions (p,0, G 1pY), (Pl ips) are the
half-on-shell solutions of the well-known Faddeev
integral equations, 1 viz.

(P, | [P =Hya(Dy; Ph; D22 = x5 2 10),
<quYIG(*) lp,a> :qya(pn qy;pa;pa

The function ¢, is the vertex function defined by ¢,(q,)
= (q,+ X,)z,b,(q,) In the same way, the wavefunction for
three to three scattering is

(Pelle | US| PGl = 5@0 — QL) B(Ds — PL) — (Pala| K& | plal)
2. 23)

where the matrix elements of K¢*’ are related to Fad-
deev’'s M,, operators?"5

(2.21)

- x% £40). (2. 22)

T(¥)l

2440’ (2. 24)
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/n aB(pm Qus puqoup'2 +a;21:3.0).
(2. 25)

(Pola

In concluding this section we recall that Faddeev
proves the above described results with the assumption
that the two-body potentials satisfy a boundedness
property and a Holder continuity requirement. Using
these assumptions, e.g., the half-on-shell two-body
t-matrix satisfies!!

lplt®1p | <C/A+[p-p' D", (2. 26)
|(p+aplt®Ip’+apy —(plt*®|p” |
sc/(+|p-p' "] ap|’+ | ap’ "), v <4, 2. 27)

where |Apt <1, |Ap’| <1, and v may be taken as close
to 7 as desired. In our time-delay proof we shall have
to construct derivatives of the half-on-shell amplitudes
with respect to the momentum arguments. It is clear
that the estimate (2. 27) is not strong enough to claim
that {p|£*’I1p") is differentiable with respect to p or p’.
We have not investigated the necessary modifications
needed to ensure differentiability of #*’ and the other
half-on-shell matrix elements /&), B¢, T®. How-
ever, it is likely that the original potential must be
differentiable and that this derivative of the potential
must also satisfy a Holder continuity requirement.

11l. REDUCED S-MATRIX ELEMENTS

In this section we describe the essential features of
the S matrix and introduce the reduced S-matrix ele~
ments needed in our derivation. The S matrix is de-
fined to be a mapping between the initial experimentally
determined wavepacket f, and the observed post-scat-
tering wavepackets f;. We know® that, in terms of the
Moller wave operators, this mapping looks like

fa=Ug"MUS 3.1)

SO

Sea=Us"US" i e~ Hy (3.2)

This Smatrix is even simpler when written down as an

operator on the asymptotic channel space /? In this
case the information in Eq. (3.1) can be expressed as

Fr=st - (3.3)

Let us now recall the basic properties of the S matrix

because it will turn out that the time-delay operator has
properties which parallel those of the S matrix. The

first basic property of the S matrix is that it is a unitary
operator when acting on the channel space /4, viz.

S's=8S'=E£ (8.4)
In component form the equivalent of Eq. (3.4) is
%\OS;QSyB:EBGGB- (8.5)

This unitarity is an immediate consequence of the
statements (1) and (2) in the fundamental theorem.

The second basic property of S we want to stress is
the intertwining property with the channel Hamiltonians
H

o

SasHs=H oS (3.6)
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This intertwining feature is the direct consequence of
statement (3) in the fundamental theorem.

We now shall turn to the definition of the reduced
matrix elements of S. In order to carry out this defini-
tion we first require the known¥® representations of
the kernels of S in terms of 7%, 4§, and /%) in-
troduced in Sec. II. For a rearrangement Scattering
process one has

SaB(pa; pf;) = éasé(pa - pfi
x(Pa |53 |05 (3.7)

The S matrices involving three free particles in either
the initial or final state are given by

Sus®, a; pp) = — 2mi8(F* + 3% - Bit + x3Xpa| B4y’ ), (3.8)

‘znié(EZa e

and
SaoPa; P’ Q') = = 2mi0(PG ~ xh— " ~ 4" Xpa|B & [P'A).
(3.9)
The amplitude 47 is related to 43 by
(Pa|B % [p'a =(p'a’ |B53 [P *- (3.10)

The * indicates complex conjugation. Finally the three-
to-three S matrix is
Spo (P, q; p’a") =5 - p')o(a-q")
- 2mid(P+3° - B - g Xpa| T |p'a).
(3.11)

We want to construct S matrices related to the ex-
pression above but with the energy delta function re-
moved. We will use a lower case s to denote these new
S matrices. Consider, in the first instance, S,,. De-
fining E =p% ~ x4 and E’ =p4? - x} and employing the

relation
”n 6(E_El)6(£a—5t'!)
aaﬁé(pa_pﬁ)*ﬁaﬂ (nopanepg)1/2 3 (3 12)
we may write Eq. (3.7) in the form
. _S(E-E'
SaB(pu;pB) = (napanglﬁé)i/z
X[Bagd(P o= bp) = 2mi(n oD atghy)
X(palt e 105)). (3.13)

In these expressions b indicates the unit direction vec-
tor associated with p. Thus we are lead to define s,4(E)
by

(Dol SaslE)| D) =0asd(Po—bh) — 2min b gp)t /2

x(Po | e P8

The energy dependence E appears on the right-hand side
of Eq. (3.14) by virtue of the fact that p, =[2r(E
+x2)]17% and pj=[2n4(E + x3)]'/%. The kernel

(Dol s oslE) \5;) represents an operator that will map
square integrable functions with respect to the measure
A, i.e., L*(pf), into L¥(p,). When a =g the leading
factor on the right of Eq. (3.14) is the identity operator
on the space L2(5a). The energy dependence indicated
on the left of Eq. (3.14) means that for each S,; opera-
tor we have a one-parameter family of operators s, (E).

(3. 14)
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We consider next S matrices involving three free
particles in the initial or final state. The kinematic
relation E =pf, +q% suggests we define the angle w, such
that

=VEcosw,, {,=VEsinw, O<w,=u/2. (3.15)
Using this convention the six-dimension delta function
appearing in (3. 11) may be written

5(Po~ Pa)dlda —q0) =

S(E ~ EN)0(Wa— wh)5(D o= pL)6(a = k)
Dol ol ndh (i o) ? '

(3.16)

Then using Eq. (3.11) we find that the reduced matrix
operator sy, (E) is

(Wab o ol S00(B) | wibhihy
= 5(wa - w;)ﬁ(ﬁa _ﬁ' )6(611 - 5’)
= 278 (1 10) %P oG a2 o (Pl | T | poal .

Here the operator sy,(E) takes a function from

L¥wl, 4%, b%) into L2 (w,, G4, Pe). In this case the Hilbert

space is defmed relative to the measure 320 2n,)% 70

X cos? Wy sin? W, dw dp dqa This measure is independent
of «. From now on, we will denote this space by L2 and

L? will indicate the space L%(p,).

(3.17)

The reduced S-operator related to Sj; and S, are de-
fined in the same way, e.g.,

(woP ol gl SealE) 1 pp

SOB(pm Qas pé) = 6(E - E’) (ana)1/4paQa(ant’3)l/2 (3' 18)
and, using Eq. (3. 8)
(waﬁa‘;a ( SOB(E) [5é>

= = 2 (1 g16) D ol s Dh) XD ok |05 (PR (3.19)

where p, and g, are the momenta determined by E.

The momentum and reduced mass factors are chosen
such that the operator relations S obeys on /4 are also
valid for s(E) on a reduced space. To illustrate this
consider the kernel form of the unitarity Eq. (3.5) for
a,3>0

3
63(Pa - p’B)GaB = Z_—}Ifsya(p;"’ pa)*SYB t ] pB) dp

+ [ SioPhs 423 Pa)* Soa(Paai; PR dpadal
(3. 20)
If we now use
dpl,dql, = (nap ) /2 i2q 2 dE” dw’, dpld 3.21)

together with Eq. (3.12) and we equate the coefficient of
&(E — E') appearing on bot.: sides we obtain for Eq.
(3.20)

3 ~ ~ -~
5us0(ba =09 = 2 [(B7|5,a(E) 5™ b} |5yo(E) 5 db}

+ [(wipigulseaE) |or*

*(wibiis] sw(E)|Fp dondpiday.  (3.22)
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This result is the kernel form of the operator equation

3
Baple = 20 Sho(E)S,s(E). (3. 23)
=0

A similar demonstration shows that this equation is
valid for all values of a and 3. The operator 1, stands
for the identity operator on the space L%, 1, is the
identity operator on L2,

Note that we can introduce a reduced channel space
defined by

Hr=L§

Acting on this space, the Eq.
form of the first part of

1,=s"(E)s(E) = s(E)s'(E)

eLioLi® Ll (3. 24)

(3. 23) is the component

(3. 25)

where 1, is the identity on 7,. The second equality here
is obtained in the same way as the first. Clearly Eq.

(3. 25) is a one parameter family of operator relations
on 4, which are equivalent to the relation (3. 4) on the
channel space 4. It shall turn out that the three-body
time-delay operator will also have two forms—one on
/7 and one on /4,.

IV. DEFINITION OF TIME DELAY AND
STATEMENT OF THE PROBLEM

Let us now describe the definition of the time-delay
operator. Consider the exact wavepacket given by

Voft)=exp(= iHOUS oy fa€Hay ¥olt)EH. 4.1)

This is the wavepacket that evolves from the asymptotic
channel wavepacket f,. Likewise consider

V() = exp(— iHOULfL, ficHa Vi EH.

If we recall that 5= (&% +7%)!/? is independent of o

=1, 2, 3, then we can use the distance g to define the
radius of a sphere in the six-dimensional space x,, ¥,.
We will associate a projection operator P(R) on # with
this sphere:

PR (Xg, Vo) =f(Xe, Vo) if [B2+75[1/2<R

=0 it [¥2+5%[1/2>R. (4.2)

The inner product (¥,(t), P(R)¥ (1)) is the likelihood of
finding the state ¥, inside the sphere of radius R at time
t. Now if we form the integral

L@, 0, PRT ) at, 4. 3)

its physical interpretation is the fraction of time be-
tween ~ ¢, and {; that the state ¥, spends inside the
sphere of radius R. If we perform the limit #; — < then
the integral represents the total time ¥, spends inside
the sphere. In association with the integral above we
can form the more general integral which gives the
overlap within the sphere of two distinct states ¥, and
¥;. We define

TER(R, 1) = [ ) (Walt), PRITHD) dt.

In the notation for the complex number T2, we have in-
dicated some but not all the factors that it depends on.
For example, the value of T%; will depend on f, and fd
as well as R and #). In the circumstance a =g and f,
=fs, TEsis real and has the interpretation we have

4.4)
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given for the expression (4.3). Our notation for 7%,
carries a superscript E in order to specify that the
times associated with 7%, relate to the exact wavefunc-
tions ¥ (7).

We may also write down similar definitions that per-
tain to the evolution of the asymptotic solutions in the
absence of the intercluster potentials. For example,
these wavepackets are given by

b, () =exp(~iH DI fo, foSHe @o(B)EH, 4. 5)
q’t’?(t):exp(_ iHBt)Ig B’> fﬂleﬁﬁ’ @é(t)&/*/ (4 6)

The absence of the intercluster potentials means that
the corresponding evolution may be thought of as “free”
since the interaction between the target and the incident
wave has no effect on the evolution of the wavepacket.
The “free” equivalent of the integral (4. 3) is

oo @0, PR 0)dr. 4.7)

This gives the fraction of the time interval (- {;, ¢,) that
the “free” system spends in the sphere. The numerical
value of the “free” integral will differ from that of the
integral for the exact wavepacket. This time difference
is entirely due to the effect of the intercluster interac-
tion on the evolution of the wavepacket. As above we
write down a general matrix element that has the form
(4.7) as its diagonal element:

TEg(R, 1)) = 00s |, V(@) P(R)®}) dL. 4. 8)

The Kronecker delta function appears in the definition
(4. 8) of the free transit time for the following reason.
In the « channel free scattering there is no interaction
between the target cluster and the incident particle.
Thus any scattering which begins in the a-channel must
remain in the ¢-channel. Since the asymptotic forms
&, (1) and ®4(f) are not orthogonal, the Kronecker delta
is necessary to preserve the diagonality of the free
scattering. Taking the difference of T%,; and 7%, gives
us the time-delay for the time interval (- ¢, /)) and a
sphere of radius R.

Now we would like to construct an operator whose ex-
pectation value gives us the time-difference described
above. We define

(far Qaa(Ry L)fd) = Toa(R, £)) — TEL(R, 1), 4.9)
For each f, and f; the quantities T%; and T, have
unique values so that Q.4(R, {,;) is defined by Eq. (4.9).

It is useful to have an explicit form for @,, This may
be obtained as follows. One can write T, as

(R, 1) = asf , (exp(=iH OIS S, P(R) exp(- iHgt)I}f!) dl
- f’wf.tfj (Lexp(= il B)f o, PRI} exp(- ifl2)1) dt
= J 11 (o exDGHo!)Pul(R) exp(~ illyt)f5) dt

(4.10)

where the operator /_9a(R) is

PaRY=IDRIL i o~ Ha (4.11)

From the definition (4. 11) it at once follows that ﬁa(R)
is a bounded self-adjoint operator. It is however not a
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projection operator since the idempotent property is not
valid. This is seen from

PLR) = LPRILLPEIL a4
=1,P(R)P P (R)I} 4.12)

where we have used Il1, = P, which follows from the
definition of 7,, Eq. (2.14). However, in the limit
R—, P%(R) becomes the identity operator E, since
P(R)— E and

I,EPEIL=I.PIt=11'-F (4.13)

The last equality again follows from the definition
2.14).

We continue with the explicit construction of @,z by
treating T4, in a fashion parallel to that of 75, The
term TZ, can be written as

Tas(®, 1) = ] :2 (exp(~ iHYUSf o, P(R) exp(- iHNUSf{) dt
= [0 expl-ifolif o, PRIGS
X exp(~ iHyt)f§) di
- fig (for exp(+iB U DRIV

X exp(~ iHt)f!), dt. (4.14)

In the second version of (4. 14) we have employed the
intertwinning relation (2). In the third version we have
employed the adjoint operation. The difference of Eq.
(4.10) and Eq. (4.14) is

(far Qusl®, 10)/5)
= 22 ey expGHMNUTPRIVE = 64 0 (R))

X exp(- iHgl)f{) dt. (4.15)

This defines the operator @,4(R, ;). The expression
above is defined for all f, € #, and f; € # since all the
operators in the inner product on the right are bounded
and the integral is over a finite time interval. So the
operator Q.4(R, ¢,) given by

Qus(®, 1) = [} expHNU PRIVE = 805P(R))

x exp(~ iHyl) dt (4.16)

is a bounded operator for finite R, /.

Eventually to obtain the physical time delay we
will take the limit f{; —« and follow it by the limit R
-, However, some of the interesting properties of
the time-delay operator are already present in form
{4.16). First, we see that @, is the component form
of an operator on the channel space j. Its channel
structure is identical to that of the S matrix. The next
property is that

Qus(R, ) = QhalR, o). (4.17)
This follows directly from the structure of (4.16). In
fact, Eq. (4.17) is just the component form of the self-
adjoint property for operators on /. Thus for any f

¢ f which describes the state of the three-body system
in terms of the asymptotic channel wavefunctions the
time-delay operator @ will have real matrix elements,
Since @ represents an observable this must be the case.
However, off-diagonal component forms of @, i.e.,
Qap, Will not generally be real.
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It is desirable to take the limits {;—~ < and R — « in
the definition of our operator @ ,4(R, ¢;). In the follow-
ing section we shall construct an operator @, defined
by a kernel composed of generalized functions such that

(far Qusf)a=lim Lim (o, Quol®, (Ve (4.18)
]

The functions f, and f{ need to be smooth enough so that
the generalized functions appearing in the representa-
tion of @, are well-defined. This restricted set of func-
tions, defined in Appendix A, for which Eq. (4.18) is
valid are dense in the space /.

One effect of taking the limit #, —« in the representa-
tion (4.16) is that the @, operators will now intertwine
with the channel Hamiltonians. By changing the variable
of integration in Eq. (4.16) it easily follows that

exp(iH 4£)Q 4a(R, ) = Q u5(R, ) exp(iflt) (4.19)
or, equivalently,
HoQap(R, ©) = Q o5(R, ) Hj. (4. 20)

This property mirrors the intertwining relation (3. 6)
valid for the S matrix S,

Before proceeding further we pause to contrast our
definition of the time-delay operator with those that
exist in the current literature. The main novelty of Eq.
(4. 16) and the limit process in Eq. (4.18) is of course
its multichannel character. However the type of limit
in Eq. (4.18) is simpler than that previously introduced
by Smith!? and also adopted by Jauch and Marchand® and
others. " These papers employ an average over R before
the R — « limit is taken. This average is used to get rid
of oscillatory terms in R. Here we shall find that treat-
ing the behavior of the projection operators [24(R) and
P(R) carefully enough shows that these oscillating terms
all vanish when evaluated between appropriately smooth
wavepackets f,, and .

Let us now resume the development of the problem.
At this point we shall utilize the approach found in
Jauch and Marchand’s® treatment of time-delay in the
two-body case. Since the inverse of S exists one can
find @ by determining SQ. An element of this product
takes the form

Sro:roB(R; to)
= S 8,0 expGH MU PEIUS - 80sPp(R)]

X exp(= iH,f) dt (4.21)
= [ exp BN, [US PRIUL = 80P5(R))
X exp(- iHyt) dt. (4. 22)

The first term in the square brackets may be simplified
by noting that

3 3
Z]‘ ”‘UL')T - 2 U;+)TUL-)UEI-)T — U;‘v)f (1-P)= U.:,”T_
(4. 23)

a=0 =0

The second equality is the asymptotic completeness of
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the U’s and the third equality follows from orthogonality
properties of bound and scattering states. So

3
uz:j() SyuQaB(R» to) _
=/ X expGAHUS PRYUS = US Py(R)] exp(— i o) dt.
4. 24)

Our problem is now reduced to evaluating the right-
hand side Eq. (4.24). Let us take matrix elements of
Eq. (4.24) and let the {;—<, For y#0 and 8+ 0 one has

3
(fw a@o S‘yaQaB(R, ao)fB’)r

= [ (fy, expGHN U P (R)US” = U Py(R))
xexp(- i)}, dt.

We now assume that f, and fg are well enough behaved

so we may interchange the order of integration in Eq.

(4. 25). Thus we can rewrite our equation in the follow-
ing form:

(4.25)

3
(fr’ 2—:10 S‘/anB(Ry w)f;)_r

= [ fo)*(J- exp[it(B2 = x% = B2+ x3)]dt)
x(p, | UST P(RIUS - US Po(R)] | pDSS (0f) dp, dph.
(4. 26)

The integral in the curly brackets in 275(p% = x5 - p32
+x§) and physically enforces energy conservation be-
tween an asymptotic state in the 8 channel and one in

the y channel. Since Eq. (4. 26) holds for a dense set of
functions f, and f5, we can associate it with the following
kernel in momentum space:

<py pé>

=2m8(B2 ~ x2 = Bit + x2Xp, | UL PRIUS - U P o(R)] [p3),
y>0, B>0. (4.27)

For values of the indices y and 8 where either one or
both are zero, one can repeat an evaluation similar to
the one above. We find that

<pq pa>
=2w8(F% + g - B+ x2Xpa | UM PRIV — US Pa(R)] | ph,

8>0, (4.28)
<pq

=2m(p*+q* =B - 3 Kpa | US PRV - U PR)] |p'a’).
(4. 29)

The remaining portions of the paper are concerned with
evaluating the matrix elements appearing in these last
three equations.

3
oé:o Sy aQaﬂ(R; OQ)

3
> o
&—=/0 SO aQ aB(Ry )

3
Z:;O SO&QQO(R) oo) !p,q,>

V. DERIVATION OF THE TIME-DELAY RELATION

The previous section has demonstrated that if we can
evaluate the matrix element UM [ D(R)US - U P4(R)],
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then we know the product SQ. This is equivalent to
knowing € since 51 exists. We now shall compute the
on-shell values of the above matrix element. Let us
define

Xo(RY= PRYUS = USOPo(R) 1 Ha—H.

We note that the operator form of Eq. (2.18) may be
written

) _ gt (+)
U'r _I’)’_K‘Y .

(5.1)

(5.2)

The kernel associated with K, is that given by Eq.
(2.19). Physically K, contains all features of the wave-
function related to the scattered parts of the wavefune-
tion. We note that Eq. (5.1) can be expanded as the sum
of two terms, which we may treat separately:

X5(R) = PRI = K§) = (I} = K§)Py(R) (5.3)
=[P(R) - PP(R)YS + [K§7 Py(R) - P(R)KS). (5. 4)

Here we have used I I;= P,. Now we observe that the
first term in expression (5. 4) for X,(R) vanishes strong-
ly as R — «, That this is so may be seen as follows.

Let f; be any function in /4, Then
[LP@®R) = PP ®)IIS
= | [P@®) - Py(P(R) - E) - PEVS, |
<[ (P(R) - PISS, |+ || Po(P(R) - EMI3fs ||

using Pyl =1} and || P4l =1, our inequality becomes

(5.5)

<2||[(P(R) - EMJf|. (5. 6)
This last expression goes to zero since /_9(R) strongly
converges to unity. Thus we need only compute the val-

ue of USY,4(R), where Y,(R) is defined as

Y4(R) =KW Pa(R) - P(RIKS. (5.7)

A lengthy and detailed analysis is needed to evaluate
the expectation values of U{"'Y,4(R). Most of the terms
entering the computation turn out to be zero. We shall
deal with this complexity by placing in the appendices
the evaluation of the zero terms. Thus the detail ex-
hibited in this section is somewhat more important
since it leads directly to the desired matrix element
values. For example we show in Appendix C that
KSMY4(R) =0 in the R —  limit. Thus our problem is
simplified to computing

Lim(p, | U PRV - U Pa(R)] | ph)

ZEE:(pv’IrYB(R) |pé> (5.8)

Our expression for Y,z(R) has two terms. We treat the
operator K J,(R) first. Using the Eqs. (2.19) and
(2. 20) for K{~, we may write K~ P,(R) as

(0., | K57 Po(R) [ 05
3 (
_ (+ ” a(qax aIH 4')I ”>
-/ (—(ququas)lps +hﬁ%g2‘iﬁ% )
» nl— (R)I ’>d3p"
P Zixi=40

EZ2 5. 9
+@5 = D5+ X5 5.9)
We further expand this by expressing the singular .

denominators in terms of their delta-function and prin-

cipal-value parts. We shall denote a principal-value in-
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tegral by writing the denominator terms without the

customary +70 notation. Our expansion of Eq. (5.9) now
reads
(=) S
(0,9, | K§ Py(R) | 0B s(pyq, 2 B.(R)|p}) (5.10)
i=

where the kernels B;(R) are given by

(pay| B((R)|pj) =~ E<pyquq“’ %L
{5.11)

(pﬂv‘Bz(R) lpé>

(+) "

Xa-Ps +an ﬁ +q1

(p,4, | B3(R) [ pj)

Ewé(m Yo =5+ XD b a(as)

o {pal/laplp )(gé’”l Ps(R) 1 p5) &,

S R 19
(P4, |B4(R)|p})
IT(pyqqu‘”\p NiT6(B+ 3= DAt +X3)
x(p§ | Po(R) | ph) d%y, (5. 14)
(p,a, | B5(R) {ph)
o OLI (+) - R
E/Z: d;)a(q XB p/—/{z XB 775(?3*"17 pﬂ2+Xa)
x{p | Po(R) | ph) d°py, (5. 15)
<p7q7’B6(R)|pfs>
3
23 1m0(Dy = Xa = B5® + X9 o(@aXpa [H53 | P
xim6(By+ Gt — Byt + x3Xph | Po(R) | ph) dps. (5. 16)
It is now appropriate to examine the Qperator
P(R)KS™. The kernel representation of P(R)KS™ i
(p,q,| PRIKE [pg)
_ R)] v "> " n (+)
fﬁlﬂﬁ&_%%ﬁ;( pyay G G2 P
( )(p IH(+)lpB> ) 3 3.
dapl 5.17
22 Xa_p +X% p d ( )

As before, we expand this in terms of its principal-val-
ue and delta~-function parts. We have

8
QAAR)

pé>, (5.18)

where the operators A;(R) are given by

(pyqv !AI l pl's

_ pya
:“I%FLL rqy

(b, | P(RIKS | p) = <p7qy

(+) Ip6> d3 Illlaq;l,

+qr
(5.19)
<p~/q7 lA'Z(R) 'pé)
RﬁIIP(R)lp"gz"> y\ o (q&&)a\/—/(”lpg) B Bar
f/)”z R T e e
(5. 20)
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(pya, | A3(R) | pp)

R I 7 "
= f I D) q/.zg( ) 2737% Z TTG(PZZ—XZQ— {32+X28)¢a(q,q,¢)
X(pal# S by dpy dq, (5. 21)

(p,a, | A4(R) |ph)

—"f <pvchlp(R lprqr> Z<pr‘1~/ lG(”{pﬁ

xinb(py?+qu - b+ xy) dpy dql, (5. 22)

(p.a,|45(R) | p5)
(+)

[<p,q,|/9 !p;’q;’>7 ¢u2 )f(‘: '/;,z+'f:>

xin8(pyt+qut — Pt +x3) d°py dq?, (5.23)
(P, | A5(R) |ph)

=S @9, |P® pra) 22 in6(Be’ - xh =By + XD ulad)

X(pu|H S o) ims (Bt + Gu? - B + x5 d®pl d’ql. (5. 24)

We now proceed to evaluate the matrix element given
in Eq. (5.8). We show in Appendix B that

gg@,lz,(B,.(R)-A,.(R))lpp =0, alli#2. (5. 25)

When this result is combined with Eq. (5. 8) we have

Lim(p, | U3 [PR)US - U7 Py(R)) 3

=1im (p, | ,(B(R) - A;(R)) | pj) (5. 26)
for y> 0. When y=0 this equation becomes
Lim (p,q,| U [P(R)US” - U Py(R)] | ph)

=1im (p,q, | By(R) ~ A2(R) | p}). (5.27)

At this point we stress that we have to evaluate the
above matrix element only for on-shell values of the
momentum arguments. This on-shell requirement is a
consequence of the delta function appearing in Eq.

(4. 27) and Eq. (4. 28).

We continue by considering the evaluation of the
operator IBy(R). Examining B,(R) we see that it is the
sum of three terms. Defining B, ,(R) by

(0,4, | B2a(R) | ph)

(#)
- o< H el paXps | Pa(R)Iph) 3
(ba(qa)/ ”2+X%)(p7 1/2 dj)

+d,—Pg +X
(5. 28)

then
3
By(R) = 2J B1u(R). (5. 29)
We shall demonstrate in Appendix B that only the term
LB,, in the above sum contributes to the nonzero matrix
elements. So in this section we examine only /,Bs,.
Setting a =y in Eq. (5. 28) gives us

<p7qle2y(R) lpf’s>
_{p& 1 Pa(R) Ipp)

(p,]f/“’lpé’) 3,0

= ! ’ ” l .

2n6¢ qy)/‘py_*_qy ,,2+X% (P§+Pé)(i)3—[)g)( pB
(5.30)
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We now use a property of P4(R) established in Appendix
A, namely, for f(p;) a smooth function in/, and dif-
ferentiable in |p;| the following limiting relation is
valid:

. [{psl Ps(R) Ip)fipa)
im PRy

25y
(5. 31)

2y == oz (BE oo |

In obtaining the form of Eq. (5 30) we have exploited
the on-shell condition p2 - x2 =5 — x% to write the first
denominator solely in terms of the 8 momentum. The
distinctive feature of this term which prevents it from
cancelling against the corresponding term I A,(R) is the
fact that the singular surface occurring at p;=p; chang-
es the character of the R — « limit. Without such a
singularity P4(R) — E;. If this were the case then B, (R)
- A,,(R) would go to zero.

We are permitted to use Eq. (5.31) in evaluating the
R — o limit in Eq. (5. 30), since the portion of the in-
tegrand excluding {py | P4(R) I ps)/ps~py is a smooth
function of p;. This is a consequence of our assump-
tions in Sec. I about the physical amplitude {p, | ;L/(‘) ,
namely it is differentiable function of its arguments.

The remaining ingredient of the 1ntegrand in Eq. (5. 30)
is the denominator 13E+Zj2 Pyt +x3 We need only es-
timate its behavior in the neighborhood of pj?=p4. So
one has that

P+, - PB X=X (5.32a)
Thus for 1552 - p2% <x% we have the estimate

Pi+ad-pyt x>0, allq,. (5.32b)
Employing Eq. (5.31) in Eq. (5.30) now gives us

i d
Lim (0,0, | Bz, (R)[94)= ~ 204 (a) 7

(p 12 1P"pl
X((p,w, 5 XD (bar PP )

(5. 320)
where pg :pé’j;[;. If we use
_d_ __bs 1
(55 000% Lo, 407 (-39

our expression for the right-hand side of Eq. (5.32c¢)
becomes

n d + ”
- Zﬁ%(‘ly)m (D, 1433 piy

n . ,
- ﬁi d)y(q'yxpy '/7/758) ’p8>

Pty
) .

4‘2L<p,v/‘ I p3). (5.30)

In order to find 7,B,,(R) we must integrate this last set

of terms with [ ¢,(q,)* d%g,. Since ¥, is 2 unit normalized
boundstate wavefunction, one has at once that

Lim(p, | 7,By,(R) |ps)
-~ 5 @(pylﬁié’ |p5) - 2p,<py|zL/“’ |3
+ ’ J
= (o, #3302 f % d’q,

This completes the evaluation of I,B,,(R)

(5.35)
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Let us now study the companion terms of I.B,,(R) that
occur in Eq. (5.26), namely 7 4,(R). As in the case of
B,(R) we can decompose A,(R) into a sum of three terms.
From the form (5. 20) for A,(R) we can define

3
Ay(R) = 21 Apa(R) (5. 36)

where A, (R) is given by
(p,4y [424(R) [05)

R l n " a ‘(;) R "
B / ”g p(z >2 ﬁ”? n; 2 d3 d3q7

~Xa= DK +x8) (B2 4@y - D +x3)
(5.37)
Again we demonstrate in Appendix B that
Lim 25 (p, |1,(By(R) = Asa(R)) [ }) =0. (5.38)
a0 oty

So here we need consider only the term Ay, (R). Using
the on-shell condition p% - y2=5%2 - x}, we may write Eq.
(5.37) as

(p,a,|As,(R) | pj)

_ (pa,! P(R) I pray
‘2"'f P71,

_ ﬁ(_qz”)jg; I3 !p;%'>
() +p )P+ G =B+ x3)
xd3pr dq). (5.39)

We now quote another feature of the operator 2(R)
demonstrated in Appendix A. For fe #, and f(p;, qz)
differentiable in the |ps ! variable we have the limiting
relation

R " ”
RW/*"—‘!@——L—M 89 1oz, a5) a*py oy

pB "
== w\ T (p p ’ )) 5.40
d]) ( 878 qB P'B'=PB ( )

In the neighborhood of p, = b, the last denominator in
Eq. (5.39) never vanishes. Thus we are justified in
using relation (5. 40) to evaluate Eq. (5.39). The limit
that Eq. (5. 39) takes is

]I-zif?"(pyquAh (R) Ipé

=2n,¢, q,) ( X

(»)Ip >P )
+l> Y B -po+qs+x2)

Pu=py
(5.41)

where p; =p;p,. Of course the value of p, is on-shell,

If we write out the derivative term and perform the inte-
gration with respect to [ #(q,)* d%,, then Eq. (5.41)
becomes

1im(p, |7,4,(R) | p})

4 d + + ?
Z—g AR 8 + 55 550,452 g
—{p, H‘*’\pa>f q(:l)zl (5. 42)

By combining Eq. (5.42) with Eq.
termine I,[B,(R) — A,(R)]. We have

Lim(p, [1, (BQ(R) - Ay(R)) | ph)

__ Iy & (+) s a4 (+) ’
- P dp (prl/'/ Ipﬂ> pl dpl <p1 IH |p8>

(5. 35) we can de-
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2p12 <p7|7,_/‘:g) |p8> 2p2 <p7' IH')‘!E)| pB> (5- 43)

The sum of the first two terms is just the total energy
derivative since E=pf2/2n,— x3=p?/2n,~v3. So we can
simplify Eq. (5.43) to read

};33@, M(BZ(R) - Ay(R))|pp)

Ng

5@/ 00) ~( gt « 57 e 53 o). (5.4

If we use this result together with Eq. (5.26) and Eq.
{4. 27), we obtain part of our desired solution:

3
}eiin <p7’ ;)0 SyaQaslR, ) pr3>

pé>

T SychaB

3
= /4
< 4 o=(

=2775(.53 -PE G [ (1F<prl/‘/(+)lpé>

( ';:3/2 2[) )<pv|7l/(+)lpé>} .

This equation is valid for all y > 0. The case with y=0
must be treated separately since the number of degrees
of freedom in the final state is five instead of two as in
Eq. (5.45).

It is at this stage of solution that it is profitable to
introduce the reduced matrix elements discussed in Sec.
III. As noted before @ is an operator that maps /4 into
/. Also from Egs. (4.27), (4.28), and (4. 29) we see
that @ has the same energy conserving delta functions
that characterize S. This means we can define reduced
@-matrix elements in the same manner that we have
used to construct the reduced S matrices. For example,
take a >0, 8> 0; then in analogy of Eq. (3.13) and Eq.
(3. 14), we have

(5. 45)

S(E-E")

(Po| Quslph) = W(P lgas(E) |BL).  (5.46)

In a like manner the remaining reduced ¢,4(E)’s are de-
fined by the same process that we employed to construct
the s,4(E). Furthermore, the general ¢(E) operator
maps j, into 4, just as the operator s(E) does. In this
new notation Eq. (5.45) may be expressed as

: N\ S(E-E' .
<p7 E?O SyaQaB p8> n /()yanB)Zﬂ <py an(E) PB>
(5. 47)
where
<P7 S1a(E) ag(E) pﬁ>
=—2n(p,bin )”2[ oy |45 (o
+(ﬁ§ + iﬁ‘g) (p, |13 lpé>] : (5.48)

In this equation it is understood that all the momenta on
the right-hand side are on-shell and thus determined by
knowing E. Let us form the energy derivative of the
reduced s,,(E) defined by Eq. (3.14). We obtain
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(1E<leSYB(E |p >

. d, - 5
= - Zm(,h,n,i)éng)uz [ﬁ(py ‘/—/:‘;) lpt'l>

(3 wy) P p‘”] '

These last two equations allow us to write

(5.49)

3
~ ~ . d o, A ~
< ¥ 0;\0 Sva(E)an(E) pi’s>: - Z&E(l)'y‘syﬂ(E) Ipé>y y>0.
(5. 50)
Stated in operator form this is simply
d
> 5, ulE 0 os(E) == i 75 5,5(E), (5.51)

o=0
valid for v > 0.

The next step in our analysis is to extend the result
given in Eq. (5. 51) to the case y=0. The details of the
computation in this case are quite different than those
described above since the final state has five degrees of
freedom. The on-shell requirement here takes the form
PL+qi=P - xi So we need to evaluate the following on-
shell matrix element

hm(pyq,I Ut p(R)Ué -
=1im(p,q, | Y,(R) |pj).

- U7 Pa(R)]| ph)

(5.52)

Again many of the terms in ¥,(R) do not contribute to
the solution. In Appendix B it is shown that

8
24 (B:(R)

lim <p,q, ~ A,(R)) p;,>: 0. (5. 53)
In both of the above equations it is understood that the
momentum arguments in the ket on the left and the bra
on the right are those given by the on-shell condition.
Let us first find the contribution to Eq. (5.52) coming
from 33, B;(R). Using definitions Eqgs. (5.11), (5.12),
and (5. 13) we can write

3
<pyqy “’lpa><1 IPB(R)lpa> ,
<pyqr > f R &’py.

Loy~ Bi e
Although /)’“" contains singularities, only the exhibited
denominator is singular in the neighborhood where J4(R)
acquires support in the limit R —~ . Using the on-shell
condition, Eq. (5. 54) becomes

2 By(R) p,;>

3
<p7q7 1—1“1

on / mLﬁ_éé’_lp_p_ pé’l/%(R)lpa i
s (pi+13) -5 B

(5. 31) we find that

(5. 54)

(5. 55)

Using the limiting result Eq.

pé>

7 . , "
== an ) " <p7quB(§B) |pB,> ’ i);B "
dpyg palbe+pr)

3
21 By(R)

}}E <p7q7

piFEPR

(+)

).

2n5<2p dt)l (prqr ‘8(;;) 'pB) + 4[),2<p’q718
(5. 56)
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In the first of these two equations pg png In going to
the last form we have employed Eq. (5. 33).

It remains to evaluate %1, 4;(R). Combining Eqgs.
(5.19), (5.20), and (5. 21) one has
2 A (R)

3
<p1QY :1 pé>

%) "oy 17 E” z"lﬁ(a’)lE ” //
:/<quy|/9(R)|p - £ atpy

yqy ﬁ”z 112 P’z +X

(5.57)

In accordance with the angle convention introduced in
Eq. (3.15) we define a generalized momentum-like
variable suitable for the radius coordinate in the six-
dimensional space p, q,

R=VE- (32, (5.58)

In the coordinate set associated with K the point p,,q,
has the representation (B, wq,Porda). I we set B

=ptt - x4=P% +72, then the integrand of Eq. (5.57) has a
term of the structure (p,q,| 2(R)Ip/q)/(K" - K). For
integrals of this type we show in Appendix A that for
sufficiently smooth fe H

. I R 8 " I n
lim M“RLLB o, q3) d®pj d*q;

Rew E-K"

a [(R"\"
- dK”K ) F& wﬂ’p‘”q")] 1,@:;'

(5. 59) to evaluate Eq.
lim (p,q, pé>

L[(l{”) 5/2<K"0’7Pﬂ1|/3’(+)lpé>]

Cak"\R (K" +K)

a=1,2,3.

(5. 59)
Employing Eq. (5. 57) gives us

3
ZAyR)

Rn:K

= ~2 <K(U pyqy‘B“)!pB)*'_E d}'E(K ypyqyl/jog)lp5>

(5. 60)

In this equation we have written the bra portion of 3“’

in the variables Kw,,b, q, instead of the original coor-
dinate system p,q,. Here as in the treatrnent of

33, B;(R) the on-shell requirement pz +qr pB - Xa is
possible only for initial scattering energies E = p
which are positive. The S matrix sy 4(E) is of course
zero for negative scattering energies, E <0.

W
Xe
Now it is appropriate to combine Eqs. (5.60) and

(5. 56). Utilizing Eq. (5.53), this leads to

Lim(p,q,| Us"[P(R)US” - Us” Po(R)] |pp)

= [— W <ﬁw757&7 !Bég) Ipé>

(Kwyp'qu 'ng) |p8> (

2p5
1

- p%? 2n, +q§;2uy)<ﬁvav‘;rlg(§g) lpé>] .

We note in the above expression that the first derivative
term is the derivative with respect to the energy of the
ket|p;) while the second derivative is with respect to
the energy of the bra (Kw,p,§,!. The sum of the first

(5.61)
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two terms is then the total energy derivative of the on~
shell breakup amplitude (p,q, |43 1p4).

At this stage we introduce the reduced matrix ele-
ment description. Recalling Eq. (3.18) we see that we
need to define

ps>

=
_ 8(E — E') < R .
=T by 4, lagpgi 72 \ P 20 S0a(E)q ag(E)

3
Z; S(lonaB

Z>g>.
(5.62)
Because of Eq. (4. 28) we can write using Eq. (5.61)

(wrbrd )
d AT
== 277(“7’1?)1 /4[)7 qr(nsplli)i /2 [EZE (p,ay |8(§B) ‘p8>

(Zp'2+ ><quy|853’lps>]

where the magnitudes of the momenta in the bra and the
ket of /j(*’ are related to E by the on-shell condition.

3
?wsOa(E)an(E)

(5. 63)

Let us consider the matrix element of sy (E). If we
form the energy derivative of Eq. (3. 19) putting a =1y,
we get

d . sal mia
;{E <wrpyq'yl SOB( )|p3>

B , d .
== 2% (H7n7)1/4p7 qy(nspe)l 12 [d_E~—<pyqr IB;B) Ipé>

(e ) o 85 le0)]

This result substituted into Eq. (5. 63) yields
(erhrin

So we have established the validity of Eq. (5. 51) for
all values of y.

(5. 64)

3
21 S40(E)q o(E)

. d aA ~
B)= - 1w by () B9,

(5.65)

In all the foregoing derivations we effectively took
B#0. In a similar way, however, one expects that the
relation (5. 51) is also valid for 3=0. The solution of
the time-delay problem will be completed if we use the
unitarity relation Eq. (3. 23) in order to move the S
matrix from the left of relation (5. 51) to the right.
Specifically, we have

3 3 3 3
2 SalF) 23 510(E a5 = 2 (2 518510 (E) dun(F)

3
= 23 Bpaladas(E) =dea(E). (5. 66)
Thus Eq. (5.51) becomes
3
25s(B) == 1 2 s (B)-L s (B). (5. 67)
y=0 dE T

This is our principal result. Equation (5. 67) is an
operator relation that maps L}~ L% If it is viewed as a
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relation on the space ,f/, then it has a simpler appear-
ance, namely
9(B) =~is'E) L s(B) 1 fi,— A (5. 68)
dE T r ’
We recall that the operator we began with Q(R, {;) was
a bounded symmetric operator on j [see Eq. (4.17)].
Here it is easy to see that ¢(F) retains the symmetry
property. We first note

d
q'(E)= H(dE *(E))s(E). (5. 69)
However, if we take the derivative of Eq. (3.25)—the
unitarity relation for s(E)—we have
(4 _—y
0‘(dE s (E))s(E)+s (E)dEs(E). (5.70)
Thus
. d
q'(E) == is"(B) 7= s(E) = q(E). (5.71)

So one expects that ¢(E) is a self-adjoint operator acting
on the space j,.
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APPENDIX A

This appendix studies the nature of projection opera-
tors on an n-dimensional space. Particularly, we in-
vestigate the behavior of the projection operators when
acting on the types of generalized function encountered
in this problem. Our general method of attack is to ob-
tain momentum—space representations of the projec-
tions. These representations are always expressed in
terms of simple Bessel functions. We determine the ef-
fect of the operators on generalized functions by using
a combination of explicit calculation and the Riemann—
Lebesque lemma. It is the detailed results obtained in
this appendix which allows us to discard the average
limit in R used in previous works®!? on time delay.

Throughout the remainder of this appendix we as-
sume that our operators act on the following dense set
of functions. For an n-dimensional space we assume
the functions and their first n-derivatives belong to
L%*(IR"). We are interested in the R — = limit of the
projection operators P(R). For a limit of this kind we
establish convergence of our results in the weak sense.

We shall first establish that
Lim (f', P(R)f)=(f,f)

R~

(A1)

where f* and f are any functions in the above dense set.
This is, of course, an immediate consequence of P(R)

converging to the identity in the strong sense. However
our proof of (Al) allows us to state certain useful prop-
erties of the momentum space representations of P(R).
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If we express (f', P(R)f) in momentum—space we have
at once

(F, P(RY) = [ F1 (&)X | P(R)|K)F(K) d"k d"K’.

We have used P(R) as the symbol for the n-dimensional
projection operator. Primarily we are interested here
in the cases when n=6 or n=3. For n=6 then P(R) is
equivalent to P(R). The kernel for P(R) given in formula
(A2) is

(A2)

&'| P(R)|K) =

1xI<R

explitk—k’) - x

o) d (A3)
In order to evaluate this integral one may introduce an
n-dimensional spherical coordinate system. A straight-
forward computation gives

n/2
<k'|p(R){k>:< R |> Jaso(|k=K|R)

27 ik -k’ (ad)

where J is the Bessel function of the first kind.

We now want to study the R — <« limit of the right-hand
side of (A2). If we introduce the change of variables
z=R{k-Kk’), we have after (A4) is substituted into (A2)

7 I lzl / m,?
/f (k") *f<k R> (277)“/2 Iy 2l [z| (l|z|(12dk (AD)

where 2=2/1zl, Since f possesses a derivative we may
integrate (A5) by parts employing the identity
1d

P B, 0 1 (2)) == 27U, 0 (2).

(A6)

Denoting |z| by z the surface term arising after the in-
tegration by parts is PY

/ £k *f(k' )dz A"k’

It may be easily seen that for n= 3 this surface term
vanishes. The structure of the integral over 4"k’ is that
of a convolution of two square integrable functions. The
resulting function of z/R is absolutely integrable with
respect to d'z. Thus the contribution to the surface term
for z =« is zero. For z =0 the term is trivally zero.

For the case n <3 one can prove the weak convergence
(A1) without employing this integration by parts.

zn/2-1
= Gyt -l

22

(A7)

z=0

So after one integration by parts (A5) takes the form

jf

n/2 2

Gy Ednr- 1(z )[( 2)f(k'+%>

If (k' + ~)}d"k’ dz dz. (A8)

“z R
If we continue the partial integration # times, where
w <n, then we have that (A5) may be written as

n/2 1-m

ff (k')* W I s2-m(2) [(n— m—4)--- (n—2m)

Z m f
><f<k' + ~> ¥ a,zt ( ! )] d"K' dz dz.
R)Y L e

In formula (A9) the «, that appear are constants obtained
from sequence of partial integrations. Since it is not
necessary to know what they are we do not bother to
write them out.

(A9)

In order to show (Al) consider the cases of n even
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and » odd separately. Start with » odd. Here take
m=n/2 - 5. Then, if we set x=2/R, (A9) becomes

(" e

n/2-1/2

1
}_‘1‘1 a, l_d_M] A"k’ dx dx.
=

[(n— 2)! 1 f(k" +x)

(A10)

We now consider the R — « limit of (A10), By applying
the Riemann— Lebesque lemmal® to (A10) we see that
only the x =0 point contributes to the value of the limit,
So the set of terms with derivatives all vanish, We are
left with just the first term. Since an n-dimensional
unit sphere has a surface area

A 27"/

WZ— (A11)
we have that the R — « value of (A10) is just
S FI®O*FE) dK = (f, £). (A12)

This establishes the validity of (Al). A parallel argu-
ment works for n even.

Let us now turn to the evaluation of the singular
kernel (k’| P(R)|k)/ (k> — k). The divisor here, which
vanishes in the domain of integration, is given a well-
defined sense by the definition of the singular integral
as a principal value integral. We shall prove

Property I.

tim [ (k')*a‘iu%k‘—> FK) A"’ d™

- [ 1oy dk[( LA 1 )] e

In our three-body problem the case =6 is of most
interest to us; however, n=3 is also useful in the study
of the two-body problem.

(A13)

Introduce the coordinate z=R(k - k’); then

RY(R? (A14)

where 6,., is the angle between vector k’ and z. Using
the form (A4) for the projection operator, the integral
on the left of (A13) is

IZs™MAY 3 f(k'+Z/R) Jnlz(z) e 0,
S TR R o et e 4K

(A15)

Our method of evaluating (A15) is based on the observa-
tion that we can reduce this problem to the previous
problem, i.e., the demonstration of (Al). Let us in-
troduce an n-dimensional spherical coordinate system
to describe the vector z/R. We choose the z axis of
this coordinate system parallel to k’. Denoting the
coordinates by {(z/R), 6,, 6,, ..., 6,.,} we have that

6; = 6,... We note that if we perform the integration over
dE'first the denominator vanishes only when the 6,
integration is carried out. So we are motivated to
write (Al15) as

ff’(k')*aﬁé F, ) 2%,

- k") =z(z + 2Rk c0s6,.,)

(A186)

where F,,r is defined as
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sin™%6,

1 (!
n _ =
F, p&')= 2 ,/_: dcosby (z/R)(z/R + 2k’ cosb,)
xf,, r(k’, cosé;),
fZ/R(k',COSG1)

T 2r
- FT(”,/Qz—) / sin™> 6, d6,- - - / o, f(k’+ %) (A18)
0 0

Examination of these formula indicate that F, ,; is the
average value of the function f(k’ + 2/R)(k? - k'2)"1
summed over the surface of a sphere centered at k'
with radius z/R. The f(k’, cos6,) is the nonsingular part
of the average and integral (A17) is the integral over
the singular part.

(A17)

We shall show that F,,g(k’) is continuous in z/R.
That F,, is integrable with respect to d"z follows from
(A18) and the fact that f(k’ + z/R) is integrable with
respect to d"z. Thus we shall be justified in using (A1)
to conclude that

lim f £ J"”)(f/)z F,/p(k") d"zdk

fIE)Fy k) dK . (A19)

Let us investigate the behavior of F,,p(k’) as z/R — 0.
If we define

Z 2
R 2k'R?

then (A17) becomes

x==c086; + (A20)

R '/‘z/Rozz/Zk’Rz (1 _ 22 R2y2 . i>(n-3)/2
22, 1 pas? sont 4k'2R? z° k!
/R+2% /20

xfk’, %) % .

F, k)=

D =

(A21)

This principal value integral here is of the general form

b+a./ h()

L8
_ h(x) - k(0) 1(0) )
b+a/ x dx + b+a %’ a>0,

(A22)

where % is a differentiable function. On the right of
(A22) we have written the integral by adding and sub-
stracting

h(0) /’ ® dx

a+b J, x '
We need to find the value of (A22) when ¢— 0 and » — 0.
Since the integrand of the first integral on the left of

of (A22) is continuous, we may use the mean value the-
orem to write

1 f I )dx () = h(O)) 1(0) | b

b+a x4 b+ta " a

(A23)

where x, is some point in the interval (b, — a). As the
interval size goes to zero the factor in the square
brackets becomes the derivative of # at x =0. The sec-
ond factor is just a constant times 2(0).
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If we apply formula (A23) to (A21), we obtain

n-21 _ . 1 df(e’, k)
4 B f(k )+ o ar’

___i[(f_) (n-i)/Zf(k E:)
arl\ %’ Bk |

When this result is substituted into (A19) we obtain
(A13). In the text we require the result of (k’| P(R)|k)/
(k- k'). This is obtained from (A13) just by setting
f(k) = (k' + k)g(kK), so the denominator in (k+%’) in (A24)
is now absent.

Fy(k")

(A24)

We turn to the next important property of the P(R)
that we have used in our derivation. Choose n to be even
and the n-dimensional vector k may be represented as
the pair of vectors (p, q) where p and q are (#/2)-dimen-
sional vectors. Let us determine the effect of
(k’I P(R){K)/(p — p’). This problem is trivally related
to that of determining (k’| P(R)I1K)/(p* - "), so we
shall solve this last problem. We need to calculate the
R — « limit of

fk)*f(k) R"/?
b Grk-wiy ek KRk
(A25)
Introducing the variables
z=Rk-K'), x=R(p-p’), y=R(a-9),

where x and y are (n/2)-dimensional vectors, one has
z=(2+y)2, piopri= %(% +2p’ cosep,x>

where 6,., is the angle between p’ and x. So expression
(A25) may be written

mz> f(p +x/R fuz/R '

The structure of this integral is similar in nature to
that evaluated in (A19)—(A24) so we may utilize the
same technique to show that

(A26)

Propeviy II:
hm /f’(k )*<k | PR

p=-p'
A e (L) " b, )
Jrwrg(5)

We wish now to deduce a related property for the
operators )4(R). Namely we establish

B sy ame’ ak

(A27)

d"k’.
p=p’

Property II:
hmff (p)ML——EA—f(p)d% d3 ’

- [ropgB)rein]| (a28)
bErp
That Il is a consequence of I is seen as follows.
Recall that
(P41 PoR) [ps) = | ¥s@p)*piaa| PR) [ pgts) ¥(as) da g
(A29)

In (A27) set f(ps, 45) =/ d(Qe) and £ (pg, ag) =f’ (pR)Y(QR);
then (A28) follows at once.
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DProperty IV:
Lim (f 8(3 -

- [8(®

Pa(R) |ph) dpy

- &) <p,q,|ﬁ(R)‘p;’q;’>d3q @’p7)=0  (A30)

where K*=p+q%=ptt — xi. The physical meaning of this
property can be understood by looking at expression
(4.10) for the free transit time. The meaning of the
term on the left is the free transit time for a planewave
in channel 8 having an energy K2=5%’ - x4 The second
expression in Eq. (A30) is the free transit time for an
incident state composed of three free particles having
energy K®. Then (A30) claims these free transit times
are the same in the limit R — .

After a prolonged examination we are unable to give
a general proof of this property. Thus we are forced
to add it as an ansatz to our list assumptions detailed at
the end of Sec. II. The problem in the proof is that the
integral expression for {pj!24(R)Ips) involves Bessel
functions of complicated arguments and this makes an
explicit evaluation of the integral unusually difficult.
We note that in the two-dimensional static coupled
channel problem that Celenza and Toboman!? studied
that they required the free transit time to be indepen-
dent of the channel.

The role of Property IV in our demonstration of Eq.

(5, 67) is restricted to showing various collections of
terms, like Eq. (B1) are zero.

Properly V:
lim (f (5% ~Pi*Kpa| PalR)

— [ 8(BE2 - BiAps | PalR

lpeyd®pe

)| pg) ) =0 (A31)

where p - x4 =5 ~ x%. This property is a conse-
quence of Property IV obtained by allowing 8 to take on
its various different nonzero values.

APPENDIX B

We collect in this appendix a number of the results
claimed valid in Sec. V. Let us consider the different
problems in the same order that they arise in Sec. V.
We first examine the validity of

Lim(p, L, (B;(R) - (B1)

R))|phy =0, i#2,

for on-shell values of p, and p}, i.e., po~xi= =Pt -
Most of the relations contained in Eq. (B1) are true
for trivial reasons. For example, if i+ 2,3, then the
integrands appearing in the definitions (5.11), (5.14),
(5.15), (5.16), (5.19), (5.22), (5.23), and (5.24) have
smooth behaviors in the regions where the momentum
space representations of /2(R) and P o(R) are singular.
Thus we can use P(R) — E and ) ,(R) ~ E,. When this
relation is employed Eq. (B1) is shown valid for i+2,3.

We turn to a more complicated case 7=3. We define
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component forms of By(R) and A3(R) given by

3
By(R)= ‘QBsa(R), (B2)
(0:,| BsolR) |pp) =i f BB~ — i+
ﬂ(qa&)al/#‘*’lpﬁ(pé'lp )Ips) s ;
PL+Ge—Pat+x} . &b (B3)
and
3
As(R)= 2 Aga(R), (B4)
_ E g E' IE”E”
<p'}‘q1‘|A3a(R |pB> Z”f 172+q112 p12+xz
Xo(But = A -BR2+xd)
X ¢alauXpilta|psyd®py dPqy.  (B5)

First, let us investigate the case a+y. Then the de-
nominator in (B3) takes the form

P+t =Pt exi=pL+qh - Ph+xa=5+x4>0.  (B6)

The basic behavior of {pj | /—55(R) |ps) is that it is a con-
volution dependent on the difference pgz —ps. As R—
this convolution becomes a delta function when acting

on sufficient smooth functions. The exception to this
situation is when p; is forced to always be equal to

ph; then (pg IPB(R)IpB) has a constant value depending on
R and B8, In the case under study here a#y and the delta
function in Eq. (B3) does not force pj; =pj, so we have

kim<p7q1|B3a R \p,’;)
=imPa (AaXPa |H on D5 8(B% — X ~ PR +X5).

The vectors p,gd, are determined by p,q,.

(BT)

Turning to A;,(R) given by Eq. (B5), the denominator
appearing there assumes the form
2@y = BE +xXp=Dl + T =P X =T + X5 >0. (BB)
As in the case above the delta function in Eq. (B5) does

not force p,=p, or q,=q,, so P(R)—~ E here. Thus for
Eq. (B5) we obtain the limit

// 2

]kim<p1q1|A3aR lpl'i>
= i1 (QaXPa 763 PR O (B = Xa = PR+ XD,
50 A3, (R) — By (R)

(B9)
—0as R—x,

Consider the remaining term in 4;, B;—that for a=y.
Here one has for 7,B;,(R)

(py| L,Bs, (R) | pp)
) 8000, 0=
X(p, |15 [ oo | Po(R) | ph) dp

=inp, |43’ [pa) | 6(BE: - By*Xps | Pa(R) |ph) d°py. (B10O)
For I,A;,(R) we have
(py| LAL(R) )
=ir [ ([ ¥,(@,)p,a,| PR) Ipraid i @) dq, d%q)
x8(By% ~ BiXpy |Hy8 | ph) dopy
=imp, 435 [03) f (o, | P (R) D3y 0By - BY) d®py. (B11)
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In Appendix A we discuss the relationship
lim ([ (p,| P,(R) [p7)8(5;* - B} d'p,

'f<ps‘pa IPB)ﬁ(P"Z Bydpp)=0

where §2 - x2 =52 — xJ. With the result of Eq. (B12) we
obtain that I,Bs,(R) ~ I,A3,(R) vanishes as R —«. So
altogether we have shown that Eq. (B1) is correct.

(B12)

The next result, employed in Sec. V, that one needs
to prove is

Lim(p, | 1,(Bza(R) - Aza(R))|p§) =0, (B13)

a#y,
where B, ,(R) is given by Eq. (5.28) and A4,,(R) is given
by Eq. (5.37). Consider B, (R) first. The integral in
Eq. (5.28) is well defined if the denominators do not
simultaneously vanish. That the singularities are al-
ways separate can be demonstrated by attempting to set
P2 - X% equal to p2+q2. Using p2+G2=p% +’ this equality
is equivalent to - x% =¢%, which cannot be satisfied for
any value of q,. Secondly, we note that (p; | 24(R)|ps)
~ 8%(ps ~ ph), unless it is divided by a term of the type
Ps — pB Such a term could in principle come from either
of the two denominators in (5. 28). If the second de-
nominator is to behave like p; - pg, we require
PLa =B - =B - L. (B14)
Again this is impossible since it is equivalent to 72
==x2. So the second denominator will not eftect the be-
havior of the R —« limit, The first denominator will
behave as pg - pj if
P =B - (B15)
This condition may be stated as a condition on g, since
Po is a function of the on-shell vector p, and the vector
q,. So if q, is such that (B15) is nof satisfied,

Lim(p,d, | Bya(R) |p5)

- ‘Pa(c_lﬁ) (Jml;L/(”IpQ
pztx—Xro-pé2+XB [).,+q., PR+x%’

(B16)

In the case where (B15) is satisfied, then we must use
Eq. (5.31) to evaluate the integral in Eq. (5.28). The
result which we do not bother to write out will clearly
be finite.

Let us now turn to the evaluation of 4,,(R). Again if
(B15) is not satisfied we can show the 2(R) — E in Eq.
(5.37), so that we have

Eg(pyqymu(m |ps)

£ B17
Ba—xa—PR+xh Po+ q pe (BL7)
When (B15) is true then we need to employ Eq. (5.40) to
evaluate the integral in (5. 37). The result is a finite
constant, Thus

Um(p,q, | Bza(R)|p) =Lim(p,q, |4;0(R) [p;)  (B18)
for q, such that (B15) is not satisfied. However, iu
passing to the form (B13) we need to integrate (B18) by
] ¥,(,) d°q,. The set of points in q, such that (B15) is
true are of measure zero with respect to qidq,,, so the
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exceptional points satisfying (B15) do not contribute to
the d3q, integration. So we may conclude that relation
{B13) is true.

We conclude this section by examining the case y =0.
Here the on-shell condition takes the form 2+ g% =542
- x%. Referring to Sec. V we see that we have to prove
relation (5. 53). Looking at the B,(R) terms first we note
that their sum may be expressed as

<pyqy pé>

= | (p,a, 18352 | piyin (B - by2Xpy | Ps®) lph) dpy.
(B19)

Because /BB(R) becomes diagonal in 5[,’ and [>g we can
write this as
pé>

pa

=in(p,a, | A3’ [ph) | 6(BE - By?Xpk | Ps(R) | pi) dpi.
(B20)

8
2, Bi(R)

§
22 By(R)

If we turn to the related terms in A;(R) their on-shell
matrix elements are

6
(P, | 2 A0 o )
= [ (pya, | PR) | pyaXpray 18 o)

=4
xiﬂé(ﬁ;’z +5§'2 - 5;'32 + X%) dS‘I: d3,b.;’.

(B21)

Since /—O(R) become§ cjiagonal in the five-dimensional
angle variables w,p,q,, we may refashion Eq. (B21) as
6
2 AdR)

<prq1 : pé>

= in(p,a, | B oty [ 80 - K"2Xp,a, | P(R) |play
xd%! dq; .

14

(B22)
As a result of the following relation for our projection
operators, the terms (B20) cancel those of (B22):
Lim (f 6(5% - P3*Xp; | Po(R) |ps) &°05

- J 8 - K"*p.a,| P(R) | pyay) day d’py) =0

where K2=p2+52=p2 % in this relation.

(B23)

APPENDIX C

In this appendix we prove that the on-shell matrix
elements of the operator X:”Y,(R) vanish in the R —
limit. We stress that the analysis we present below only
allows us to conclude that the on-shell matrix element
vanishes. In fact, it is quite likely that the operator
K1Y ,(R) does not vanish (in any norm) as R —«. The
matrix element we need to evaluate is

P2 KTV 4(R) [ ph) = [ (o) KL | paXpa | Ya(R) | ph) dip d®,
(c1)

where the initial and final momentum are related by
By = Xo=BE - =K. (€2)
Using Eq. {2.19) for the kernel of K{”" and Eq. (5.7) for
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the kernel of Yz(R), our matrix element assumes the
form

5, o3 (palAez Iph*
fdpdq52+52—532+x3-10
(+)

x( /‘ apy (PA1388 1pEY(py 1 Po(R) 1 pj)

PP+gt—pat+xi—i0

_ 3,0 0 PAIP(R)ID"q"Xp"q" | 5;)|p;L>>
fdp dq 5"2"'5”2_5524')(%_1.0 . (03)

We must show that this expression becomes zero as

R —~=. We recall that the 4;’ and 43’ have according to
Eq. (2.20) additional singular denominators which are
related to the various two cluster kinds of asymptotic
motion that the three-body system can produce. It turns
out that the contribution to (C3) from the explicitly ex-
hibited singularities vanishes. The contribution from
the additional primary singularities in Eq. (2. 20) also
separately vanishes. Here we shall only bother to write
down in detail the contribution to (C3) from the exhibited
singular denominators.

One may evaluate expression (C3} by expanding the
singular denominators into delta function plus principal-
value parts. Thus we have three types of terms. First
we encounter those terms having the product of two
delta functions in each factor. These terms become
zero as R —«~ as an immediate consequence of Property
IV of the projection operators. Likewise it is easy to
show that the terms involving the product of two princi-
pal-value factors are zero. For such terms we may use
the delta-function properties of our projection operators
and the argument employed by Jauch and Marchand®® to
show that the result is zero. Thus the nonzero terms
that remain are of a mixed type involving one principal-
value term times a delta-function term. The cancella-
tions between these remaining terms is surprisingly
complex, These terms are

a3p a8 < I [g-)l 07‘>* 31t l +) ]
[ @il ( [ eoitoal i 10

x<{pg | /—BB(R) |payimd(B% +q% - Byt +x2) -f d*" d*q"

x{pq | P(R) |p"q"yind(B" +§"* = B2 +x3Xp"a" | As3 lpg>)
+ f & d*g(pq By’ [5)imd(B +4* - B + x3)

y ( f dipy SRLLASE | PEXE LPo(R) i)

P +q" - P5t+xi

- _/-dap” d3q11<EglZ)(R)‘E”g,”><2”g"l£(§§+)lEé)) . (04)

Fed - R ol

We now eliminate the delta functions by performing the
integrals over the relevant variable. After this (C4)
becomes

i”fdspé' d°K (PE 1 P5(R) | p2) (2"5(524’2 +x8)’

Ps = bs 2(pg +P5)
OB - R |BSP o B - K 1857 p‘;>*)

—in / R dR 'K dSK"RONER" |8 lob)
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R\ P(R) | RO ") <<KKI857’le>*>
K-k K +R)

vim / dipy SRRMEK| 855 |ty RE Lo R IPe)

pl pll
2n3<ﬁ016|43(§g) ‘Et@) - /k//SdKNH dSI;vu dslg
X( 2(ph+bg) o
(R K 1B |p,>*K°4<K K| P(R) ]K”K”>

(K"KHIB +)Ip>
( 2(K" + K°) ) ©9)

In expression (C5) our convention for the five-dimen-

sional L angle differential is given by the definition a*p d%

=R°dK @°K. We take the limit R~ « and use Properties
I and II of the projection operators to show that (C5)
becomes

in 57 pE(BE* Xg B (=)
v2 ) apg <( sippn P TGKIBE e

<WK\3‘*’|pgp;,>)f"_ —i—”fﬁwds}%

<k 557 1oL [(Z) MJ;{'&M]

}'?":]?0

-5 /K°4d5K<K°K|Béy’|py>*dp,,

( a—g (RKIBG | pyby ) _i_’T/I?MdSI?
pB pB+p p:é:p's 2

<(RR| 853 |py)* = [(K;’)"’” _<1‘~’_"131£é§)|pé>jl
" ak" L\ ko K"+R0

F
(Ce)
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It is now a straightforward although somewhat lengthy
algebraic task to compute all the derivative terms in
(C6). The result one gets is that all of the terms cancel
giving us zero for the evaluation of (C6).
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Irreducible Cartesian tensor expansions of scalar fields
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It is shown how a scalar function V(R + 2., a]) of a sum of 1 + 1 vectors can be expanded
as a multiple Cartesian tensor series in the vectors a,. This expansion is a rearrangement of the
multiple Taylor series expansion of such a function. In order to prove the fundamental theorem, Eq.
(3.1) below, generalized Cartesian Legendre polynomials are defined. The theorem is applied to the
eigenfunctions of the Laplace operator and to inverse powers. The expansions of the latter type of
function leads to forms involving generalized hypergeometric functions in several variables. As a
special case, the Cartesian form of the multipole expansion of the electrostatic potential between two
linear molecules is derived. A number of sum rules for hypergeometric functions and addition
formulas for (standard and modified) spherical Bessel functions are proved using a reduction property
of the generalized Legendre polynomials. The case of the expansion of a tensorial function is also

briefly discussed.

1. INTRODUCTION

In many problems of physics, for example the calcu-
lation of the nonspherical intermolecular potential be-
tween two or more molecules as a sum over spherical
potentials between force centers in the molecules? and
in the theory of heavy-~ion transfer reactions,? it is
necessary to have explicit expressions for scalar func-
tions of the form

V(I R+?:; ai)

in terms of the vectors a,. A standard Taylor series
expansion of (1.1) is

(1.1)

Z (“m' )“ @) " mH(VFV@®R)  (1.2)

My yeens

where R = |R|, the symbol ©¢ means ¢g-fold contraction
of nearest Cartesian indices, and the (ai)'"" are tensors
of rank m ;:

(a)""=a,a;-a,a, (1.3)

;a; (m,times).

This is not very useful, since it does not arrange the
terms in irreducible tensors. Indeed, the tensor (1.3)
is reducible for all m ;> 1. It would be much more use-
ful to rearrange (1. 2) in such a way that the irreducible
Cartesian tensors3+*

[ai](mi):(ai)m,-@"‘iE(mi) (1.4)
appear explicitly. Here E‘™ is the 2mth rank tensor
which projects out the irreducible part of any mth rank
tensor. **

In this article, this rearrangement is given in Sec. 3.
In Sec. 2, generalized Cartesian Legendre polynomials
are defined and some properties of these which are
needed later on are proved. In later sections a number
of applications is considered in some detail.

2. GENERALIZED LEGENDRE POLYNOMIALS
As is well known, a scalar function of two unit vectors

U and v can be expanded in terms of Legendre poly-
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nomials (see Ref. 5 for the Cartesian tensor form):

P, v)=(20)! 2°(11) 2 [u]® o [v]. (2.1)

It would, therefore, seem natural to try to find a gen-
eralization of (2. 1) for the problem posed in the intro-
duction. To this end the following Cartesian tensors
are defined first:

Sl by -y LY=Ly oo 1) (A7) [ dRG] R e [2)
(2. 2)
where the normalization factor ¢(l;,l;,...,1,) is given by
gl by o0 1)= g{(zzﬁ DItk (2.3)

Generalized Cartesian Legendre polynomials may then
be defined by

P, ,....t,,(un W, ..

. ,ﬁn): [u,]m [ﬁn_l]un-u ALY

o™i 8y, 1, ... 1)

ron

(2.4)

It should be noted at this point that the 8(/,,...,1)
are, for n>3, nof the most general Cartesian tensors
of the symmetry [, 1,,...,1,. It is, therefore, not
trivial that the functions defined by Eq. (2.4) are ade-
quate for the problem at hand. That this is the case is
proved in the next section. In the rest of this section,
some properties of the generalized Legendre functions
are considered.

Since the integral (2. 2) is nonzero only if I, + 1, + -
+1, is even, the functions (2. 4) are only defined for such

sets of indices. In particular, it is easily seen that
Prlu) =5, o, (2. 5)

where 0, . is the Kronecker delta. For n=2, Eq. (2. 4)
reduces to

Pryi (V) =8, (21, +1)P, (a-v) (2. 6)
as can easily be seen from the formula °'®

(@n)yt [aufala]" =,/ + DIEM. (2.7
Copyright © 1975 American [nstitute of Physics 1550



For n=3, the S(/,1,, ;) must be proportional to the
Cartesian (3 - j)-tensors defined by Coope, ” since these
are unique, With the formula ®

[ aulu]" [a) 2 [u] P = u(ly, 1, L) Ty, 1, 1), (2. 8)

where T(/,,1,,1,) is a (3 —j)-tensor and u(l;,1,,1;) isa
numerical coefficient given by ©
1y, Ly, L) = @m0, (L + L+ 1, + D150, + 1, = ]!

X[3(0y =L+ 1)) B(= 1 + 1, + 1) 1! (2.9)

[I,+1,+1; evenand I,,1,,1, satisfy 11, - 1,1 <l <l +1,,
otherwise u(l,,1,,1,)=0], it is found that

S(ll’ 12! la) = (41T)-1 p’(l],’ lzs ls) q(ll’ lzs lg) T(lp lz: l3)-
(2. 10)
From this and the Cartesian (3 - j)-reduction of a

product of two irreducible tensors, ® it follows im-
mediately that

a1y, 1) [a] ' [a] ' = Z 80,15, 1) o [l (2.11)
This can also be proved d1rectly by multiplying both

sides with a [u] 3’ and integrating over the angles of 4

using Egs. (2.2) and (2. 7). Combination of Egs. (2.11)
and (2. 2) yields the useful relation
S(l, 1 ...,1,)= 2o gyt S(1,, L, 1) oV S, 1, . . ., 1),
T
(2.12)

and, finally, combining (2.11) and (2. 12) it is found by
induction that

[)[ ](11)[ ]“2) .
S, . .,
L

which is the generalization of the Clebsch—Gordan re-
duction for unit vectors.

[@]%

l", L) oF [ﬁ] (L )’

Q(lly

(2.13)

Another important relation may be derived from Eq.
(2.12), namely a reduction formula for the generalized
Legendre polynomials. If two of the arguments, say
4, and U,, are equal, then the result

Py, 1, (U, 0, U, )= ; Yitger Pr gt

(U, u,,...,1,)  (2.14)

may easily be derived with Vit r given by
Vigoger = G0l Ly 1P gy, 1, 1) Q1 1, 1),
(2.15)

where Q(1,,1,,1,) is the complete contraction of
T(,,1,,15); in the present case (I, +1, + 1, even) it is
given as”

Qly, 1y, 1) =Ty, 1, 1) ©'1 278 T(1,, 1, 1,)
=l AL +L+ 0! (L, =T A -1+ 1)!
X(=1 +1,+1)!
X[(le)! (212)! (213)!]'1. (2.16)
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3. THE FUNDAMENTAL THEOREM

The basic result can now be stated:

n ~ ~
V<IR+1Z=£ ai’): 11..21 L pxl,,nn,ln,L(au""an’v)

Xy

X(vZ)(Eti-L)/Z

( Zj[ ‘(Zli+2mi+1)!!]‘1(’§a2,V2)m‘)V(R).

(3.1)

:]:

)
—

Here the argument V in the generalized Legendre poly-
nomial is a symbolic notation, defined formally as in
Eg. (2.4) with one of the unit vectors replaced by V. In
the following, a proof of Eq. (3.1) is given for a special
class of functions V(R), namely those which have a
Fourier transform. Since Eq. (3.1) is only a rear-
rangement of Eq. (1.1), this result is of considerably
wider applicability.

Proof of Eq. (3.1).
of V(R):

Let V(k) be the Fourier transform

V(k)= [ dR exp(- ik *R) V(R). (3.2)

Then the Fourier transform of the left-hand side of
Eq. (3.1) is

f dR exp(-ik *R)V ([ R+ il a, [) = ﬁ exp(ik - a,)V (k).

(3.3)

Using the expansion of exp(ék +a) in spherical Bessel
functions®

exp(ﬂva):t_zz g(1)i'j (ka) K] oF [a] D) (3.4)

Eqg. (3. 3) can be rewritten as

n exp(ik +a,) V(k) = Z

[

[a ](l ) . [5.1](11) @1:1‘.
n

[f(]”l) [i{](z,,) q(ly, [FZI ka,)] ~(k), (3.5)

which, using Egs. (2.13) and (2. 4) may be seen to be

equal to
~ A oan o B
11...‘?1,,@ Pr, (@2, k) (k) nigl(a.-
(3.6)
X 3 ( (3% [m 120, + 2m ,+ DI ] >V(k),
m=0

where the power series of the spherical Bessel functions
have also been inserted. The inverse Fourier transform
of Eq. (3. 6) is obtained by making the substitutions

k—V, ~k—=V2 V()—~V(R); (3.17)

and is seen to be equal to Eq. (3.1). QED

Since V(R) is a scalar function, Eq. (3. 1) can be
simplified further by noting that v2 can be replaced by
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the operator D, defined by
(3. 8)
and the operator [V]©) occurring in the generalized

Legendre polynomial can be eliminated by means of the
identity

[v]®) f(R)=[R]* REDE £ (R) (3.9)
where D, stands for R"*(d/dR). Equation (3. 1) then
reduces to
V<|R+ 2 2 |> = ll'”;w Pyt e (1, - oo, 2, RYREDT

X DSEHLI/2 I [ai‘W,i(ai)]V(R).
(3.10)
Here the operator W (a) is defined by
= 20 m @20+ 2m+ D (3 a®D,)"
m=0
=L@+ )N 2 [l +3),)" Ga®Dy)"
={(20+ )] Fl+3; 16°D,), (3.11)

where (p), is Pochhammer’s symbol, (p),=T(p+q)/T(p),
and ,F, is a generalized hypergeometric function.

4. SPECIAL CASES
Since the functions
JolaR) =(aR)* sin(aR), ylaR)=- (aR)™ cos{aR),
jo(@R)=(aR) ! sinh(aR), Fo(aR)=(aR)™ cosh(aR)
(4.1)

are eigenfunctions of the Laplace operator D,, the first
two with eigenvalue — o, the last two with eigenvalue
o?, the result of the previous section is particularly
simple when applied to these. Using some of the stan-
dard properties® of the normal and modified spherical
Bessel functions, the results may be summarized in the
following formulas:

jo n n jL
}(am*Zaii):ZP(—1)‘“'*“’2 1 j,(aa,) }(aR),
Yo i=1 i=1 "t Vi

(4.2)

~ ~

]0}( n ] }
7 a{R+'_=Zlai‘) an]l(aa)v (aR).

Yo

(4. 3)

Here the symbols 3, 0 denote the sum over the /; and L
with the generalized Legendre polynomial as weight
factor as in Eq. (3.10). The j(z) and v ,(2) are spherical
Bessel functions of the first and second kinds, respec-
tively, while the 7,(z) and ¥ ,(2) are modified spherical
Bessel functions of the first and second kinds. [In the
notation of Ref. 8, 7,(z)=(n/22)"/?I,,, ,,(2) and ¥ (2)
\(n/22)1/21_1_1/2(z) } For n=1, the results (4. 2) and

(4. 3) are standard.®
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For the calculation of the nonspherical potential be-
tween two molecules, ! two functions which may easily
be derived from the above may be of importance, name-
ly the Yukawa potential (o¢R)™ exp(~ aR) and the ex~
ponential potential exp(— aR). For the Yukawa potential
it follows immediately that

(a|R+ ig_}ai()-l exp(—a‘R+§; ai> =P £117z,-(°‘“i)

X[y, (aR) - j (aR)]. (4.4)
The result for the exponential potential follows by
applying the operator 1+ ad/2« to both sides of Eq.
(4.4). The result may be simplified by making use of
the recursion relations of the modified spherical Bessel
functions. ®

A second special case of great importance for the
problem of calculating nonspherical potentials is the
case of an inverse power of R (Lennard--Jones type po-
tentials). Setting V(R)=R™ and using the formulas

DR~ = (25_ z) (zs) 22eR=s%a (4.5)

and

REDER™ = (= 2)% (3), R, (4.6)

the result finally obtained may be written in the form

R+ 5 ap =2 p (-0 i lev) /2, + 1)

1 1
*(zs - E)m:i-L)/z

X(%s)(zzi+L)/2F(n)(§ "% % Z:l _L)

Ls+ 3L ALY L+3, A, 4.7

, X5).
Here the x, are the ratios a,/R and the function F™ s

a generalized n-variable hypergeometric function defined
by

F™(a, b;cy, ..

!zn): E

M) roa0y™m

(a), (b}

n

X ﬁl {ZTi/’7'741(Ci)miJ
=

RS TP

(M =my+ - +m).

(4.8)

For n=1 and n =2, these functions are well-known. In-
deed, F*)a, b;c;z) is the Gauss hypergeometric func-
tion®*® F(a, b;c;z) and for n=2, F%Xa, b;c,, €532y, 2,) is
Appell’s generalized hypergeometric function F, of two
variables. 1 The functions with more than two vari-
ables have been much less studied, but see Ref. 10 for
some results.

Of most importance here is the question of the con-
vergence of the multiple power series (4. 8). As a gen-
eralization of Horn’s result® for F,, it is easily seen
that (4. 8) converges if

n
1/2
2, 7z,

i=1

(4.9)
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This means that the functions occurring in Eq. (4.7) are
well-defined only if

(4.10)

If n=1, this will always be the case if a; #R by inter-
changing, if necessary, the names of the two vectors.
For a, =R, there will, in general, be a singularity. The
nature of this singularity can be derived for the case s
=integer from the explicit form of the Gauss hyper-
geometric function in terms of elementary functions, see
Appendix A.

A special case of great interest of Eq. (4.7) is s=1,
since it will show up in problems concerning electro-
static or gravitational potentials. Since 3s -+ =0 for
this case, Eq. (4.7) makes sense only if L=3 [,. The
generalized hypergeometric function F occurring in
Eq. (4.7) has then its first index [a in Eq. (4. 8)] equal
to zero, so that it is equal to 1 for all x,. Further, the
generalized Legendre polynomial reduces in the case
L=y 1, since it follows from Eqgs. (2.2) and (2. 7) that

Sy, ... 0,50 =qlly, ..., L YETW, (4.11)

The generalized multipole expansion is then

R+ et ¥

11...“!"

lal](“)“' [a,,]”“@“‘[i}](mi’

REWH )R (2257, - 1)1 (T )™
(4.12)

The special case =2 may be used to obtain the elec~
trostatic potential between two linear molecules as

Vm(;‘l, ;‘2, R)= ;Zi [rl]( ) [;.2](12) @tl* Iz [h]uv Io)
1t

(4.13)
(= 1) (21, + 2L, - 1)L (1, 11,1)? TN SCSLE

where T, and T, are unit vectors along the axes of the
molecules and R is the vector joining their centers of
mass. The ¥’ are the multipole moments of molecule
i defined by

mi= [ p(x)xtdx, (4.14)

where the integral is extended over the length of mole-
cule 7, which has the charge density p,(x) per unit length,
and the variable x is chosen in such a way that x=0 at
the center of mass. These multipole moments with
respect to the center of mass may differ from the ones
defined with respect to another point, e.g., the geo-
metrical center, for ! = 2 (for neutral molecules). Spe-
cial cases of Eq. (4.13) have already been used in con-
nection with the calculation of kinetic theory collision
integrals for linear molecules and symmetric tops '*

and in connection with the phase transition in solid
orthohydrogen. ' Equation (4. 13), when rewritten in
terms of spherical harmonics (see Ref. 5 for the con-
nection with the irreducible Cartesian tensors) is identi-
cal to the well-known results of Carlson and Rush~
brooke'* and Buehler and Hirschfelder** for the case

of nonoverlapping charge distributions.

Another, rather trivial, case for which Eq. (4.7) may
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be evaluated directly is the case s=-2m, m=0,1,2, -,
i. e., the expansion of a positive, even power. In this
case (3 I,+ L) should be less than m and for such
values of the /; and L, the second index in F'"’ [b in Eq.
(4. 8)] is a negative integer, so that F'™ reduces to a
polynomial in the %%,

5. REDUCTION FORMULAS AND SUM RULES

If two of the vectors a, are parallel, the fundamental
theorem (3. 10) may be written in two separate ways.
Either the formula is used for » vectors a,, two of which
(say a, and a,) are parallel, so that the generalized
Legendre polynomial reduces via Eq. (2.14) to a sum
involving only n ~ 1 vectors, or the theorem is directly
applied for n -1 vectors, the first one being a, +a,,
the rest the set a;,...,a,. In this way, reduction formu-
las and sum rules for the coefficient functions may be
derived. In the following, the special cases of the
previous section will be considered.

First, consider j,. If a,=a,, Eq. (4.2) reduces,
using Eq. (2. 14), to (suppressing the argument)

~ -~

Jo(*)= Vi g1 pz',zg,,,,.x,,,z, (a,a,,...,3,R)

1o dg, ¥
130005 1neL

{(5.1)

(_ 1)(E(=11i+L)/z '1:[1 J',‘(Ofag)]'L(OIR)-

On the other hand, writing Eq. (4.2) directly for n -1
vectors a, +a,,a5,...,4a, gives

jo('): Z

P yl3sa0es iy L

px'ylsyo..,ln,L(al, agr ev s a") R)

sopn . "o, .
(= 1) Bl lil)/2 5 (ga, + aaz)il;lsj,‘(aa,)]L(aR).
(5.2)

Equating these results yields the addition theorems

Jr T,
v }(21+Zz)= > 7’11,12,1'(‘ 1) trvip-t )/z]-“(zl)y }(22),
)

I el
(5.3)

where the analogous result for y, has also been included.
Equation (4. 3) gives, in a similar way, rise to the
addition theorems

T g
5 }(ZﬂLZz): 20 Vi Iy(E 3,’2}(22)- (5.4)
2

v i

Addition theorems of this type are well-known, es-
pecially for 7’ =0.° [Note that ~ 1900 = Dy p (20, + 1), ]

Similar expressions may be ouvtained for the gen-
eralized hypergeometric functions by applying the above
procedure to the inverse power expansions. These are,
in general, rather complicated and are therefore given
in Appendix B. Here two special cases will be men-
tioned, one involving the Gauss hypergeometric function
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and one involving Appell’s F,. These relations are in
the form of generating functions:

(1+4x)¢

S5 (= 20f @ = DU (), Fs =4, 3s + 131 + 352)

1=0

(Jx|<1),  (5.5)

and

(L+x+x)°= T (=DFy, 0 (2L+1)(2x,) " (2x)"

11412, L
X[(20,+ DL+ DU S = Dy aaprrse B peiger /2

XF(ls~1+1,+1,~L1/2,[s+1,+1,+L]/2;

ll+%1l2+%;x§’x§) (xx1+x2’<1)' (596)

6. EXPANSION OF A TENSORIAL FUNCTION

The results of the foregoing sections may be directly
applied to the problem of the calculation of the non-
spherical potential between two molecules.! For some
other problems, the same type of expansion is needed
for a tensorial function, e.g., in the heavy-ion transfer
reaction problem.? In this case the function is of the
form

s

[b]? ot [R]®)f,(R), (6.1)

o
i
=]

where b is a fixed vector. This expression has to be
evaluated for R replaced by R+ 7317, a,; since the coef-
ficient functions f,(R) are scalar, they may be expanded
as in the previous sections, so that the problem left is
the expansion of [R]*). Here the following equality holds:

R+ f},a’_]m: 2. t![‘r"I1 l/mi!] [(t_imi)]-l
i=1 My, ..My i= i=1

(my ) ( )
(2,17 e 2]

](t-Emi)

x[R (6.2)

where the summation is restricted so that 37, m, <¢.
The product of Eq. (6.2) with the expansion of f,(R)
leads to a double series involving products of two ir-
reducible tensors built from the same vector; these
may be reduced to single irreducible tensors by means
of Eq. (2.11). The resulting expansion does not, in
general, contain only the generalized Legendre poly-
nomials but more complicated tensorial contractions as
well. Since these general expressions are very com-
plicated, these will not be given here. The very special
cases of the Dirac delta functions 5(b+R) and 5(b+ R +a)
have been treated by Elbaz ef al.'® in a similar fashion.

Iy E(t),

DISCUSSION

In this section some applications of the formalism
described before will be discussed. In the first place,
analytic expressions for nonspherical potentials derived
by the method of summing spherical potentials between
force-centers in the molecules! may be obtained. This
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is, of course, more satisfactory for many purposes
than are numerical methods. Also, if the magnitudes of
the vectors a,; are small compared to R, a perturbation
series to any order is easily derived. This is of im-
portance for the calculation of equilibrium and non-
equilibrium properties of polyatomic fluids and liquid
crystals. In these applications the number of vectors

a; will be one (atom—molecule interaction) or two
(molecule~molecule interaction) if the molecules are
rigid. For nonrigid molecules, more than two vectors
are necessary since the equilibrium position of the
center of force and its instantaneous deviation from this
position have to be described. Qf course, the potential
so-obtained then has to be averaged over the vibration
periods of the moelcules. These questions are treated
in more detail in a separate publication.

Another possible application is, as already mentioned,
in the field of heavy-ion transfer reactions.? The gen-
eral method outlined in Sec. 6 may be easier to apply
than the delta function methods proposed by Elbaz
et al.*® and by Anni and Taffara.?

Other applications of this method of expansion, which
can also be regarded as a Cartesian tensor generaliza-
tion of the method of invariant expansions, !® will be
found in any field of physics where expressions of the
form (1.1) show up.

APPENDIX A: REDUCTION OF EQ. (4.7) FOR
s =INTEGER, n=1

In case n=1, Eq. (4.7) becomes

R+ vas= ,i P& R) (- 20) (21 = DI (s),

X F(is =1, ds+1;1+3; 42, (AD)

If s is an integer, the hypergeometric function occurring
here always reduces to an elementary function. First,
the relation®*

F(as =1 s+ 11+ 3;4%) =(1 - x®)s*2
XF(1+2—4s,5=41s;1+3;4%)

(A2)

is noted and the fact that F reduces to a polynomial of
degree m in x* if one of the first two indices equals
-m (m=0,1,2, ). Therefore, Eq. (A2) gives for
s=2m + 3 (the case s=1 is treated in the text):

Fm+1,m+1+%1+3; %%

= (1~ x2)"2m-1 _io (-=m), (I+% —-m)n[(l + %)"]-1 X2,
(A3)

This covers the case for s equal to an odd integer.

For s=2m + 2, two cases can be distinguished. If
1+ 1-m is negative or zero, Eq. (A2) can again be used
to find a form similar to Eq. (A3). This, however, is
only possible for low values of /. Of more use is the
general relation® between the hypergeometric function
occurring in Eq. (A1) and the associated Legendre func-
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tions of the second kind, @7. This relation is, for the
case at hand,

Fm+1l+1,m+ 51+ 53)=T(1+3)(-1)"
X[ +m)! 731 - x2)my 1]
XQT(I +x2/2x), (A4)

These @7 may always be expressed in terms of ele-
mentary functions by means of the recursion relations

1

(I+1)Q,,,(2)=(21 +1)2Q,(2) ~1Q,,(z) (I=1,2, .e)

(A6)

Q) =%In(z +1/2-1), @,(2)=2Q4(2)~-1. (AT)

APPENDIX B: GENERAL SUM RULES FOR THE
FUNCTION Ffn)

Two types of sum rules for the functions F ™ follow
from Eq. (4.7). If two of the vectors a; are parallel
(say a, and a,) it is found that

T i (20)1(25) " [(20, + D112+ D1+ D)1

ipply

n
x([s-1+l +§li‘l]/2>ul.zz-z')/2

n
X ’
([s+l + iZS l‘+L] /2)(11”2_”/2

=1

XF""([S—1+ Z l,-L]/ 2,

[“-Zl‘“]”; L3 Lt ..

i=1

=[2(x, + x,)]" F‘"‘“([s -1+1"+ é; l,.—L:l/ 2,

n
[s+l'+Z)l,.+L]/2; U+3, ,+3,...,

i=3

n n

In case one of the a;, say a,, is parallel to R, another
relation is found:

I P (= DFT (2 (20, + D11

1
i=2 (1'+ll-L)/2

([ %1.0] 72
i=2 (2'4144L)/2
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Q)= (-1 SEL (2), (45)

l +%; (x1+x2)2yx:239"-’x2>' (Bl)

i=1 i=1

F(n)([s_1+ ili-L]/z’ [S+Zn)l;+L:|/2;

3 3 3., A2 2 2
l1+§)l2+§,-'-’ln+§;x1’ Xa, "-,xn)

=(1 +,\'1)'S‘E?=2’eF<"'”<[s -1+ 2 li—l’}/z,

i=2

n
[S+Z‘Z,+l’:|/2;lz+%,l3+%,...,
=2

XL+ 35 231 +x,)2, 521+ x,)7%, ..., 22 (1 +x1)'2>.

(B2)

Equation (5. 5) of the text results from Eq. (B2) by
taking n=1. Equation (5. 6) follows from Eq. (B1) for
n=2 and subsequent use of Eq. (5.5), or, equivalently,
from Eq. (B2) for n=2 and again subsequent use of Eq.
(5. 5). Many more sum rules may be derived from
repeated applications of Eqs. (B1) and (B2).
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We consider the Brill-Deser decomposition of the perturbations of a flat spacetime with compact Cauchy
hypersurfaces. We propose a generalization of the Brill-Deser splitting which may be applied to the
perturbations of arbitrary vacuum spacetimes with compact Cauchy slices. We split the space of perturbations
of any allowed Cauchy data set into three subspaces which, with suitable inner product, are mutually
orthogonal. Two of these subspaces comprise the solution set of the perturbed constraint equations, and one of
these two subspaces represents pure gauge perturbations. Some possible applications of these splittings to the
study of the vacuum perturbation equations and to the linearization stability problem for the Einstein equations

are briefly discussed.

1. INTRODUCTION

Brill and Deser! have defined a useful orthogonal
decomposition of the perturbations of a flat spacetime
with compact Cauchy hypersurfaces, Their splitting
corresponds, in the compact case, to the Arnowitt,
Deser, and Misner? splitting of the perturbations of
Minkowski space. In this paper we propose a generali-
zation of the Brill—Deser decomposition which applies
to the perturbations of arbitrary vacuum spacetimes
with compact Cauchy surfaces., Restricted to the flat
case our decomposition reduces to the Brill—Deser
decomposition.

To generalize the Brill—Deser result, we must first
abstract the essential features of their splitting. They
introduce a suitable inner product and split the space of
perturbed Cauchy data into three mutually orthogonal
subspaces, Two of these subspaces comprise the solu-
tion set of the linearized constraint equations, One of
these two subspaces consists of pure gauge perturba-
tions (which always satisfy the perturbed constraints).
The second contains all solutions of the perturbed con-
straints which are orthogonal to the gauge perturbations.
Gauge perturbations are physically trivial since they
merely represent deformations of the hypersurface
within the background spacetime.

We consider the space of Cauchy data for an arbitrary
compact three-manifold and the constraint subset of
this space. The tangent space at any point of the con-
straint subset represents possible perturbations of the
Cauchy data represented by that point. Using a conve-
nient L? inner product, we split each such tangent space
into three mutually orthogonal subspaces. We first split
each tangent space into the solution set of the perturbed
constraint equations and an orthogonal complement, We
next refine the splitting by decomposing the kernel of
the perturbed constraints into the subspace of pure
gauge perturbations and its orthogonal complement.
Finally we specialize our results to the flat case and
recover the Brill—Deser decomposition, In the conclu-
sion we discuss the application of our results to the
study of the vacuum perturbation equations.

The splittings defined here may prove useful in study-
ing the geometry of the constraint subset and in under-
standing the linearization stability problem for the
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vacuum Einstein equations. Fischer and Marsden® have
recently derived conditions upon the Cauchy data which,
if satisfied, ensure that:

(i) the constraint subset is a smooth submanifold on a
neighborhood of the given point and

(ii) all solutions of the linearized constraints are
tangent to the constraint submanifold at the given point.

When the Fischer—Marsden conditions fail to hold,

the linearized constraints admit spurious solutions
which are not tangent to any curve of exact solutions of
the constraint equations. We shall refer to those Cauchy
data which satisfy the Fischer—Marsden conditions as
the regular points of the constraint subset, The remain-
ing points of the constraint subset will be called the ir-
regular points,

In a recent paper? it was shown that Cauchy data for
a vacuum spacetime admitting one or more Killing
vector fields is always an irregular point of the con-
straint subset, It was also shown that an irregular point
always admits a Cauchy development with one or more
Killing vector fields., The number of independent Killing
vectors which occur was shown to equal the dimension of
the kernel of a certain linear map (the adjoint map) de-
fined by Marsden and Fischer, The regular points of
the constraint subset have an injective adjoint map. An
interesting feature of the splitting defined here is that
it has a different character at irregular points from that
at regular points, Certain elliptic equations which must
be solved in effecting the decomposition admit unique
solutions only at regular points, At irregular points the
solutions are no longer unique but the splitting itself
remains unique. Some possible applications of our de-
composition to the linearization stability problem are
discussed in the conclusion,

2. NOTATION AND BASIC EQUATIONS

Let M be a compact, oriented, C* three-manifold
without boundary and define the following spaces of C~
tensor fields over M:

C~ =space of scalar fields over M,
X 1=space of vector fields over M,

/M = space of Riemannian metrics of M,
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55 (5,%)=space of symmetric, covariant second rank
tensors (tensor densities) over M,

52(5,%)=space of symmetric, contravariant second
rank tensors (tensor densities) over M,

In addition write P=/Mx§ 2~T*/l for the gravitational
phase space of Cauchy data for M. The constraint subset
C c P is defined by

C={(g,melP|e(g,m=0}, 2.1)
where

& :MxS 2=C=x XY (g,m)— (H(g,m),b(g,m)) (2.2)
with

H(g,m=[detg)[n"m,; - 3(g,; 7)1 - R(g),

6(g, n):Z(detg)'l/zﬂ”U, 2.3)

in which R(g) is the curvature scalar of g. The vertical
bar signifies covariant differentiation with respect to g.

Let T, ,, 7 ~=5,%5 2 be the tangent space at a point
(g, m) e p and define the inner product (, ) by

(e, p), 0, p V)= [, &°x (@etg)* 2 ((k,p), W ,p' M),  (2.4)
where (h,p) and (’,p’) € 5,X S ,? and in which
((n,p), W ,p")y=[n¥ 1)+ [detg) ' ptip},]e C=.  (2.5)

Similarly write
((c,x), (C",x"))= [, & (detg)*/2((C, X), (C’", X)),
(2.6)
where (C,X) and (C’,X")e(C*xX" and in which
(C,x), (", X N)=C-C+ XX, cC". (2.7

The derivative D& (g, ) of & at a point (g, m)e(
= &"1(0) is given by>*

Dd(g,m:5,x 5. 2~C7xXY
(e,p) ~{(@etg) [~ 3(m- 7 - strn))trn
+2(mep — trotrp)
+2(rx 7= $ltrm)a)« k)
- {66k — Atrn) - [Ric(g) - 3¢ R()]* k};
(detg)/%[2p* | + mwik(nt,,

+ hiklj - jk“)]}r

(2.8)

where - signifies contraction (e.g., 7-h=7"%) and tr
signifies trace (trh=g¥h,,). Also nXn=n**r, 56h
=hy,'Y, Aftrk)= (trr),'* and Ric(g) is the Ricci tensor
of g, The adjoint map D& (g, n)* defined through

((C,X)’D‘I) (ga m)e (h,p)): (1) (g;ﬂ)* ° (C,X): (h,j)))

2.9)
is given explicitly by%*
Do (g, mp*:C=x X1~ §, xS 2
c,x)— {(detg)'l[.. %(77— P %(trn)z)gC
+2(mx7 - 37(rn), Cl 2.10)

- [HessC ~ gAC - (Ric(g) - LgR(g))C]
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+ (detg)" /2(LX1T)*;
2C(r - Srn)g™) - (Lyg) ™ (detg)'/?},

where HessC=C,,;, Ly=Lie derivative with respect to
X,-! indicates the contravariant form of a tensor [(Lyg)™*
=X+ X#1] and , indicates the covariant form of a
tensor [(Lym), = (1, X*)x ~ X, 57", - X;),7";]. This nota-
tion differs somewhat from that of Ref. 4, The previous
expression for the adjoint may be obtained from that
here by reexpressing the first slot in contravariant den-
sity form and the second slot in covariant tensor form,
The expressions given here for D& (g,n) and D& (g, 7)*
are complete only at points of the constraint subset. At
arbitrary points there are additional terms proportional
to (g, n) and 5(g, ) which vanish at C. Our notation,
with only minor modifications, is the same as that of
Fischer and Marsden. ®

3. THE FIRST SPLITTING

In this section we establish the orthogonal
decomposition

Tio,y/M* S 225, S 2=kerD&(g,n)® range D& (g, n)*
(3.1)

for any point (g, 7). The orthogonality of the two sub-

spaces is straightforward to check. If (#,p)ckerD&(g,n)

and (C,X)€C=xX*, then

((,p), Dé(g,7}* > (C,X))= D& (g,7)* (,p), (C,X))=0.
3.2)

To show that an arbitrary tangent vector (z,p) may be

uniquely split as

(h,p)=(,p)+ D& (g,n)* (C,X) (3.3)

with (z,5) ckerD&(g,7), we use elliptic theory as in
Berger and Ebin® and Fischer and Marsden.® Applying
D& (g,m) to Eq. (3.3), we obtain

D& (g,m)e (h,p)=D&(g,n)-[DE(g, 7V (C,X)], (3.4)

which are partial differential equations for C and X,
Fischer and Marsden proved that a (g, n)
=D& (g, m > Dd(g,m)* is elliptic by showing that D&(g,7)*
has injective symbol and applying Theorem (4.4) of
Berger and Ebin.® Therefore, from Theorem (4.3) of
Berger and Ebin, we have the orthogonal decomposition
C=xX'=range a(g,n)®keralg,n) (3.5)
=range o(g,n)OkerDd (g, n)*.

The last equality follows from the observation that if
(C,X)ekera(g,m), then

0=((C,X),Da(g,): [D&(g,n)*- (T, X))
= (D‘I> (g, ke (E,)?), Do (g, Ty (C_’X))’

which implies that D& (g, n)*- (C,X )=0. Thus kera(g, )
=kerD& (g, n)*.

3.6)

The regular points of C are precisely those at which
D& (g,n)* is injective. Therefore, at regular points of
C, Eq. (8.5) reduces to

C=xX*=rangea(g, n). (3.7)
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Thus a solution of Eq. (3.4) always exists and, since
a(g,n) is injective, is unique.

At an irregular point of C a solution of Eq. (3.4) still
exists provided the source term D& (g, )~ (k,p) lies in
the space orthogonal to kerD@ (g, 7)* {and thus in the
range of a(g,n)]. To see that this is always the case,
let (C,X)ekerD&(g,7)* and compute

((E,)?),Dq)(g,ﬂ)' (h,p)): (Dq’(ga ¥ - (6,2)9 (h,p)):O.
(3.8)

However, the solution (C,X) of Eq. (3.4) is not unique
since one may always add any element of the kernel of
D& (g,n)*. Nevertheless, the splitting

(h,p)=(,p)+D&(g, 7V (C,X) (3.9)

is unique since, of course, D&(g,7)* annihilates any
element of its kernel, Our fist splitting is thus a fairly
immediate consequence of the Fischer—Marsden result
for a(g,n) and the Berger—Ebin analysis,

It is important to remember that, although the de-
composition is defined even at irregular points of C, its
geometrical significance is different from that at regu-
lar points. At an irregular point C may not be a smooth
submanifold of /X § 2, But even if it is, its tangent
space is only a subset of kerDe (g, n).*

It may be useful here to recall how consideration of
the operator o(g,n)=D&(g,n)* D®(g, n)* arose in the
Fischer—Marsden analysis, Part of their linearization
stability theorem consists of showing that D&(g,7) is
surjective if and only if D¢ (g, n)* is injective. Upon
deriving Eq. (3.5) they conclude at once that if D&(g, 7)*
is injective, then D&{(g,n) is surjective since, in fact,
it maps the range of its adjoint onto ( ®x X', If, how-
ever, the adjoint has nontrivial kernel, then D& (g, 7) is
not surjective since, in fact, it cannot map to any non-
zero element in the kernel of D&(g,n)*. To see this,
assume (C,X)c kerDd (g, n)* and suppose a tangent
vector (k,p) exists for which

(C,X)=Da(g,m)°{h,p) (3.10)
Then
(C,X), €, X)=(C,X),De(g,m)* (,p))
=D& (g, (C,X), (n,p)) (3.11)

:0’

which forces C=X=0,

4. GAUGE PERTURBATIONS AND A REFINED
SPLITTING

We now refine the decomposition of the previous
section by splitting the kernel of D& (g, ) into two ortho-
gonal subspaces. To explain this refinement, we first
recall some results obtained in Ref. 4. There it was
shown that if *YX is a vector field on a Cauchy develop-
ment of the initial data (g’,#)e(, then ‘X induces at
each Cauchy surface of the development a tangent vector
{h,p) 4, representing the infinitesimal diffeomorphism
generat{ad by ®X. Furthermore, this gauge perturbation
of the Cauchy data (g, ) of the hypersurface may be
simply expressed in terms of the adjoint map D& (g, m)*.
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If C=no WX, =N DX, - g¥N, ®X,) and g, %' =&, =
=X, are respectively the normal and tangential pro-
jections of X at the hypersurface (M,g,7), then the
induced tangent vector (23D)ay, = (yp) e T, n/Mx 52
is given by

(detg) /2B, , - @etgl/2h ™)=D& (g,7)* - (€,X),
@4.1)

where §*=f)”, ht= and, as we have mentioned, the
notation here differs slightly from that of Ref, 4,

It is convenient to define an alternative form of the
adjoint in which the first slot is replaced by its contra-
variant density form and the second slot by its covariant
tensor form. Thus, if (iz,f)) are given as in Eq. (4.1),
write

(b, -h)=D&(g,n) + (C,X). @.2)
This equation is equivalent to
(,p)= € HDB(g,1) - (C,X)=y(g,m)- C,X), (4.3)

where, for convenience, we regard (;1, ) and
D& (g, )« (C,X) as two component column vectors.

The aim is now to split the kernel of D&(g, 7) into the
range of ( )D& (g, m)! and an orthogonal subspace. For
this to be meaningful it is of course necessary that the
range of ¥(g, )= § ) D&(g, )t be contained in the
kernel of D& (g, ). The proof is a straightforward
computation,

Theovem 4.1: It (g, 1)eC, then range

~y(g,m)CkerD&(g, ).

Proof: Let (é,X) be any element of C=x X! and
evaluate D& (g, n)- {y(g,7) (C,X)] using the explicit
expressions given by Egs. (2.8), (2.10), (4.1), and
(4.3). The result is

D3 (g,m)°[¥(g,m* (€, X))
={28,5' (g, + EGH (g, ), + X', H(g,m)
+ X H (g, )3
é”z‘/(g, 7)+ 5 (g,1r)[2&(detg,:,r)“/2 (n!, - 36¢, trm)]
+ 6(*6’(g,17)),k —)(’(‘,,,Bk(g, 7)}=0
(4.4)

since 6*(g,n)=2(detg)™"/? #¥,, and H(g,r) vanish for
any (g,m)eC.
To identify the subspace within kerD® (g, n) which is

orthogonal to the range of y(g, 7). let (,p) c kerDd(g,7)
and require, for arbitrary (C,X)e(*xX*, that

(7,5), (g, M (€, X))=0. 4.5)
This is equivalent to
0= (B, - i), D& (g, n)* - (C,X)) @.6)
= (D3 (g, )+ (B,- 1), (C,X)
in which we have defined (, ); by
(P, - )y = (detg)/2p,, - (etg)' /27™), (4.7

where, as before, p,=p,;, h-t=h', Thus a vector
(h,p) ckerD&d(g,n) is orthogonal to the range of ¥(g,7)
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provided that

D& (g,m)e (p,~h)=0. (4.8)
_We now attempt to split an arbitrary vector
(h,p)ckerDé (g, n) as

(#,5)= (i, B)+ € D3 (g, m' - (C, %) @.9)
with

D&(g,7)° (py~h)=0. (4.10)
Equation (4.9) is equivalent to
(p, =) = (B, =), + [D& (g, m)' - (€, %], @.11)

= (5, —E)f +D<I’(g, 7’)* * (5,)0()’

where the last equality follows from the definitions of
(, ) and D&(g,n)'. Applying D& (g, ) and using Eq,
(4.10), we obtain

D&(g,m)° (p, - h)y=D&(g,7)+[Dd(g,n)* - (5,5{)],
4.12)

which are partial differential equations for (C,X). How-
ever, the operator a(g,7)=D®(g,7) D& (g, n)* is the
same as that treated in Sec. III. Therefore, at regular
points of ( the solution to Eq. (4.12) exists and is
unique. For irregular points one shows, just as before,
that the source term D&(g,n)* ($,~ h), is orthogonal to
kerDé (g, m)* so that a solution of Eq. 4. 12) still exists.,
Again the solution (C,)o() fails to be unique as one may
add any element of kerD® (g, 7)*. Nevertheless, the de-
composition (4.9) is unique since D& (g, 7), which is
just another form of the adjoint, annihilates any element
of kerD&{g, 7)*.

To summarize the results of the preceding sections,
we introduce the notation

y(g,nl¥e (hyp)=D&(g,n) (p,-h),

which is natural since, from its definition, y(g,n)* is
the L? adjoint of y(g, ). Thus the splitting defined in
this section may be written

4.13)

kerD® (g, m)=rangey(g,n)® (kery(g,n)* NkerD& (g, 1)).
(4.14)

Combining this result with that of the previous section,
we obtain

Theovem 4.2: If (g,m)e(, the tangent space
T, /Y% 5% may be expressed as the direct sum of
three mutually orthogonal subspaces:

T(,,,,/n x § 2=rangeD® (g, )* ® rangey(g, n)
® kery(g, 7V* NkerD& (g, n).

At a regular point of ( the last two spaces form the
tangent space of C at (g, 7). The second member [range
y(g, m)] contains all vectors representing pure gauge
perturbations of (g, 7). The last member represents
deformations of (g, r) towards Cauchy data for vacuum
spacetimes distinct from that determined by (g, 7).

5. THE BRILL-DESER DECOMPOSITION

In this section we specialize the results of the pre-
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vious sections to recover the Brill—Deser decomposi-
tion of perturbations at a point with 7=0 and g flat. We
must assume, of course, that M admits a flat metric,

If 7=0 and g is flat, we have from Egs. (2. 8) and
2.10)

D& (g,0): (h,p)=1{-hy;'¥ + (trh),}¥; 2(detg) /24, }
(5.1}
and
D&(g,0)*- (C,X)
={-( 1+ &0 - (detg)t/? (it 4+ X)L,
Therefore,
¥(g,0)- (€,X)= € 1) D&(g,0) - (C, X)

(5.2)

14~ (detg) /2[5”1 _g‘fé”:k]}
(5.3)

={X,, +X,
and
y(g, 00 - (#,p)
={- @etg) /% p,,'¥ - (trp),"]; - 2% .
Thus any tangent vector (%,p) may be expressed as

5.4)

o

hyy=hy + X+ X - €y - g4;40),

pY =p — (detg) /2(C — gHAC) ~ (detg) /2(x* + XI14),

(5.5)
in which (%,p) obey
Ry M =p =0 (5.6)
and
Aftrh)=A@rp)=0. (5.7)

Since M is compact, Eqs. (5.7) imply that tri =« and
trp=(etg)*/? B, where a and B are constants. Since %
and p are both transverse, we may therefore write

r % TT, L
hiy=hy "t +aga

P =p 7T+ 5(detg)' /2 g¥ B,

(5.8)

where TT signifies transverse and traceless. Equa-
tions (5.5) and (5.8) are equivalent to the splitting de-
fined by Brill and Deser.

6. DISCUSSION

Given Cauchy data (g,n)€(, one may choose a (time
dependent) lapse function and shift vector field and inte-
grate the Einstein evolution equations to determine a
Ricci-flat metric g on (-¢,e)x M. In particular, one
gets a curve (g{(t), n(t)) € with (g, ) = (g(0), 7(0)) and
t & (~¢,e). The Cauchy problem for the corresponding
linearized equations is similar. One chooses initial data
(hyp) € T, /N xS, 7 obeying Dé(g, )+ (h,p)=0 and
specifies a (time dependent) perturbation of the lapse
function and shift vector field. Integration of the per- .
turbed evolution equations gives (2(2), p(t)) € Ty, ¢y, reeny/V
x §,.% with (,p)= (2(0), p(0)) and t e (—¢,e). Since the
linearized constraints are preserved by the linearized
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evolution equations, the perturbations obey
((®), p(t)) ckerDe (g(t), m(t))
for ali £ (—¢,¢).

6.1)

Now consider applying the decomposition theorems
derived here to a solution of the perturbation equations,
Since (2(1), p(¢)) satisfies Eq. (6.1), we may split the
perturbations as in Eq. (4.14):

(), p W)= G@®), pEN+¥(g®), @)+ €@, X)) (6.2)
with
(), )Y e kery(g ), 1O NkerDd{g(t), n(t)).
6.3)

Both terms are uniquely determined at each instant
[even though C{¢) and X(¢#) may not bel.

We claim that (2(t), 5(¢)) are unchanged by an arbitra-
ry gauge transformation whereas both (C(t), X(t)) and
the perturbed lapse and shift functions are in general
changed by a gauge transformation. As shown in Ref,

4, any vector field X’ on ((~¢,e)xM, “'g) induces,

on the Cauchy surface (M,g(t),n(t)), the gauge perturba-
tion (2" (1),p" ) =r(g®), 7))+ (C" (), X" 1)), where C’(t)
and X’{t) are the normal and tangential projections of
WX at that hypersurface. It follows, from the unique-
ness of the decomposition, that the gauge transformed
perturbations split according to

RO+ W), pO+p' D)
= (), DY+ (), 1) (C0) + C' (1), X () + X' (2)) (6.4)

with no change in (7 (t), p()). Thus (i(t), p(t)) have a
unique time development, independent of the choice of
gauge, whereas the orthogonal term [e rangey(g(t), ()]
and the perturbations of the lapse and shift functions are
gauge dependent,

One may apply the decompositions defined here to the
linearization stability problem for the vacuum Einstein
equations precisely as Brill and Deser did for the
special case of a flat spacetime. As explained in the
Introduction, any vacuum spacetime (with compact
Cauchy slices) which admits a Killing vector field fails
to be linearization stable, For these cases some solu-
tions of the perturbation equations should be excluded
since they do not approximate any curve of exact solu-
tions. In a subsequent paper (the sequel to Ref. 4) we
shall derive the additional (nonlinear) restrictions upon
the perturbations which are necessary to exclude spuri-
ous periurbation solutions. These restrictions are
equivalent to demanding that the conserved quantity as-
sociated with each linearly independent Killing vector
fieid must be constrained to vanish.
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Each such conserved quantity may be evaluated on
any spacelike hypersurface through the spacetime and
is expressible as the integral (over that hypersurface)
of a function quadratic in the perturbations, When con-
strained to vanish these integrals impose nontrivial
restrictions upon the perturbed Cauchy data. The con-
servation laws ensure that these new constraints are
independent of the choice of initial surface at which they
are imposed,

An important feature of these conserved integrals is
that they are necessarily gauge invariant (since other-
wise they could not be conserved). Therefore, if one
should apply the decomposition (6.2) to the perturba-
tions, he would find that the conserved integrals are
cyclic in the gauge dependent terms and thus, when re-
quired to vanish, impose restrictions only upon the
gauge invariant contributions (z(¢), 5(¢)). This resulf
would be a natural generalization of that due to Brill
and Deser for flat spacetimes,

Since the new constraints are nonlinear restrictions
upon the perturbed Cauchy data, the set of perturbations
which satisfy them is not likely to form a vector space.
Thus the allowed solutions of the perturbation equations
would not obey a superposition principle even though the
perturbation equations themselves are linear. This ob-
servation suggests that the constraint subset C could
not be a smooth submanifold of / on any neighborhood
of an irregular point. If C were smooth at an irregular
point, its tangent space would coincide with the set of
allowed perturbations whereas the latter does not seem
to form a vector space. The decompositions defined in
this paper may prove useful in giving a more precise
characterization of the geometry of the constraint sub-
set near its irregular points,
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The diagonalizability of the hydrodynamic matrix in the case that one of the variables is odd under time
reversal is investigated. The implications for a normal mode analysis and for the spectral density elements

are considered.

1. INTRODUCTION

The macroscopic description of nonequilibrium pro-
cesses in fluids is normally based on conservation
equations such as those for total mass and for individual
species and on conservation equations for momentum
and for energy. One obtains, following what are now
well established procedures (see, for example, Landau
and Lifshitz?!) a set of coupled nonlinear equations

2 A,F D= HALE, 0, VA D, ... D, =1 m+n)

(1)
where the A (r t) indicate field variables, e.g.,
T(r t)P(r t),v(r, t), etc., V denotes the gradient opera-
tor, the --- represents more complex terms, m + n is the
number of variables required to specify the state of the
system, and m is the number of thermodynamic vari-
ables. The solution of these equations, in one form or
another, forms the basis for the analysis of many
physical problems of interest.

We shall be concerned with the set of equations ob-
tained from Eq. (1) by linearizing in the small devia-
tions a,(r H=A (r, ) - A,(equil). We write the resulting
linearized equatlons as

2 af,0=Ma(F, 1), @)
where o is a vector whose components are the a,(r 1)
and M denotes a matrix whose entries express the
couplmg between the variables A (r, t). Equation (2) may
then be spacially decoupled by a sultable Fourier trans-
form giving a set of equations for each Fourier com-
ponent as in

£ a0 =M@ o, 1. (3)
Although there are alternatives, one commonly finds

the a/(k, t) via a normal mode decomposition.? In order

to carry this out, we first find the eigenvectors V, and

eigenvalues A, of the hydrodynamic matrix M(k), 1 e.

we obtain the matrlx V_ which diagonalizes M as in

ViMy=4A 4)

where A=diag{x, - A, +- } and V is a matrix whose
columns are the eigenvectors V,. Given this, one can
then write

a(k, ) = Vy(K, 1),

where ¥ ig‘a matrix whose columns are the normal
modes v, (k, ) defined by
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YAK, 1) =¥ (K, 0) & (5)

If the « ,(IT, t) are taken to be random fluctuations in an
isotropic fluid, then the system may be characterized,
using Onsager’s assumption concerning the regression
of fluctuations, by the correlation matrix elements

R, (v, 0)=(a,(r'+1,t'+ Da N1, 1)),

where (---) denotes the appropriate average. Alterna-
tively, on invoking the Weiner—Khinchin theorem, one
can characterize the process by the spectral density
matrix elements S, ,(k w) given by the Fourier—Laplace
transform of the correlation R (v,t). To facilitate the
analysis of the spectral density matrix elements, the
normal mode decomposition of the preceding paragraph
may be employed. One writes S, ,(k, w) as

S;k, w)=(k,TV/2m)Re ), Z

where Z; is an element of the “constituent” matrix Z*
defined by Z* =Gy(k). Here G=V(V;')’, where V,is

the fth column of V, (Vi) is “the fth row of V™, and

K(k) is the Fourier transform of the one-time correlation
(variance) matrix with elements

X ;2(8) = (0t (k) ¥ () (6)

A+ iw)

Clearly, both the eigenvalues and eigenvectoys of the
Fourier transformed hydrodynamic matrix M(k) are re-
quired in the analyses described in the preceding
paragraphs. The inherent symmetry of the hydrody-
namic matrix has been used recently to establish the
distribution of the eigenvalues A, in the complex plane. 8,4
This is of some significance since the number of com-
plex eigenvalues gives the number of peaks in the
spectral function which have their maximum at w 0.
The same analysis has also allowed progress in es-
tablishing the relation between the diagonalizing
matrices V™! and V in the cases where the A, are all
distinct. However, heretofore the question of diago-
nalizability of the hydrodynamic matrix when not all Ay
are distinct has not been widely investigated. ® It is this
question and the implications of the results that shall be
our concern here. Since the results referred to above
for a,, V, and V will be of some assistance, we shall
briefly review their development using this as an op-
portunity to introduce required notation.

2. SYMMETRY OF THE HYDRODYNAMIC MATRIX
The development ®* begins with rewriting the Fourier

transformed hydrodynamic equations of Eq. (2) in terms
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of statlstlca.lly independent normalized variables
(k t) as

2

= 85, =K 85, 1), (n

where the elements of the column vector g satisfy

8,0k, 1) B, 1)) =5, (8)
Since the B,(k, ) are related to the a,(k, t) by

Bk, )= UX /2 g(k, D),

where U is an arbitrary unitary matrix and x'/? is
given by the positive definite variance matrix x defined
by Eq. (6), it is easy to show that

K=Ug "My /2 U (9)
The transformed hydrodynamic matrix K , thus obtained

can be shown, on invoking the principle—of microscopic
reversibility, to have the symmetry

K'=EKE.

(10)

Here, E, the signature matrix for time reversal, is
diagonal with n ordered entries of plus 1 for the even
thermodynamic variables and », minus 1 entries, for
odd variables arising from, say, the velocity field.

If we restrict ourselves to the case where m =1, we
may, without loss of generality, choose the unitary
matrix U to be such that K has the form

ay . 0 b,
_IE: 0 a, bn y (11)
—bl - bn Ay

where the elements of K are real. A matrix which has
been transformed to the structure displayed in Eq. (11)
we shall refer to as the bordered diagonal form (BDF)

of K denoted by KPP,

Given Eq. (11), it can be readily seen that the charac-
teristic polynomial of K®°¥, i.e., of K, can be written
as

P =K== ni (ai—x)+i}l b3 ,-13,- (a,~2), (12)

from which it is easy to establish (see Ref. 4):

Lemma 1: For a matrix K of dimension n+1 with
symmetry K*=EKE, where E is diagonal with the first
n entries unity and the last minus one, there is a mini-
mum of n -1 real roots, and these n — 1 real roots
Ay ot X, are distributed as a;<1;<aq,,, for all

1 <i <n -1, where the a; are the elements of KB°F,

3. DIAGONALIZABILITY

The hydrodynamic matrix K with symmetry as given
by Eq. (10) can readily be shown to be nonnormal. To
see this, we write, from Eq. (10),

KKT EK'KE ,

where we have used the fact that EE=1. Thus (KK"),,
=E,E,,(K'K),; so that in general KK'#K'K. Hence the

ifdd
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matrix K cannot be diagonalized by a unitary trans-
formation, it can only be brought to the nearly diagonal
form as displayed in Eq. (11).

When all eigenvalues of X are distinct, one can, how-
ever, diagonalize K by a similarity transformation 6

WIKW= A,

(13)

and as was shown in Ref. 4 the diagonalizing matrix W
has the symmetry

WI-WE. (14)
However, suppose not all eigenvalues are distinct. It

is easy to show that in such cases not all K matrices

can be brought to diagonal form by a similarity trans-

formation. For example consider the real matrix of

Eq. (15),

a, b
- b a,
which has the symmetry required by Eq. (10) for E
=diag{1, - 1}. The eigenvalues of this matrix are
degenerate when
ay=ay +2b, (16)

and one finds that under these conditions that K cannot
be brought to diagonal form by a similarity transforma-
tion. [One might remark here that the condition of Eq.
(16) corresponds to the point of crossover from two
complex roots A, =¥ to the real domain at 1, =x,].
Since K is clearly not, in general, diagonalizable by a
simila_r_ity transformation, we turn to the problem of
investigating in a general way the situations where K

is nondiagonlizable.

Although not all matrices can be brought to diagonal
form as in Eq. (4), all matrices can, by an appropriate
similarity transformation, Y, be brought to a form
where the right-hand side of Eq. (17) is in a lower
triangular form with the eigenvalues of K along the
diagonal:

YKY'lz_'E_ (17)

Without loss of generality we can require that Y be such
that T=A;p, the Jordan canonical form” (JCF), where
A;or is in block diagonal form as

4 0
Djor = A, (18)
0 A,

The A, are elementary Jordan » ;-blocks. If X is
d1agonal1zable all these blocks are 1xX1, the entry
being X\, but if Kis not diagonalizable, one or more of
the A, are of the form

A, 0
1
A= 0 (19)
0 071y
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Since an arbitrary matrix can be brought to diagonal
form by a similarity transformation iff its JCF is
diagonal, ® the question of diagonalizability can be
answered by examining the JCF.

4, DEGENERACY AND NONDIAGONALIZABILITY

We now proceed to discover precisely those cases in

which the JCF of the K matrix of Eq. (11) is not diagonal.

If all the eigenvalues of K are distinct, then, as in-
dicated earlier, the matrix is diagonalizable, and there-
fore the nondiagonalizability problem arises only when
a degeneracy occurs in the roots of K. If any of the b,
are zero in the BDF of K, then clearly the corre-
sponding a; is an elgenvalue and the ith basis vector an
eigenvector. Thus degeneracies in roots which occur in
this manner will not prevent diagonalization. For this
reason we assume that all the b, are nonzero (this is
equivalent to reordering the basis vectors so that, with
respect to the reordered basis, K becomes the matrix
direct sum of a diagonal matrix and a matrix of the
same symmetry as K with all #’s nonzero). We shall
henceforth concern ourselves only with that partition of
the hydrodynamic matrix which, when unitarily trans-
formed as in Eq. (9), assumes the bordered diagonal
form where all b,#0, i.e., the K matrix is the fully
coupled partition (FCP) We will suppress the notation
FCP except where confusion could result (in which case
we will use KFP) and will normally use just the
notation K for these fully coupled matrices.

A. Al a; distinct

Lemma 2: A K matrix of dimension < 4 for which all
the a, (i=1, -+, n) of K®PF are distinct is diagonalizable
iff all its eigenvalues are distinct.

The proof is rather lengthy, involving tedious but
straightforward manipulations, and hence is relegated
to the Appendix.

Lemma 2 allows us to attack the case in which all q,
(=1, ...,n) are distinct and the dimension of the K
matrix is arbitrary. The reason is that from Lemma 1
we know that there are at least n - 1 real eigenvalues
and that if the dimension of the K matrix, (n+1), is =5,
there is at least one eigenvalue of multiplicity one and
hence that there is at least one eigenspace of dimension
equal to the multiplicity of the eigenvalue. Utilizing
these facts, we can prove (see Appendix) the following
theorem.

Theorem 1: A K matrix in which the a, of KP™F are
distinct (i=1, n) is diagonalizable 1ff all its eigen-
values are distmct.

The matrix defined by Eqs. (15) and (16) provides a
ready illustration of a case in which the eigenvalues are
not all distinct and hence the K matrix is not diago-
nalizable. For K matrices of higher dimension, degen-
eracy and nondiagonalizability can arise in more ways
than that indicated by this simple example, and we shall
return to this point in subsection C to follow.

B. Not all a; distinct

In general it is possible that not all of the a;(i=1,
n) in KPPF are distinct. In this case it is poss1b1e to

1563 J. Math. Phys., Vol. 16, No. 8, August 1975

reduce the problem to one very similar to that treated
in Theorem 1 by using the following lemma.

Lemma 3: If there are p distinct a; (¢=1,...,%) in
KEDF each occurring #n, times, then a, is an elgenvalue
of K of order precisely n ~1 and there exist exactly
= 1 linearly 1ndependent eigenvectors in its eigenspace.

Since the proof of this lemma introduces a useful
factorization of the characteristic polynomial, we give
it in detail at this point.

Proof: From Eq. (12)

n+l n
= = =)+ ) b2 c=A).
ch(K)=P(}) i{[l (a;=2) ]Zl b’ igj (a; =)
Thus if
;== =at, a,,=a*,

al+n'~-l n+l

then the factor (a!—2) occurs n,~ 1 times in P());

‘. ch(K)
= I:ilfll (a"-x)"rl] : [fi x)+JZ;cj n (at= x)}
(20)

where ¢3=35, b} We denote the last factor in Eq.
(20) by @), i.e

P+l ; » 2 ? ;
Q)= i1=11 (ab=2)+ ; i I {at=2).
[We note, that for cases where all the a;(i=1,...,n)

of KPPF are distinct, @(1) is in fact the characteristic

polynomlal P()) of K. ] Since c +#0, it is easy to see that

no at is a root of Q(x) Thus (a — ) occurs precisely
-1 times as a factor of ch(K).

Now let {e;},, .. be the basis with respect to
which the hydrodynamic matrix assumes the BDF. Then
the set of ;-1 vectors

{e ‘b b;,q €riaifisli i1 = cC
is easily seen to consist of eigenvectors of K of eigen-
value af. The set {e,i}U €, is, of course, linearly in-
dependent. QED

It is now possible to classify the roots of ch(E) as
follows.

Definition: A root of K will be classified as a type I
root A} where it is a root of @(1) and will be called a
type II root, A1, otherwise.

It will be recalled that in the proof of Lemma 3 we
established that the sets {\'} and {\}'} were disjoint. One
can prove (see the Appendix) the following theorem.

Theovem 2: The hydrodynamic matrix is diagonable iff
the type I roots of K are distinct.

C. Dimension of the elementary Jordan blocks

One can now delineate precisely the possible forms
for the JCF of K. From Theorem 2 (and Theorem 1
which is just a special case of Theorem 2) we know that
the hydrodynamic matrix is nondiagonalizable only when
there is a degeneracy in the type I roots. The obvious
question is thus in what manner can such degeneracies
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FIG. 1. Trajectories in parameter space of a 2-~-dimensional
K matrix.

arise ? The analysis of this question is carried out in
the course of the proof of Theorem 2 [see Eq. (A4)]
and the results are as follows:

(i) For certain regions of the parameter space de-
fining K, two of the roots of K are complex. For points
in this r region there are no degenerames in type I roots.

(ii) In the remaining region of parameter space all the
roots of @A) are real and there are p +1 such roots.
Degeneracy in type I roots and hence nondiagonalizability
of the hydrodynamic matrix will occur iff there are
less than p + 1 of them which are distinct. The com-
binations are limited to p distinct roots with one two-
fold degeneracy, p -1 distinct roots with two twofold
degeneracies, and p ~ 1 distinct roots with one threefold
degeneracy.

The implications of these results in terms of the JCF
can be stated as a corollary to Theorem 2.

Covollary: The JCF of a nondiagonalizable K matrix
may contain. one 2X2 Jordan block, two 2X2 Jordan
blocks, or one 3x3 Jordan block, depending on whether
there is one double degeneracy in the roots of Q(1), two
double degeneracies in the roots of Q(1), or one triple
degeneracy in the roots of Q(1).

D. Hypersurface of nondiagonalizability

The preceeding section has specified the cases in
which the hydrodynamic matrix is not diagonalizable.
Although there are only three such cases, they may
arise in a number of ways. To illustrate, let us con-
sider the two-dimensional matrix of Eq. (15). We may
completely specify a given matrix of this form by a point
in IR® (see Fig. 1) where the coordinates will refer to
the values of a,, a,, and b respectively. The two con-
ditions of Eq. (16) then determine two intersecting
planes in IR®, such that any point on either of these
planes corresponds to a nondiagonalizable matrix. Apart
from those which lie in one of the planes or those which
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pass through the origin, all straight lines in IR® will
intersect the surface of nondiagonalizability only twice.
However, the variation of some physical parameter is
unlikely to lead to a straight line trajectory in IR3,
rather one might expect some more complicated trajec-
tory such as that shown in Fig. 1. In such a case one
cannot state, a priori, how many times non-
diagonalizability will arise.

Let us now consider a matrix of arbitrary dimension.
For simplicity we will assume that all the g, (i=1,...,n)
are distinct as the more general case can be reduced to
one akin to it. We may suppose that we have #n +1 ex-
pressions for the eigenvalues in terms of the 2n+1

parameters &,,...,qa,,, b;,...,b, as:

Ap=xlay, . o,b).

The conditions A ;=2,, i#j, define occurrences of
degeneracies in @(1) and hence occurrences of non-
diagonalizability. The constraint

Ay=x;=0 (21)

always has a solution in terms of the parameters,
namely all parameters zero. This is, however, in-
compatible with the restriction that all the a; are dis-
tinct. Nontrivial solutions for (21) will be on a hyper-
surface of dimension 2z in the parameter space and the
union of all these hypersurfaces defines the region of
nondiagonalizability in parameter space. Clearly the
number of such points is continuously infinite. It appears
that we cannot really say anything more about the shape
of the surface without knowledge of the functions x,. The
intersection of part of an arbitrary trajectory with this
hypersurface is illustrated in Fig. 2.

5. CONSEQUENCES OF NONDIAGONALIZABILITY

We have established that the elementary Jordan
blocks for the hydrodynamic matrix in Eq. (11) can be
either 1x1, 2X2, or 3X3. With this knowledge it is
possible to determine the effect of nondiagonalizability
on the mode analysis and on the spectral density matrix
elements. We shall begin the analysis in terms of the
Fourier components o (k t) of an arbitrary set of state
variables « (r, 1) since the JCF is independent of the
representatlon

real part of
complex roots

real roots

O degeneracies
in type | roots

/—/—__““\
—o=__

”O\O/"\
J

Arbitrary Trajectory

in Parameter Space

FIG. 2. Degeneracies in type I roots for an arbitrary trajec-
tory in n+1-dimensional parameter space.
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A. Mode analysis

When the hydrodynamic matrix is diagonalizable, we
can write the a,(k,t) in terms of the normal modes,

7,(1:, )= exp(x,t)vj(ls (22)

as

n+l

a,(k, 1) = %, +7,(K) exp(r ). (23)

=1
The set of variables, 'yf(_};, t), in terms of which the
representation of the hydrodyna_rpic matrix is diagonal,
are related to the variables a,(k, t) by

y=V'a, (24)

where V™ is defined by Eq. (4).

We will follow a similar procedure for the case in
which hydrodynamic matrix is not diagonalizable. In
these cases we have, rather than Eq. (4), that

VMYV = Ascr (25)
where Ay is the JCF of M. We will develop the analog
of Egs. (22) and (23) for the case in which Ay has just
one 2X2 elementary Jordan block. Let y be the set of
variables with respect to which M assumes this Ajcp.
Then (3/8t)y = A; 57 . Let us also suppose that the

2X2 Jordan block occurs at the lower end of the diagonal.

Then the first #» “modes” are obviously just
')’i(k’ [) - exP()\it)Y,-(k),

However, since there are two entries in the last row
of A;.p, we have

1<i<n,

(26)

0
a_l Vo= Kml V1 + Yn:Anyml + Y

which gives

a6, )= [y ) 4,40 exp(n, ). (27)
Or, in terms of the {a i(l_;, )}, we have

a (&, 1) = le, Vv () expy, )+ C (K, ) exp(r ) (29)
with C,.(-l«?, t) of degree one in {, where

Cik, n=v,, Iy (0t +y, @©). (29)

The only difference in Eqs. (26) and (27) from the
usual normal modes, e.g., Eq. (22), is the presence,
in the “Jordan mode” of Eq. (27), of a polynomial in ¢.
In the case that the JCF of M contains a 3x3 block, the
three associated ¥’s will be respectively: an exponential
in {; a product of a first degree polynomial in / times
an exponential in £; and a product of a second degree
polynomial in / times an exponential in ¢.

B. Spectral density elements

The spectral density matrix elements S 11(k, w) are
defined by the Fourier transform of the correlation
matrix elements R, ,(k,!), as

Re e .
Sk, w)= - R (R, t) expliwt) dt, (30)

where
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[x(k, 0) exP(‘ MTt)]ju t< 0)

R (R, )= (31)
[exp(M1) x(#, 0)), 1, t>0.
When M is diagonalizable [Eq. (4)] one can, following
Eq. (5), write the integrated form of Eq. (30) as
1 . by

S“(k,w):‘ﬁ g [&(k)]quvaflq <‘K?,—+Lw§.) . (32)
When M is not diagonalizable, we have, rather than
Eq. (4), the relation of Eq. (25), where Az is not
diagonal and the utilization of Eqs. (30) and (31) is less
straightforward. One begins by rewriting exp(- MT¢) as

exp(—- M7 ¢) :(KT)’1 exp(-Afgt) V7. (33)

Since

& exp(A ),

&
exp(A;pe )= exp(fez L\ft) =&

where the A, are elementary Jordan blocks and & means
direct sum. Since a maximum dimension of an ele-
mentary Jordan block is three, we need only the results

that
-

X 1 exp(— rt) — af exp{— 1{)
exp (— t )=
0 0 exp(- rt)
and
[» 1 o
exp (-1 0 Xx 1]|¢
0 0 X
exp(~At) ~alexp(—Al) 3a’ffexp(—At)
= 0 exp(—-\f) - af exp(— \1) ,
0 0 exp(— A1)

where a is a constant of unit magnitude having units of
time™!, The elements S;,{k, w) for the case in which
A;cr contains a 2X2 Jordan block and a 3X 3 Jordan
block respectively, (the case of the occurrence of two
2X2 blocks is not fundamentally different from that in
which only one occurs and so has been omitted) can then
be written as in (i) and (ii) below.

(1) If Ajr has a 2X2 block: then
1 i As
Sk, w)= - IZ x(k, 0),; [; ViV (A§+ 7 >
w? =22
+a ((“*‘,\z T w2)2> Vi V;l,t}’

where A =) =2_,, is the degenerate root.

(ii) If Ao bas a 3X 3 block: then
1
S{j(k! w): ; ; X(k3 0)“
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x (ijV}%)\j a(wz - )\2)
FAE+ WP (w? + 222
-1 -
X (Vj" V"'lvl + Vf.ml Vn§
32()\3 - 3w2A) -1
((.02 + x2)3 Fomdl Ta=l,1 P

where A =X _, =2 =X, is the triply degenerate root.

We note that the central maximum, at w=0, is the
same, in both cases, as that for the case in which M
is diagonalizable. The additional contributions, at their
maximum are of order (1/2)? or (1/2)* as opposed to the
central one which is of order (1/\). Thus for values of
x> 1 sec™ these subsidiary contributions are negligible.
However, for matrices for which 2 ~1, these contribu-
tions could be significant.

CONCLUDING REMARKS

In the normal mode analysis of linearized hydrody-
namic equations the problem of nondiagonability of the
fourier transformed hydrodynamic matrix has frequent-
ly been set aside.® However, for the case where only
one of the variables in the coupled hydrodynamic equa-
tions is odd under time reversal, ® one may make the
following statements: If two of the roots are complex,
then the hydrodynamic matrix is certainly diagonable;
if there are no complex roots, then only three types of
degeneracy can bring about nondiagonalizability, al-
though these degeneracies can be encountered for many
different parameterizations of the hydrodynamic matrix.
As an illustration of one of the latter situations one may
cite the case where all three roots® of the Fourier
transformed hydrodynamic matrix of a simple fluid are
real, i.e., one considers a case where a particular
Fourier component of the sound mode is overdamped.

If there are degenerate roots, then the hydrodynamic
matrix will not be diagonalizable. Indeed at the point of
crossover from the propagating to the nonpropagating
components of the sound mode the hydrodynamic matrix
is certainly nondiagonalizable [see, for example, Eq.
(16)]. Another example is the case of chemical relaxa-
tion in the presence of a radiation field, '° where, since
the hydrodynamic matrix is non-Hermitian, both real
and complex roots must be considered—again at the
point of crossover from real to complex roots the
matrix will not be diagonalizable. Yet another instance
is in the normal mode analysis of the classical Bénard
problem, '!'*? where, for certain values of the param-
eters, two real roots may become degenerate as one
passes to the overstable region.

The time dependence of the “normal modes” in the
case of nondiagonalizability is no longer a simple ex-
ponential but has an additional factor, a polynomial of
order one or two (depending on the order of the
degeneracy). The implications of this for the spectral
density matrix elements have been considered here and
indicate that there would be structure in the unshifted
line which would not be present if the normal modes had
their usual exponential time dependence. This structure
may be pronounced when the magnitude of the degenerate
eigenvalue is of order unity or smaller and certainly
this will be realized for soft degenerate modes.*?
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APPENDIX

A simple and elegant method of arriving at the JCF of
a matrix is provided by the theory of finitely generated
(FG) modules over a principal ideal domain (PID). For
a reasonably elementary and very readable account of
rings, modules, and their application to the computation
of canonical forms, the reader is referred to Ref. 14.
The basis of the present treatment is that we can regard
the K matrix of Eq. (11) as a linear transformation, a,
over the vector space C,,, of complex (n + 1)-tuples in
the standard manner. We then make the underlying
group of complex (n +1)-tuples into a module over the
ring €(7) (the ring of polynomials with complex coef-
ficients) using « in the usual manner.* €(1) is a PID,
and hence we know that this module can be decomposed
into a sum of cyclic submodules whose orders are poly-
nomials in A and which can be arranged such that the
order of the 7th submodule in the sum is divided by that
of the (i ~ 1)th. [The order of a cyclic submodule is the
unique monic polynomial which generates the order
ideal of the submodule in €(1).] These polynomials,
called the torsion invariants of the module, are unique
up to multiplication by constants. Suppose that the
torsion invariants of the module we have constructed
ared, (i=1,...,s)

3

i
d,=

Pyj
; (A=rg) 7, PyeZ, 2, =C. (A1)
1

.
[

Then one can show that the JCF of K has a Jordan A ;-
block of size precisely P,;. IS Thus, if one can obtain
enough information about the torsion invariants of the
module constructed, one can obtain the JCF of K. In the
proof of the theorems we will need only one additional

fact about the d;, namely

N
1M d;=ch(K). (A2)
i=1 -

Before we proceed with the proof of Lemma 2, we
need to know how, in practice, one goes about obtaining
the d,. We state without proof that:

If, given a matrix K of dimension n +1, one can, by a
sequence of elementary row and column operations,
reduce the matrix (A, - K) to diag(d,, ..., d,,,) with
dyid,| -+ id,,,, then the nonconstant elements of the set
{di} are the torsion invariants of the module constructed
using K in the procedure indicated above. 17

Proof of Lemma 2

What we actually will prove here is that the module
constructed using a K®PF with a, (i=1, ..., n) distinct
has only one torsion invariant which is, therefore, by
Eq. (A2), the characteristic polynomial of K. In view of
the preceding discussion this is clearly equivalent to
the statement of the lemma in the body of the text. We
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already know that the statement is true for the 2X2 case
so that we proceed to calculate the torsion invariants

in the 3X3 and 4X4 cases. Let R, stand for row ¢, C;
for column ¢, and -—— for transposition.

(i) 3%X 3 matrix:

A—-a, 0 -b,
0 X=a, -~b,
b, b, A—a,
b, b, X -ay
Rz~ R} 0 A - a2 - b2
A -y 0 -b
b, 0 0
R3-lr-g1)/ 011 Ry
——————-
Ca- (55 /51)Cy 0 A= =0 |,
C3-[(X-a3)/b1101
0 —(b/b))A=a) fQA)

where

f(x) == b]_ - (l/b],)()\ - as)()‘ - al)

b, O 0
7%l 0 b, X -ay
0 f()\) - (bz/b1)()\ - a]_)
b, 0 0
C3+(1/by Y (A-a5)Cq
Rg+[f(A)/ 511 Ry 0 - bz 0 ’
0 0 - (bz/bl)()\—&l)'*'g(k)

where g\)=F(\)(x - azi/bz.

(ii) 4X4 matrix: Following a similar procedure, one
may show that

QED

A-a, O 0 ~b,
0 x—-a, O ~b,
0 0 r-a, =b,

b, b, by A—ay

b, 0 0 0

- -5, O o |
0 (a-a) O
0 ©0 0 h(\)
where

b b
M= 0 - )= - a) - sz(x —a)(h - a,)A - a,)
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_ b3 = a))(A - ay) )

ED
byby(a, ~ ag) Q

As indicated in the text, we can now use the result of
this lemma to prove Theorem 1. We will proceed to do
so in the same way in which we proved the lemma,
namely by showing that ch(Ii) is the only torsion in-
variant of the module we have constructed.

Proof of Theorem 1

Lemma 2 tells us that for the lowest possible di-
mensions of KPP the theorem is true. We proceed by
induction. Suppose n+1=5.

Then by Lemma 1 3 at least one root, 2y, of K®°F
with multiplicity 1=23 v3@Q,,, a(v)=2r,0.

The n + 2 vectors B={v,e_,, e,y e"} are linearly
dependent where {e,, ..., e,,} is the basis for € ,, with
respect to which K assumes the form KBPF,

. 3 afirst e; which is a linear combination of the
preceeding vectors. It is clearly not ¢,,;-

The set B—- {e,} is then a new basis for C_,,.
Let (v) be the subspace generated by v.
Then €,,, =[C,,, /v)] ®(v)

If o is the map induced on C,,,/(v) by a, then the
module structure on (Dml/ {(v) via « is the same as that
on (B”,l/(v) via o. Consider the following basis for
C,../@: {le], ... .le. ) leg ), .o, [eml]}_,_ where le,] is
the equivalence class of ¢;. The matrix K of o with
respect to this basis is just K with the ith column and
row removed. By hypothesis, therefore C,,,/(v) has
only one torsion invariant, ch(_Ig).

By our choice of 1,, ch(K) and (A -x,) are relatively
prime. It is known that the direct sum of two cyclic
modules whose orders are relatively prime is also a
cyclic module of order the product of the orders of the
summands.!®

Therefore, €,,, is a cyclic module of order
(x =x,) ch(K) = ch(K). This implies that ch(K) is the only
torsion invariant of € ;. QED

We are now prepared to prove Theorem 2, our main
result. Lemma 3 and a modified form of Theorem 1 are
the tools required. The idea behind the proof is very
similar to that of Theorem 1. We decompose ¢,,, into
cyclic modules of relatively prime order in order to
calculate the torsion invariants of the module we have
constructed.

Proof of Theorem 2

Referring to Lemma 3, we call ¢, =e’. It is clear
that
2+l

» .
iylm‘ 12 {e}

is a basis for C,,,. Let €={=(U’ , €% the subspace

generated by the union of the €', Then C,,, = C™aC,,/
crd
A basis for the second summand is B={ef], ..., [e*]}.
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Proceeding as in the proof of Theorem 1, we see that
C,.,/C5¢ made into a module via o has the same struc-
ture as €,,;/C%{ made into a module via the induced
map @. Thus we can use the matrix of o with respect to
B to investigate the torsion invariants of this summand.
One can easily show that K, the matrix of a with respect

to B, has the following form:

r al Ci/bl-1
0 .
a2
k=| o g
at c2/b,
L_bl —byrrecc e =b, att

This is not exactly in the same form as that of Theorem
1. However, using exactly the same procedure as be-.
fore, one can easily show that the results of Theorem 1
hold equally well for this matrix. Thus the only torsion
invariant for €,,,/C7{ is ch(_IE):q()\).

n+l

Now the restriction of a to €§ has n — p eigenvectors
while €7¢ has dimension # - p. Thus, the restriction is
diagonalizable and therefore C&§ has as many torsion
invariants as the largest integer in the set {z,— 1}, call
it k. Each of the last r, - 1 torsion invariants has
(A — a,) occurring as a linear factor. The last torsion
invariant is just 2 (A —a;). Thus €}
=Cr4 m - CRY* where €):3'* has the order

e, (x—a;)=r(). "

Lemma 3 tells us that a, is not a root of () and
hence (1), @(\) are relatively prime. Therefore,

red, k’
(En*l (Dred

is cyclic of order »(x)@()\). Since the lower order tor-
sion invariants of €9 divide 7(1), they also divide

n+l

7{x) ¢(1). Therefore, the decomposition

(Dml__':_cred,l@”.@ ¢t5d,x-1$¢:§i‘,k' (A3)

n+l n+l
provides a torsion invariant decomposition of €,,,. Pro-
ceeding to the JCF of o, since the orders of the first
& —1 summands in Eq. (A3) have only linear factors the
Jordan blocks arising from them are 1X1. The only
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Jordan blocks of dimension greater than one thus arise
from the order of €%0:<'. It is clear that this will occur
only_for a degeneracy in the roots of Q(r). Since the af
in (K) are distinct ch(K) has p — 1 distinct real roots,
Ay ey Such that @, <A <@, <<+ <r,; <a, Since
there are no equivalent restrictions on the remaining
two type I roots, ,, A,,,, the following cases of
degeneracy may arise.

(D Xy =n, 22, i=1,...,p-1,
(1) X=X, or X, =X, A, #A,,, i=1,...,p-1,
(1) Mgy =Xy A =Xy, A, #EN,,, G,i=1,...,p-1,

(iv) xp=x,,, =21, i=1,...,p-1.
These are the only situations in which non-unit-sized
Jordan blocks will arise.
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On the density of the Breit-Wigner functions
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It is shown, for certain sequences {A;} in the complex plane, that linear combinations of the
Breit-Wigner functions {B,} approximate, in the mean square, any function in L? (0,e).

Implications and numerical use of this result are discussed.

1. INTRODUCTION

As W. Klink! has noted, it has been useful in certain
problems of physics to approximate a function f: (0, =)
- C by a superposition of Breit—Wigner (hereafter ab-
breviated B—W) functions B; defined by

B{x)=1/(x+x) i=1,2,..., (1)
where xe R*'=(0,<), ;e C—R", R =(~, 0].

Each of the functions B; is in L3(R"), the Hilbert space
of Lebesgue square integrable functions with norm in-
duced by the inner product

(, 9= [ rx)gt) dx, f,geL¥R. (2)

In this paper, we consider the problem of approximating
functions fe L%R") by linear combinations of B—W func-
tions. Straightforward calculations show that if {)\}, ¢
=1,2,---, is a set of distinct scalars (as we will as-
sume in the remainder of the paper) the corresponding
set {B;} of B—W functions is a linearly independent set.
However, {B;} is not an orthogonal set.!

If one considers a finite set of B—W functions {B,, - - -,
- By} and if f< span{B,, - - -, By}, then there are unique
scalars ¢q, - .., ¢y such that

N
f=2,¢:B,. ®3)
is1
The coefficients {cy, + - -, ¢y} are given by

Ci:(f:(z)i)’ i=1,+++,N, (4)

where {(151, s, ¢>N} is a set of functions biorthogonal to
{B,y, .-+, By}; that is, (B;, ¢,;)=08,;. For this case Klink'
constructs functions, call them y,,...,Vy such that

ci:fo"’f(x)_x_'i(T)dx, i=1,.--,N. (5)

If, however, we consider arbitrary functions f in L3(R")
and infinite sets of B—W functions {B,;i=1,2,---} the
above procedure breaks down. We note, first of all, that
the functions y; constructed by Klink are not in L2(R*)
and thus the integral

S Ay G ax )

will not exist for all functions f in L¥(R*). In Sec. II we
show that for certain sequences {\, Ay, +++}, span{B,, B,,
- .-} is dense in L?(R*) and thus any function fc L3(R*)
can be arbitrarily well approximated by linear combina-
tions of B—W functions. However, for these same se-
quences, we show that there is not a set {qbi} of functions
biorthogonal to {8;} and thus {B;} cannot be a Schauder
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basis for L%(R"); that is, not every f in L%(R*) can be
represented

f= Z)CiBi "
1
where the ¢;’s are unique.

In Sec. III we consider best approximations of func-
tions fe L3(R") by finite linear combinations of B—W
functions. We show that for a given set of B—W func-
tions {B,, - + -, By} there are infinitely many sets of func-
tions {¢y, - -+ -, ¢} biorthogonal to {B,,---, By}. However,
there is a unique set {cpl, -«+, ¢y such that for every
f& L*(R*) the function

i
fN:_L_i(f) ¢i)Bi

is the best L*R") approximation to f by linear combina-
tions of {B,, - -+, By}. Since Klink’s biorthogonal func-
tions are not in L?*(R"), % they cannot coincide with this
set {¢ ¥ of functions biorthogonal to the {B;}{ that give
the best L3(R") approximation to 1.

Section IV and V concern, respectively, possible ef-
feets of error on the approximations and the problem of
approximating functions of polynomial growth as x -+ =,
These latter results are applicable to cases where scat-
tering amplitudes grow like x? in the energy.

11. DENSITY OF THE BREIT-WIGNER FUNCTIONS

The main result of this section may be stated as fol-
lows: If (a) the {);} accumulate at a finite point in C~ R~
or (b) A, =s +¥p; where »>0, Re(s)>0, p;=0, p;>0
for i=2,3,-++, lim,.ep; ==, and

=1
Slow
i=2P; ’

then span{B,} is dense in L3(R").

We remark that the conclusion follows in case (a) from
a result of Ribaric® and in case (b) from theorems of
Lerch and Muntz. *® Adaptation of these results to our
problem is straightforward but the proof is included for
completeness.

Pyoof Case (a): Let F()) be the Stieltjes transform of
fe LAR*), defined

F= [ 10 ®
0

X+ A
which is analytic in C - R”, Since f is known, F is also
known. Note that F(},)=(f, B;). Let {9} be an orthonor-
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mal sequence obtained from {B,} (by the Gram~Schmidt
process, say)

hi=cyBytepByte o teyB;, i=1,2,---. (9
Hence,
i
, v :Q cyF(X,). (10)
Now consider the sum
;_;01 D). (11)

By (9) each ¢, is a linear combination of B;’s. Since f
is in L%R*), Bessel’s inequality assures that the series
in (11) converges to some function in L%R"). Call this
function g. We now need to show that f=g.

Let G(A) be the Stieltjes transform of g. G(X,)=F(x),
i=1,2,..., since g and f have the same Fourier coeffi~-
cients. Indeed, making use of (10) we obtain

ey Py = (f, ) = (8, ) = ¢4 jo' f_%dx: 1 GOy)

and inductively, having F(3,)=G(})), i=1,2,--+,n~1,
we obtain

e F) + e te g JFOLL) +e,, FO)

=y G + v -+ ¢y WG(Xo) +€,G(Y)
and hence

F(x)=GQ,).

Since the A; accumulate at a finite point in the region of
analyticity of F and G, the identity theorem gives F=G
in C — R™ and by the uniqueness of the Stieltjes trans-
form, f=ga.e.

Pyoof Case (b): The proof is exactly the same up to
the point of application of the identity theorem, which
cannot be used since the 2;’s no longer must accumulate
at a finite point.

Let h=f-g. We must show k=0 a.e. Since fand g
have the same Fourier coefficients, H(A), the Stieltjes
transform of %, has the property that H(};) =0, i=1, 2,
-+, Moreover, since the Stieltjes transform is just
an iterated Laplace transform, ® we have

[T exp(= 0D dE=0, i=1,2,..., (12)
where / h is the Laplace transform of 2. Since
he LARY), [he L*(R*), " and so [k is in L(0, T) for
all finite 7. The result follows by applying Muntz’s gen-
eralization of Lerch’s theorem.

Klink' asks under what conditions it is possible to

write
J= 2 ¢;B; 13)
i1

for fe LXR*). A set of functions {a,} is said to be a
Schauder basis in a normed vector space S with norm
[l -l if for every element ¥ = S there is a unique sequence
of scalars {c,} such that

N
lim [l - 25 cyagll = 0. (14)
N=w z=1
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Although span{B,} is dense in L?(R’) for cases (a) and
{(b), we can show that the {5;} do not form a Schauder
basis in L%(R"). The reason the B,’s fail to be a
Schauder basis is that in the construction of partial
sums, everytime another term of the series is added on,
the preceding coefficients in the sum change.

Theovem: If {\;} is as in case (a) or (b), then a se-
quence {¢,} biorthogonal to {B;} does not exist in L*(R").

Proof: The proof is by contradiction. Suppose {gbi} is
a sequence in L?(R’) biorthogonal to {B;}. Since (¢y, B.)
=0 for all k=2,

¢, € (spani{B, : k> 2"

(L denotes the orthogonal complement in Hilbert space)
and obviously

¢y & Spam B, : k= 2.

However, span{B,:#=> 2} is dense in L¥(R*) since the se-
quence M,=XA,y, n=1,2 ... satisfies the conditions in
case (a) or, respectively, case (b). This means ¢,
c span{B, : k> 2} a contradiction.

Corollary: If {\;} is as in case (2) or (b) then {B;} is
not a Schauder basis.

Proof: The proof is by contradiction. Suppose {B,.} is
a Schauder basis. If
f=2,¢;(NB,, (15)
i1
then each mapping f—c¢;(f) is a continuous linear func-

tional on L%(R").® Thus, for every i there is a unique
¢, € LYR") such that

(f: d){):C{(f)u (16)
By uniqueness of the expansion (15)
(B, ¢i):5k,i (17

as is easily seen by choosing f=B,. Thus {¢,} is a se-
quence biorthogonal to {B,}, an impossibility due to the
result of the last theorem.

1. FINITE EXPANSIONS

If a function f< L3(R") is to be approximated by a su-
perposition of a finite number of B~W functions B;=1/
(x+2x)), i=1,...,N, then of course fy, the best approxi-
mation of f with respect to the LE(R’) norm, is the or-
thogonal projection of f onto span{B, - - - , By}. In order
to find a formula for fy, we recall that if »,, ..., 2y are
distinct, then the set of functions {B;:i=1,...,N}isa
linearly independent set. Thus the functions fy can be
obtained by using the Gram—Schmidt orthonormaliza-
tion procedure to find an orthonormal basis {11)1, ceu, dnt
for span{Bh ttty BN}

N
fN:.Z:i (f, $)¥:- (18)

As Klink® indicates, it is sometimes desirable to
write fy in-terms of the functions {B,} instead of the or-

thonormalized functions {zp,}. That is we would like to
write
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fN:i ¢;B;. (19)
i=1

It follows from the Gram—Schmidt orthonormalization
procedure that

hy=cyByt.--teyB,, i=1,---,N, (20)

b

substituting this expansion for ¥; into Eq. (18) and re-
combining the coefficients will give Eq. (19).

However, as Klink! observes, if fe span{B,, « -+, By}
and if {¢y, -, ¢y} is a set of functions biorthogonal to
{Bl, Tty BN}, then

N
fziZ_J; (f, 04)B;. (21)

There are infinitely many different sets of functions
{¢q, -+, 4} biorthogonal to {B,, - - -, By}. In fact, since
dim[span{B,:i=1, ..., N}]=N and dim[span{B, :
=1,---,N,i#j;]=N-1, for the function ¢, we can take
any function, appropriately normalized, in the orthogo-
nal complement of span{B;:i=1,-..,N,i#j} witha
component in the B; direction.

Pyoposition 1. Given the set of distinct B—W functions
{B,, -+, By}, then there is a unique® set of L3(R*) func-
tions {¢q, « - -, ¢} biorthogonal to {By, - - -, By} such that
for every fe LER")

N
fﬁé (f, :)B;. (22)

Pryoof: Let Hy=span{B,:n=1,-+-, N} and for each
j=1,-++,Nlet Hy ;=span{B,:n=1,++- N,n#j}. Since
dimHy=N and dimHy ;=N-1, there is a unique func-
tion ¢; € Hy such that (B,, ¢;) =6, ;, k=1,-*+,N, For
this set of functions {¢y, -+, ¢yt and for any fe L¥R")
we have Eq. (22). The uniqueness follows from the fact
that the coefficients ¢, in Eq. (19) are unique and that if
®,#¢; then there is at least one function f L3(R®) such

that (f’ ¢1) ¢(fy 431')°

Given a set of B—~W functions {B;, - -+, B,} we now
give two ways of determining the unigue biorthogonal set
of Proposition 1.

Method 1: Consider the matrix (M; ;) where M; ;
=(B;, B)). As Klink' observes

where the matrix (N, ;) = (M, ;). Even though (M, ;)
exists, the matrix (M; ;) may be ill-conditioned, espe-
cially if the X; are close together. Thus if (M, ;)™ is
found numerically, a very significant error can be in-
troduced into the coefficients N, ;.

Method 2: Take the ordered set By, ---, B, and per-
form the Gram—Schmidt orthogonalization procedure:
Letting ¢y = B; and assuming ¥y, - - -, ¥4 are calculated,
let

— i-‘l (Bk, lpk) .
b= B LGy W

then the last function ¢y is such that (B;, ) =0,
= 17 MY N- 1; and (BNy ¢N) #0. Thus ¢N:¢N/(BN’ II)N)-
To find the function ¢; we reorder the functions {B,} so
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that B, is last and then proceed as above. Of course, by
judicious reordering, the amount of work involved can
be greatly reduced.

IV. EFFECT OF ERROR

It was shown in Sec. II that for any f in L%(R"), the
series

Z (f, lpi)wis
i=1

where {y,} is an orthonormal sequence obtained from

{8}, converges in L}(R") to f. The construction was

based upon the Stieltjes transform of f.

Let us suppose that the Stieltjes transform of f is
known with error €()). Call it F(2) +¢()). Further, let
{B,}, n=1,2,--«,N, be the finite set of B—W functions
with which we plan to approximate f in the best L3(R")
fashion, Using the main result, we have

N /N
7=2(Z culr) + €0 ) (23)
12 \j=
where the c;; and ¥, are defined as in (9). So we have

f=i<i CUF()V)) (M +i(£‘/ [0”5()\;')])4)1 (24)
i=1 \j=1 i=

1\j=1

and it is clear that determination of the behavior of the
¢;;'s shows how the error € is magnified in the approxi-
mation to f.

To this end, recall that the Gram matrix*’
(By, By) <<~ (Bn By)
G ° .. : (25)

(BN’ Bl) ot (BN, BN)

has a minimum eigenvalue m > 0, and this number is
called the measure of independence of By, <+, By. Thus
the vanishing of the Gramian {=det(G)] is necessary and
sufficient for the linear dependence of the B;’s. The re-
sult of interest here is that if m > y and the B,’s are
orthogonalized as in (9), then

leyl<1/Vi

for all i and j. The consequences of this result are given
below,

Note that the entries of G are given by

1 )

B,, B,) =———==1log -

( ir = N g()\}-)’

=arg(>\¢)/1m(7\i), i:jy XiéR!

:I/Ab

Let X, =kX;, i=1,2,-++,N, k>0, and B, be defined (26)
B/(x)=1/(x +},)), xcR".

i#j,
{—Xi

i=j, yER,

Then (f?i, Bj) =k™(B,, B;), the measure of independence
of By, ..., By is m/k and the orthogonalization coeffi-
cients &;; associated with the {B,} are bounded:

'2'41[$Vk;“- (27
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This shows that the closer a set of };’s is pushed toward
the origin (i. e., choosing # small) the smaller the or-
thogonalization coefficients. A numerical example with
N =3 is listed in Table 1. (Calculations done on Hewlett
Packard HP9830). Note the V% dependence in the ¢; ;’s.

At first glance, it appears that to minimize error in
the approximation in (24) one needs to merely push the
2;’s closer to the origin. However, €(1;) will, in gen-
eral, increase as A; ~0, since

Fop +e0y = [ L9 4y (28)
(]

x+a T

Since f(x) is only assumed to be in L3(R"), when }; is
near zero the integrand in (28) can be nearly singular
at the origin. Therefore, for a given f the best choice
of {a;}, i=1,2,--+,N, will most likely be close to the
origin, but not so close that €(};) increase faster than
the lc;;! decrease. The choice is problem dependent
and no general choice criterion can be given.

V. WEIGHT FUNCTIONS

Since scattering amplitudes may not be square inte-

grable functions, but may grow at infinity like x%, we

consider for each real number % the Hilbert space
H,={f: fow(x +1)% [ Ax) |2 dx < o},

with inner product
(f, @ = f, " + D) () ax.

L%R") is then H,.
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A B—W function B(x) =1/(x +2) is then in every space
H, for k<1,

If &y <k,, then clearly H, C H,, hoth algebraically and
topologically. Moreover, since the functions of compact
support are dense in every space H,, we have as a vec-
tor space, H,, is dense in H,.

The work of the preceeding sections can be adapted
to any of the spaces H,, £<1, by merely changing the
inner product from [°f(x)g(x) dx to ;" (x + 1)*f(x)g{x) dx
this allows us to approximate scattering amplitudes with
polynomial growth by B—W functions.
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The Euler-Lagrange equations, which correspond to a variational principle with a Lagrange function
depending on arbitrary functions and their first order derivatives, are shown to be reducible to the
Korteweg—de Vries equation under a small—but finite—amplitude approximation. Closed form
periodic solutions to the Euler-Lagrange equations are found for a particular case, and the
modulational stability of these solutions is discussed. Equations for waves in cold plasma are

discussed as examples.

1. INTRODUCTION

A wide class of nonlinear partial differential equations
of mathematical physics can be derived from a varia-
tional principle with a Lagrangian of the following type
type’:

Lty o o o yM3@ry v v oy @13Puyy o 0 oy Py 3@rss o o 05 Puss

)

where ¢, ,¢,, are space and time derivatives, respec-
respectively.

P T T« PP |

mx? mi

If we consider stationary solutions, i.e., ones de-
pending only on a variable O=Fkx — wf (k=const, w=
= const) we can obtain from (1) an equivalent Hamilton
system, which is autonomous and conservative as the
independent variables x,¢ or their combination © do not
appear explicitly. Thus the existence of an energy in0
integral is assured and we would not expect to find any
damped solutions. The most interesting features of
autonomous, conservative systems are periodic solu-
tions, the trajectories of which usually fill up a subspace
in a corresponding phase space whereas nonconservative
systems have at most isolated periodic trajectories—
limit cycles.

These properties of stationary solutions of the varia-
tional equations originating from (1) show that we are
considering a nonlinear dispersive system. It is the dis-
persion that balances the nonlinearity effects resulting
in formation of periodic solutions. In nonlinear dissipa-
tive systems the nonlinear steepening of waves is
balanced by dissipative effects leading to shock waves
and with both the dispersion and dissipation present we
can expect stationary solutions in a form of shocks of an
oscillating structure.?

It has been shown,®* that certain classes of nonlinear
equations, under the weak nonlinearity and long wave-
length approximations can be reduced to either the
Korteweg—~de Vries equation

n.+nn, +0n,,=0
or the Burgers equation

n.+nn, —vn, =0
depending on whether the system is dispersion or dis-
sipation dominated. It is shown in the present paper
that, under similar assumptions, the system of equa-
tions originating from (1) can be reduced to the
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Korteweg—de Vries (KdV) equation, By way of example,
edquations for waves in cold plasma are considered,
which, in a different form, have been already reduced to
the KdV equation.® This reduction is particularily re-
levant as the KAV equation has been solved,®

Some fairly general theorems concerning the existence
of periodic solutions of conservative dynamic systems
have been proved,® but, for practical reasons, it is
useful to look for periodic solutions in a closed form.
Although the last problem has also been studied exten-
sively in classical mechanics,” it seems that there
remain some important cases to be solved. Here
stationary periodic solutions of equations originating
from (1) are found for the case of only one ¢ function
and an arbitrary number of parameter functions »,,
which appear in (1) only by themselves and without de-
rivatives, and potentials «,, the last appearing in (1)
only through their derivatives, It is also assumed that
the dependence of the Lagrangian (1) on all the deriva-
tives ¢,,9,, ®,,, o;, is quadratic. Again the equations
for waves in cold plasma are discussed as example but
it is worth noting that all the equations considered by
Whitham?® in his study of dispersive waves fall within
this clase.

The modulational stability of nonlinear dispersive
waves, the theory of which in the Lagrangian formalism
has been formulated by Whitham, ® is also discussed
here. The theory is specified for the case of a “quadrat-
ic” Lagrangian so that the existence of periodic station-
ary solutions in closed form is assured,

Finally, a nondispersive case is discussed and a con-
dition for the equations to be hyperbolic is obtained. The
condition might prove relevant for the stability theory
of Ref. 8.

2, REDUCTION TO THE KORTEWEG-DE VRIES (KdV)
EQUATION

A. Waves in cold plasma
Let us first consider a Lagrangian
L=n(a,+302)+ Gn;0, 0., ®,) (2)
and the variational principle
6 [ Ldx dt=0,
The corresponding Euler-Lagrangian (E—L) equations

are
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sa: n,+ Mma,),=0, (3)

on: o, +302+G,=0, @)
5¢: G,,,+G, ,-G,=0, (5)
where

2 929G
tht-(ﬁ a———(ﬂt ), ete.

If we take » for density and « for a velocity potential
u= o, then (3) is the continuity equation and (4), after
differentiation with respect to x, yields the equation of
motion.

For ion—acoustic waves in cold collisionless plasma
we set G=— 302+ n@ —e* where ¢ denotes now the elec-
trostatic potential, and the variational equations
become?

n,+ ), =0, wu,+~uw +9,=0, ¢ —e’+n=0.

With ¢ =B (magnetic field intensity) and

c:_—l—Bg_ngJrnB (6)
2n

we obtain from (3)—(5) equations for hydromagnetic
waves in cold plasma propagating across the magnetic
field?:

B
n,+ (), =0, ut+nux+’73x:0, (B,/n),=n-B. (T)

Su and Gardner® considered these equations as special
cases of a different (in general) class of equations and
they did not derive the equations from any variational
principle.

Assume first, that G=G(n, ¢), i.e., we drop the de-
pendence of G on the derivatives ¢, ¢,. Equation (5)
yields now

G,n,¢)=0. (8)

Differentiating Egs. (4) and (5) and replacing ¢, in (4)
by the corresponding expression calculated by differen-
tiation of (8), we get

2
a
n, + (nu), =0, ut+nux+7nx:0 9)

where u=a,, a*/n=G,, —G2,/G,,. We assume that a®
> 0. The set of Egs. (9) is hyperbolic and its character-
istic roots are x=nza. This set is also homogeneous in
derivatives and thus it can have stationary solutions in
a form of steady states and jump discontinuities only.
The set (9) is thus dissipation—and dispersion free and
we can see that it is the derivatives ¢,, @, in (2) that are
responsible for the dispersion, If we linearize Eqs. (9)
around a uniform state n=n,, ©=0, ¢=¢,, we obtain
a wave equation
Uy, = At =0 (10)
with @2 =a?(ny, ¢4, 0).

The main step toward reduction to the Korteweg—de
Vries equation is to introduce (after Gardner &
Morikawa?) the transformation

f=e"(x —agt), T=€*" (11)
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where € denotes the amplitude of the initial disturbance
and is assumed to be small compared with unity. The
transformation {11) includes coordinate contraction and
transformation to a waveframe so that the final equation
shall describe slow changes of one of the waves governed
by the wave equation (10). The exponent a >0 is to be
determined so that there be no dependence on ¢ in the
final equation,

We assume, that the function G(x, ¢, ¢_, ¢,) and its
derivatives G,,G,,G,.,G,; can be Taylor-expanded
around the uniform state n=n,, ¢=¢,. After the trans-
formation (11) has been applied to Egs. (3) and (4), the
following equations are obtained;

(12)
13)

en,+ W —aghn, +nu,=0,
e, + @ —agu, + G, =0.
Equation (13) shall yield the KdV equation, and Eq. (12)
together with (5) will be used for elimination of # and ¢.

We also assume that the functions », », and ¢ have an
asymptotic representation:

n=n,+enV +en@ 4.0,

u=eu® + 2 fons, (14)
0=y +e@W + 2@ 4 onn,

Inserting the representation (14) into (12), we obtain

3
€_a'r(€n(l) +e2n® 4. °')+{(eu(”+€2u(2’+' o o)_aO]
3
X_ag enV+ @ +oeo)+ (g tenP +en® 400 0)

X% eu®+Eu® ++.2)=0

involving a sequence of equations

€') nu -an® =0, (15)

€@) P +uPn® —an +npu® +nPu =0 (16)
Equation (5) can be written as
v @ L d

€56y — a—E-GM+e°‘ﬁGM—Gw:0. (17)

Next, the functions G,,, G,,, and G, can be expanded.

For G,,, e.g., we have
An+ 3G, o (An)2Heee

(AgP+eos

wazcwxno v nn
+G, ,A¢+3G

@, 00 00 00

+G Ap_+3G Ap Y tee-

[y "’xwxwxo(

+6 Ag +—‘2-waww(A(pt)2+ﬂ°°,

0500
where An=n—n,=en® +en® +---,

Gy o= 02G/20,n)| etc.

netgy VeVy?

Equation (17) yields now a recurrent set of equations
(60) Gwo = 0,
) oot ™+ G0 =0,

(€2) = [Cunen® + Gy go®® + 3G yuon PV + 3G o (0 VY]

+e* (G g oo = G o yno)]

(18)
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+ 6zoz-l[(p 2l v o0 2a,G 0y9e0 + a‘Z’G"’t wto)]'—' 0o (19)

The term of the order of ¢>*"! has been left in (19) be-
cause the coefficient at ¢*™! will ultimatily disappear so
that with @= % we shall obtain ¢2*"'=1.

A similar sequence of equations originates from (12):

€") —agu® + G +G, 0 =0, (20)
€) uD+uVuP —au® Gt + Gt I + G, 00
- @)
+ Gy oM o e [anxo—aotho](pef =0, (21)

Equation (20) coincides with (15) [if we take account
of (18)] to yield

ngt® =anV

with proper boundary conditions assumed, e.g., #"

=0 and #»'Y =0 for £ — «,

The equations formed of terms of the order of €7,
i.e., (16), (19), and (21), result now in a single
equation

2%

2
a -
" n + (2 n—% +An(”>n§“ +¢2¢ 13"5(31;:09
o )

(22)

where A and B are constant coefficients

a? G?

Az_g+<Gmn0—Gwnn0G + " . <anw0—waw0G 0)’
LY G wwo Gooo
G2 2
B= -G LG, 0—2a,G, 40t a 2G o; 0,00+
v eo
Taking a =3 and performing a linear transformation
in (22)
n:(l_o +%n(l)

b

n, 2a,

we arrive at the normal form of the Korteweg—de Vries
equation

n,+nn, +Cny,, =0,

where C=Bn,/2a,.

In this more general case, the E—L equations are

on: n+ L,=0,
6¢: L, +L, =L, (23)
oo L&,t+L°txx:0°
First, we introduce new variables
=u, ¥=v,
80 that
u,=v,, (24)

Now, we can apply the transformation (11) and use
the representation (14), the expression for v being simi-
lar to that of u, although we have no simple interpreta-
tion for a as in the former case. Here, the parameter
a, shall be determined from an algebraic equation ob-
tained in the first order of approximation.

To lowest order we get
€) L,

which is equivalent to the condition that there exist con-
stant state solutions.

=0, Lwo'—:O,

The “first order” equations are

(25)
(26)

€") L,

L,a®+L,
o=+ s oL, )0

oL ey M+ Lo g =t g IO

27

(28)

1 1 1
WL ® + Lyt + Lot =0,

(p(1)+L xou(l)_‘_L v(l)___O,

+ Loap

au® +v{"=0.
From these equations, differentiating (25) and (26) with
respect to £ and using (28) to eliminate »‘’ in favor of
we get a linear system of algebraic equations for

Az =0, (29)
B. Equations originating from L = L {n,; ¢, vx, ¢;; with a symmetric matrix
;)
|
Py Sy 59 nn0 n 0o L, o0~ Ly a0
A= Sy Py 83 Lwno wao Lwozxo_aOLwatO .
Sy S3 D3 Laxno_aoLmtno Laxwo_aoLatwO Laxaxo"zaOLataxo+agLatato (30)

The compatibility condition for (29)

detd =0 (31)

is a second-degree algebraic equation for a,, so that
we can assume that a, is known. The condition, in turn,
that a, be real is a certain limitation on the class of
possible constant states n=n,, ¢=¢,.

The element of A depends only on constant param-

eters n,, ¢,, so that basing on (29) we can write
2M =Dy (if 2D L0 for £ — - ), (32)

where 7, is an eigenvector of A with the component cor-

1575 J. Math. Phys., Vol. 16, No. 8, August 1975

I
responding to »™® normalized to unity. There exist
three linearily independent eigenvectors of 4:

(1 $283=81P3 S1S3~SePo\_ .y a1y 1)
%o -(1, 3 s 72 )= 06700 s Yo )s
Dpabs—Ss Dabs~ S35 2Toe o
1,(2)&(1 Sp=PiPs  P1Ss—SiSp
° 515~ 28z T S5 — 8285
2
,rés) (1 $1S; —P1Ss Piba— Sy
3 b
S1S3— PS>~ $;S3—Pabe

but we have no need to use any particular one so we
shall write vo= (rq,, 704, ¥ou)-
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The “second order” equations, in turn, have the form
2 (2) (1),, (1) @) g pomlp, (1) _ 20-1: (1)
€®) Az» + BmPn +gn® +e*hn - 2> jn)=0,

(33)
J
nano 000 L +a3L
n nag a, naygo,0
—_ 2
B= Lwnno Voo Lwaxaxo +aOLwo¢g ag0
Qpagoy (IOL O g 0y 00
— — 2 —
Loz,(rmo aOLottmlO LOtxw [4Y] aOL @y ¢ 00 +a0(Laxozt o (IUL

and the column vectors f,g,j, and i are

T%n L

nato? 0n
f: ’ng y 8= Lwatoyow
&« L g pno¥on + Lo, 00700 2(L age; — %ol o, ato)'rou
0 7o,
j= a(Z)Lwtwt _2(10L“’x"’t°+L“’x“’x s h=t=pro,—avy),
0 a7,
Wit? b=Ly, 0~ aol, 0,00 4=Lg q0= a,(L opazo T L w,ato)
+aOLwtatc

At this point, it is enough to multiply (33) by an eigen-
vector of A (left and right eigenvector are the same be-
cause A is symmetric) to eliminate z® and obtain a
single equation for n™:

7B 0D + vognt + ey hnfy -2y, jnf) =0, (34)
A crucial point here is that
YR=DVon 00 = PVoo¥orn = A¥0o¥ou + 4% oy Voo =0, (35)

so that there is no “dissipative” term »{;’ and, by taking
a=7 in (34), we get the Korteweg—de Vries equation

rogni® + 7, Bfn On? — v jin{l=0,

and the (constant) coefficients can be easily scaled out,

It seems that it would not have been possible to obtain

this result if the matrix A had not been symmetric.

C. Generalcase of L = L (n, ..
s P Pres -

VRS 2V P O

-/‘p/t/cxlx/---/cxmx/a]t/---IO:mr)

The extension of the argument in Sec. 2b to cover this
general case can be obtained automatically so that there
is no need to discuss it in detail.

The E—L equations are now

o8 anzoy p=1, R,
8y, Lw,t+Lw,.x_Lwr:0’ r=1,...,L,
day: L&st+Lmsx:07 s:l, .ym,

and we again introduce

(e}

e =Usy s, =05, s=1,...,m.

It can be easily verified that the matrix analogous to 4
of Eq. (30) is again symmetric, but the equation det4
=0 is now of higher degree.

Some idea of the changes the equations of Sec, 2b must
undergo to hold for this case can be obtained from the
form of an element of A; instead of L, in (30), we have

nn0
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Here 2% =(n® ¢0® 4®), v® has been eliminated in
favor of #®, the matrix A multiplying z® is simply
(30), the matrix B is

Qo ozt)

r
now,
nqyny0 Ln 1n200 ot LnlnkO
non10 Lagngo " Lagngo
.
°
.
Lnknlo Lrl;zrngt)D vt Lnknko

3. PERIODIC SOLUTIONS
A. Waves in cold plasma
We consider again a Lagrangian similar to {2),
L=n(a,+3a2)+G,
but now we require that G be a second degree polynomial
with respect to ¢, ¢,, i.e.,
G=a¢i+bo,@, +e@i+do, +ep +f,
with a,b,c,d,e, and f depending on » and ¢.
The cold plasma equations of Sec. 2 are certainly of
the form discussed here but formerly we had no reason

to restrict that much the class of equations under
consideration.

We look for stationary solutions, i.e., solutions de-
pending only on

=*kx —wt, k=const, w=const,

and we shall use a notation du/d0=1, etc. It can be
easily verified, that the form of variational equations
(3)—(5) should be the same after the 6 variable has been
introduced as if we introduced this variable directly in
the Lagrangian L. Thus we now consider a variational
prineiple

6 [ Las=0,

with
=& —nwd+1P*+ HO+f
and
X=ak? - bkw +cw?, H=dk -ew.

The function « appears in the Lagrangian only through
its derivatives, so

oL
e

=nE?& - w)=p=const,

This equation is analogous to the continuity equation (3).
We can use it to eliminate & and consider, instead of
L, a function

R=pl&-L=g+1xP?+HP+ =R, ¢;p),
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where

2 w |, nw?
g= g+t

We are left now with two equations
d (6R> R
—\| =) -== 0,
dg\d o Q@

o _
an-~ "

(36)

These equations imply that
_ R
= cpa o
and after the definition of the R function has been taken
into account we get

A - R=const

202=g$é=r(n,¢)a (83
The second equation of Eqs. (36) can be used to calculate
n in terms of ¢
dR M., 08H-. 8(ft+tg) o _ 3H — 0d(f+g)

=== o+ ol Tl Dy B
0 In 8n<p+8n¢+ In m Tan ' an
and this is enough to write an implicit form of the solu-
tion of (37).

0+ 0,= I Vj‘(’;

Two simple zeros ¢, and ¢, of the function »(¢) are re-
quired for the solution being periodic

or

w# 0. (38)

’}’:0,

B. Equations originating from a Lagrangian with
quadratic dependence on derivatives

We consider now E-L equation for a Lagrange function
depending on an arbitrary number of functions, simi-
larily to (1), but now we assume a specific form of de-
pendence of the Lagrangian on the derivatives

L=ay0,0,, +b,0,0,+co;
tdyaan e 0,0+ 10
T80 Py TR0, i 00,
(39)

A summation convention has been assumed here, o, a,,
_Tm .

Xa, =Fn, 00,0, ete., and all the coefficients

ay,,by,c, * ¢+ are functions of »; and ¢.

tia, kol tme, +n,

An additional simplification introduced in (39), as
compared with (1), is that there is only one ¢ function
left., This is to assure that all but one of the Lagrange
equations can be eliminated. Then periodic solutions,
in a closed form, to the single second order equation
left (that corresponding to variations of ¢) shall be
obtained taking advantage of the quadratic dependence of
the Lagrangian on the derivatives.

It is easy to verify that correct “stationary” equations
can be obtained by applying a substitution

O=kx — wt
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directly to the Lagrangian (39) and writing the E~L
equations for the variational principle

6 [ L(n;, 0, b, &,) d6=0, (40)

The Lagrangian in (40) is a quadratic form in & and

a
1
L=A; b +B,&,p+Ca+ D +Ep+n, (41)
where
34, =k, ~ koiy, + w'd,,,
B =k, +w'e, —kw(gthy), C;=kj - wk,
D=ck?*+ Aw?, E=kl-wm.
The “stationary” E—L equations are
d oL aL
— == —-—=0 42
% 35 3% Tap )
d 8L
ba,: P a—&:— =0, vr=1,...,m (43)
dL
ongt mzo, s=1,...,k. (44)

Now we are going to get rid of the potential functions o,
going over to a new set of variables by means of a
transformation

oL

=Ty
rToa,’

r=1,...,m.
This last transformation can be reversed to calculate
the &, in terms of p,

3
r 81),-,

with

r=1,...,m,

~

R=R(9’nh @, (op,pr)zps .s -L,
provided that

92L
det< s )
88,8,/ a,,.. n=detd,; #0.

We write &,,L instead of &, L to indicate that all the &,
have been expressed here by the new variables p;.

Equation (43) integrates simply to give

p,_.——A,s&S+B,('p+Cr=p,0:const, 7’=1’ .o

‘,m’
(45)
and Egs. (42) and (44) are now
d (6R 2R
7w(7) 76 =0 4o
aR
ﬁls—zo, S:l,no,,,k0 (47)

The function R is a quadratic form in &
R=XP*+Yo+ 2,
where
X=3A,AJAB,B; - D, Y=- %A A AN (p, +C,)B; +
+(p;+C))B,]-E

and
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Z=p,(py+C+p(p,+C))=m, i,j,r,s=1,...,m.
Eq. (46) has an integral

. OR .
¢+ -R=Xp*-Z=A= const,,

i
so that
oy A+Z
o= e =rlng, @)y, s=1,...,k. 48)

This formula together with Eq. (47) yields an equation
for eliminating n,:

37
=0, s=1,...,k. (49)

-a—ir(n (ﬂ):t:—a—y—\/rn +
s o0, 52 ¥ Ins

9 ng
Once the n, are eliminated, Eq. (48) can be integrated
to give a periodic solution

0 do
9+90: f W9 (50)

oscillating between two simple zeros of »(®).

All the functions n, =n,¢(6) are determined by Eq.
(49) together with (50) and the @, can be readily calcu-
lated from Eq. (45):

a, = tle®)db+ a,, r=1,...,m,
where

tr:A;Sl([)rO - Brv ?’(Qﬁ) - C‘r)‘

4. QUASIPERIODIC SOLUTIONS AND MODULATIONAL
STABILITY

Whitham?® presented a method for describing slow
variations of nonlinear dispersive waves and studying
their stability., The method relied on a Lagrangian being
known for the studied equations to be derived from a
corresponding variational principle and the existence of
a stationary periodic solution was also assumed, Here
we are going to specify the Whitham’s theory for the
“quadratic” Lagrangian (39), of which we know that it
gives origin to equations having periodic stationary
solutions in a closed form,

Let us consider E—L equations of a three function
(n, ¢, @) variational principle

éf f L, @, 04y 9y O,y @, ) dx dt=0. (51)

It is assumed that there exists a statiOnary solution of
the E—L equations of (51) depending only on

8=kx —wt, k,w=const, (52)
and we look for a more general solution resulting from
slow variations of this uniform wavetrain solution, The
first step is to represent the solution in the form, e.g.,
for ¢

olx,=9(0,X,T,¢), (53)
with

X=ex, b=cg(X,T),

UJ(X’ T)=- et: - O k(X7 T)= ex:Ox"

The phase function 6= 6(x,{) is introduced as a general-
ization of (52) and ¢ is a parameter, which, at a later
step, shall be taken small and an expansion shall be

T=¢t,
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used:
D=y +edW + 29D 4oen, (54)

Equations describing the more general “quasiperiodic,”
solutions sought can be obtained by introducing (53)
directly to the Lagrangian of (51) and writing a three
variable variational principle

6 [ [ [T LW, 8,k8,+ech,, —wb, +cby, kA, +e, + 6,

~wAg+ed, ~¥)dXdTado=0, (55)
where, instead of « and », we used

a=A(0,X,T,e)+ (X, T), n=N(8,X,T,e), (56)
together with

b=e(X,T), B=V, y=-¥p.

The “pseudofrequencies” j, ¥ appeared here because we
included § in (56) to obtain a more general solution as
« is only a potential and we expect only its derivatives
to be periodic in 6 to lowest order in e, The period has
been taken to be 27 for the analogy to the sinusoidal
waves of linear theory be preserved.

If we define an average Lagrangian L as the inner in-
tegral of (55) and use expansions of the type of (54),
then, to lowest order, we have

6 [ [ LNg,®o, ko5, ~ whog, kAgs + B, = wAg, ~ Y)AXdT=0.
(57

The variation of (55) with respect to N, ®, and A results
in E—-L equations, which, to lowest order, have solu-
tions periodic in 8, characterized by amplitudes N°(X, T),
®°(X, T), A°(X, T), frequency w(X, T), wavevector k(X, T)
and pseudofrequencies B(X, T) and ¥(X, T). With these
solutions substituted into (57) we can calculate L=
=/ (®°,A°, w,k, B, 7). Then, taking variations in (57)
with respect to N°, $°,A°, o(X,T), and ¥(C, T), we ob-
tain equations

L@O:O, LAO:O’ (58)
o / d

srhrmaxle=0 (59)

2 2
7 Lo le=0
together with equations arising from the definitions of
w, k, By ¥

kr+w,=0 and By +v,=0. (60)

The set of Eqgs, (58)—(60) describes slow changes in the
parameters of the lowest-order periodic solution of the
original equations and if this is a hyperbolic set then any
changes in these parameters can propagate and we ex-
pect the periodic solution to be stable. The term
“modulational stability” is sometimes used for this type
of stability.

The averaged Lagrangian has a simple form if the
transformation to Hamilton variables is used

oL oL

= I, =
8@60’ : aAeo

I,

and
H(1,, sz“f’o?@y‘l’): Mg+ gy~ Lo

As 11, does not depend on 8, A, is periodic and H is an
energy integral, we have
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I,=p,,(X,T), H=A(X,T),

1
Lzﬂf ,dd, - H,

where@--- dé, denotes integration over one complete
cycle 6f &,.

(61)

The Lagrangian discussed in Sec. 3b depends on a
number of potentials «,, j=1,...,m, and on more than
one # function, so we shall have now a larger number of
equations:

LA:O; Lpr():o!

d i

57Lw53Le=0s (62)
d d

7Tl 5x La=0

and
kr+w,=0, B, +v =0,

with » running over 1,, .. ,m.

In order to calculate the averaged Lagrangian / we
repeat the entire procedure of Sec. 3b with a slight
change involved by the pseudofrequencies 8, and v,, It
is understood, moreover, that all the “constant” are now
functions of X and 7T and vary according to (62). For I,
of (61) we have then

I,=B,t,+2DVr+E,

where only E is now different from the one in Sec. 3b,
and

E=lk —wm+RBb, - w?ve; +wklh,y, - Bg,).

It is clear that this change in the definition of E involves
also (slight) changes in the expression for 7,

The ultimate effectiveness of the method depends on
the possibility of calculation of the integral (61) and this
might be quite complicated in practical cases,

5. THE NONDISPERSIVE CASE

We obtained a dispersion-free system by omitting the
¢, and ¢, derivatives in the corresponding Lagrangian
(see Ref. 8). Now, let us discuss a more general case
of a Lagrangian (which is similar to the one discussed
in Ref. 9)
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Ly oo ogMysQg oo oy @iy oo oy @)

involving the following Euler—Lagrange equations:
ony: an=0, p=1,...,k

Sogs La“t+L%xx=09 s=1,.,.,m.

Introducing new variables

924 = QXgy T2p1= ‘La,x

and using the (6n,) equations to find n,=n,(g,), we can
write for the E—L equations

Lé:’3+L§;;=0, I=1,...,2m,
where
LOg)=L (n,(qx); a,,(g,),92) - .. (g, )La‘,,:l’ F Ql94e1y
L(l)(qt)E —q9241+
An alternative form of the last equation is

Lq(;’;nqnt +L:;;ﬂqnx-='0, n=1,... ,2m,
and, as the matrix L{) is symmetric, the system is
symmetric-hyperbolié, if the matrix L? is positive
defined. This last result might be of use in the stability
investigations described in Sec. 4.
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This paper contains a general description of the theory of invariants under the adjoint action of a given
finite-dimensional complex Lie algebra G, with special emphasis on polynomial and rational invariants. The
familiar “Casimir” invariants are identified with the polynomial invariants in the enveloping algebra Y(G).
More general structures (quotient fields) are required in order to investigate rational invariants. Some useful
criteria for G having only polynomial or rational invariants are given. Moreover, in most of the physically
relevant Lie algebras the exact computation of the maximal number of algebraically independent invariants
turns out to be very easy. It reduces to finding the rank of a finite matrix. We apply the general method

to some typical examples.

1. INTRODUCTION

The subject of polynomial invariants (for a given Lie
algebra G) is strongly related to physics. As a matter
of fact it was under the efforts of some relevant phy-
sicists (H.B.G. Casimir, G. Racah, -:-) that this sub-
ject began to grow up. H. B.G. Casimir in collaboration
with B. L. van der Waerden first introduced the quad-
ratic invariant for semisimple Lie groups. Surprisingly
enough, G. Racah® was able in the 1950’s to give an
explicit construction for the polynomial invariants in the
case G semisimple. What are now called “Casimir in-
variants” originated in their work.

While physicists? own interest was centered in the
semisimple case, because of the crucial role played by
semisimple Lie groups in modern physics, the first
general rigorous resulis obtained by the mathematicians
(the name of C. Chevalley is particularly relevant here)
also refered to the invariant elements in the enveloping
algebra of semisimple Lie algebras.

It is perhaps because of this coincidence that a
groundless belief has developed in physical literature
(in a more or less explicit form) in the sense that the
only possible invariants for a general Lie algebra are
of polynomial type. Sometimes the contrary is true, and
such general operators as exponentials? and so on are
called “Casimir invariants” without an explicit definition
of the meaning of this term.

In this paper we propose to identify the Casimir in-
variants as the polynomial invariants of G. Then we
give simple examples showing the need for more general
invariants. Thus, more general structures than the
enveloping algebra are required. To our knowledge, the
only well-defined structures of this type are the quotient
fields. Section 3 is devoted to the description of rational
invariants, and gives sufficient conditions for a given
G having only polynomial and/or rational invariants. A
simple formula is given which permits the exact com-
putation of the number of algebraically independent poly-
nomial and/or rational invariants. This formula reduces
the problem to computing a matrix rank. We apply the
general method to some physically relevant Lie algebras
in Sec. 5.

2. POLYNOMIAL INVARIANTS

Henceforth G will dencte any finite-dimensional Lie
algebra over the field € (complex numbers), with com-
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mutation relations [A;,A;]=5%, C%.A, (i,j,k=1,2,...,n)
in a given basis {A,}]. In Sec. 4, G will be assumed to
be algebraic.

A. The enveloping algebra®

We denote by S the symmetric algebra of G. 1t is
isomorphic to €[a,, ay, . . ., a"], the usual polynomial ring
in n commutative variables a,,...,a,. The set of all
homogeneous polynomials in S of degree m will be de-
noted S'™,

On the other hand we will consider ¥, the enveloping
algebra of G, consisting of all (noncommutative, in
general) polynomials in 4, ... ,A,. The linear subspace
of 9 generated by the monomials AJ*A72 - A%n (v, + 7,
+ -+ 7, <m) will be denoted by %,,,. Given uc gy, we
will refer to the integer d{u)=inf{pluc ¥,,,} as the
degree of « in ¥{. One obviously has

T = ﬁ;o)c u(l)c e o Ql(m)c ey

U Ay =%  Aimy Ap)© Acmepy
m=0

B. The adjoint action

This is defined to be the action of G on itself by the
following derivations adAd: A’ G— [A,A’] = G. In this
paper, however, we are going to consider also the ad-
joint action of G on $ and ¥, as given by the following
formulae for a basis {4 }] of G:

o 0
p=p(@=pay... a)=s T A )= T Cia, Ba <5

ue A—Hs (A ul=Au-uA,cy, (2)
and by linearity for any A = G.

C. Polynomial invariants. Definition

Because of its key role in that follows, we isolate the
subsets:

QIIE{LLG HA;’“]ZO,V]}CQL
ST={peS|A,(p)=0, vj}cS.

They are the invariants in %, S, respectively, under the
adjoint action of G.
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Definition 1: The elements in % 7 are called polynomial
(o¥ Casimir) invariants of G.

Definition 2: Given a weight function (= one-dimen-
sional representation) A :G— €, we say uc ¥ is a A-
semi-invariant in  if [A,u]=x(A)u, ¥ A cG. We denote
by %!/2 the set of all A-semi-invariants in¥ .

Definilion 2’: p= S is said to be a A-semi-invariant in
S if A(p)=n(A)p, VAc=G. Let us write SI/? for the set
of all A-semi-invariants in S.

D. The canonical isomorphism ¢: S = ¥

Let us consider the linear map ¢ :S — 9 defined by
symmetrization as follows:

1
(b(aalaaz aar): ;T u;nr A

where II, stands for the permutation group of » objects.

®g(1)  *g(2) g (r)

Lemma 13: (i) ¢ is a linear isomorphism.

(ii) ¢ commutes with the adjoint action, i.e., ¢(A(p))
=4, ¢(p)], v p=s.

(iii) Let A9 =H(SY?Y). Then U, ,= pr A9,
(m) 0

(iv) p, =SSm0, p, =S = d((p,p,)) =m, +m,. More-
over, ¢(P1P2) - ¢(p1) ‘i)(pz) = ?[ (my+mo=1)°

It follows that the Abelian algebras S7, %/ are linearly
isomorphic. This can be strengthened® to read:

Lemma 2: S’ and A7 are algebraically isomorphic. ®

Thus the transcendence degrees of S7, A ? over @ are
identical. In other words, the cardinal, 7 of a maximal
set of algebraically independent elements in S7 is the
same as for A /. Moreover, since the adjoint action on §
takes S into S, the elements in the maximal set can
be chosen to be homogeneous.

Lemma 3: Let {p,}; homogeneous algebraically in-
dependent in S’. Then {¢(p,)}; are algebraically in-
dependent in %’

Proof: Suppose that there exists a finite set I = IN",
(IN, natural numbers) and nonzero complex numbers
X [(sy,...,s,)=1, such that

Syrees ,Sr
Z[) Nooensos, (p,) -+ B(p,Pr=0.
Let d(i=1, ..., 7) the degrees of the homogeneous
polynomials py(i=1,...,7). LetI_, be the subset of I

constituted by the elements (s, ...,s,) such that 3% ;s,d
is maximal in /. Then, by making use of Lemma 1 (iv),
we have

i

2 Meyrsy O p)=0

max

and, according to Lemma 1 (i),

2N

Imax

S,

S1
peeis, D1t P =0,

which is a contradiction. QED

We close this section with a crucial result relating
7 (the maximal number of algebraically independent
Casimir invariants) to the rank of the antisymmetric
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matrix M, =(M.),,) with (M;),, =%, C%,a,. We write
¥(G)=  sup

dpsees ap)

rank M ..

Then we have the following upper bound for 7:

Theorem 1: With the above notations T <dimG - #(G)
(3)

Proof: Follows from Lemma 2 and a classical
theorem °© stating that the system of differential equa-
tions,

of
2, Cra, =—— =0
it ik aaj

(i:l,...,n), (4)
has exactly n — 7(G) functionally independent solutions.

The polynomial solutions can be identified with elements
in S’. QED

Remark: Let {p,}{ a maximal set of homogeneous
algebraically independent elements in S’ (see Lemma 3).
Then {(,*)(pj)}{ is a maximal set of algebraically inde-
pendent Casimir invariants.

E. Examples

The essential feature we want to emphasize is the fact
that, generally speaking, equality will not be accessible
in (3), because of the existence of nonpolynomial solu-
tions. It is this simple remark” that invalidates the
conclusion in Ref. 8. This is best understood by looking
at some low-dimensional examples.

Example 1: Let G be the Lie algebra of GL(2),
dim G—4.
[Aqu] = [Az’A4]:A2, [AS’AI] = [A4’A3]:A3’
[Az’Ag] :Al _A4, [A_UA4] =0,

0 a, -a, 0
-a, 0 a,—a, da,

r(G) = generic rank 0 ay-a, 0 —a =2
0 -a a; 0

Two independent (polynomial) solutions of the system (4)

are
pa)=a, +a, pla)=a+ad+ 2a,a,.

With the aid of the canonical isomorphism ¢ we obtain
the maximal set of algebraically independent polynomial
invariants:

Ci=A,+A,, C,=A1+A%+A,A,+AA,.
In this case, equality is satisfied in (3).
Example 2: (Dilatations and translations in the plane)
(A, A,]1=A,, [A,A,]=4,, [4,,4,]=0.

Aty
Now #(G)=2, and there is no polynomial solutions of
system (4). However, there is a rational solution f(a)
=a,/a,.

Example 3: Let us consider now the three-dimensional
Lie algebra:

[A,4,]=0, [A,A,]=A,+4, [4,A]=4,.
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We find 7(G)=2, and there is no rational solutions. The
system (4) admits the solution f(a)=a,/a, — Ina,.

Summarizing, we conclude that polynomial solutions
of (4) (hence polynomial invariants in %) do not generally
exhaust all possible solutions of that system. This
suggests the following definition.

Definition 3: We call f a formal invariant of G if it is
a solution of (4). It seems to us that such definition is,
from the point of view of the adjoint action, the most
general definition of an invariant object. In the case f
is a rational function of a,, ..., a,, we are going to see
that f gives rise to an associated “rational” invariant
(Sec. 3). Until now one has not been able to do so for
general formal invariants.

We note also that the exponential invariant proposed
in Ref. 2 is not a formal invariant, in the sense of our
definition 3.

3. RATIONAL INVARIANTS
A. The quotient field®

It is a well known fact that ¥ is a Noetherian ring
without zero divisors. Thus, one can construct its
quotient field, denoted D(¥), the elements of which are
of the form uv™ with «,v< ¥ and v #0. Given »
=uv-t e D(¥), it can be decomposed as r=u’"'o’ with
u',v'e ¥ and '+ 0. Any pair of fractions 7,, v, c D{¥}
can be reduced to common denominator, so that one can
define on D(¥) all required operations to make D() a
noncommutative field.

Similarly the quotient field of S will be denoted by
D(S). It is isomorphic to the field € (ay, ..., q,) of
rational functions in » commuting variables.

B. The extended ajoint action

For every 7,, 7, c D(¥) we write [r,,7,] =77, —v,7,.
For instance, if u,v c % and v#0, we get {u, v"!]
= — v Yu, v}, Therefore, we are able to extend the
adjoint action of G to the quotient fields D(¥), D(S) as
follows:
oh

adA ;

h=ha)eD(S) 2 A (W)= 3 chiay 5~ € D(S),
o “ (17
re D) AL (A, ¥]=Ay—rA, e D). (2"

Let us write D(S) ={h e D(S)|A,(h)=0, ¥ j}, D(Y)’
={reDW1[4,,r]=0, ¥ j}

Definition 4: The elements in D(()’ will be called the
rational invaviants of G. We notice that D(%)’ contains
D(¥U ), the quotient field of %A /. Consequently, all poly-
nomial invariants are included in D(¥)!. Another useful
remark is that given u, v ¢ H(v #0), a necessary con-
dition for uv™* = D(H) is [u,v]=0.

The next two propositions are concerned with the
structure of D(S)!, D(¥).

Proposition 1: With the above conventions:

(i) he D(S) &= h=p,/b,, where p,, p,cS]’? for
some weight x.

(ii) There exists a maximal algebraically independent
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set {hy,...,h,}in D(S)! such that k;=p,/q,, with homo-
geneous p;, g, =Si/%, for some \, (i=1,2,...,7).

Proof: (i) Let p,, p,e Cla,, ..., a,] relatively prime
polynomials such that k=p,/p,. If k< D(S)!, then

0=A (1) =[A,(p))b, - D:A (P)1/ 5, v,
Therefore,

Ap)/by=A0,)/p, = C.

On the other hand, if p,, p, =S{/?, then obviously k= p,/
D, = D{S).

(ii) Let g, ...,£, 2 maximal algebraically independent
set in D(S)!. We write g,=p,/q, with p,, ¢, X ,-semi-in-
variants in S (i=1,...,7). Let p,=%4i, p{* and let ¢,
=355 q{" the decomposition in homogeneous terms.
The adjoint action on S takes S‘™ into itself. Therefore,
pPand ¢iP (k=0,...,d; 1=0,...,c;) are \ ,-semi-
invariants (x, the weight of p, and ¢;) (£=1,...,7). The

elements h{"®=g{"/p® (i=1,...,7, 1=0,...,¢c;;
k=0,...,d,;) are in D(S)’. Moreover,
b 1 1

1
s — = + 4oees 4 .
g: qi E?:io hé"o) zclziohi(l.l) ”:1=io h‘(_l.dﬂ
Then g, ..., g, are algebraically dependent on h{¢**), i
=1,...,7, 1=0,...,¢, k=0,...,d,;, and we can choose
a maximal algebraically independent set among the
h(_l,k).
%

Proposilion 2: (i) p = SI/2e=¢(p) = A!/2.
(ii) u. v € Y1/3(v #0) = wv! = DAY
(iii) The set ¥/2 =y, % //? is Abelian.

(iv) Let {k,=p,/q,}} be an algebraically independent
set in D(S)?, with homogeneous p,, q;<=S}/?, for some
A, (i=1,...,7). Then {o(p,)¢(g,)"}} are also alge-
braically independent in D(¥)?.

Proof: (i) Follows from Lemma 1, part (ii).

(i) AcG =A™t =[A, ulo"t —uv A, v]ot =xuv™
—uv vt =0.

(iii) See, for instance, Ref. 2.

(iv) Suppose that there exists a finite set I« IN” and
complex numbers A, ., #0 [(Sy,...,S,)=I] such that

2 Xapranns, (000 0@ ) -+ (0(p,)9(q,) 'V 7 =0.
I

Sy
In view of part (iii) this implies

2 Agpenns, O 000, [ 0(g2) -+ 9(g,) 7] = 0.
! (5)

Let A =X, 50 G0 = 6(0) - 00,7, ¢l)
= ¢(q,)°t - P(g,)°r, and 1, ¢(¢)*’ be the product of all
#(¢q)*’. By multiplying by I1, ¢(q)“’ Eq. (5) becomes

Dre®p) s 1 ) =0,

I~ (s)
Let d,, e, be respectively the degrees of the homo-
geneous polynomials p;, ¢, (i=1,2,...,7). Let us write
I, for the subset of I consisting of those elements (s)
=(Sy,...,8,) such that 3%, s,d,+ 3017 ¢ v s) {42 15 maxi-
mal in I. Then Lemma 1, part (iv) yields
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> k(s‘¢<p<s) o qm> =0 =3 a,,p° 0 ¢¥=0.
Imax =) Tmax I-is)

(6)
Now let us multiply (6) by I1, ¢’ to conclude
T Ny BB =0,
max
Thereby contradicting the hypothesis. QED

The result of Lemma 2 admits a direct generalization
to the quotient fields:

Lemma 2': The fields D(S)! and D(¥)! are isomorphic.

An important consequence is the equality between the
maximal number of algebraically independent elements
(transcendence degree) of D(S)! and of D(M)!. Let us
call 7’ this number. By the same argument already
used in Theorem 1, we obtain

Theorem 17:

7' < dimG - #(G). (31

Remark: Let {hi}{' be a maximal set in D(S)? of the

type indicated in Proposition 2 (iv). Then {¢(p,)4>(q,.)'1}f
is a maximal algebraically independent set in D(¥%)7,

The preceding Example 3 shows that equality is not
always reached in (3’). It would be helpful to know of as
many Lie algebras as possible having only rational in~
variants. In other words, we are interested in those G
such that 7/ =dimG - »(G). We now undertake this
problem.

4. THE CASE G ALGEBRAIC!!

One sufficient condition for the nonexistence of ir-
rational formal invariants for G can be deduced from a
result of J. Dixmier.'?

Theorem 2: Let G a finite-dimensional algebraic Lie
algebra over a commutative field of characteristic zero.
Then the maximal number of algebraically independent
elements in D(S)! equals dimG - 7(G).

Corollary 1:

G algebraic = 7/ =dimG — 7(G). (3"
Another important problem is to characterize the

class of all Lie algebras G such that the number of

algebraically independent Casimir invariants 7 equals

dimG ~ 7(G).

If we restrict our attention to algebraic Lie algebras,
then a simple sufficient condition is D(¥)! =D(%?) (in
this case every rational invariant is a quotient of
Casimir invariants). This sufficient condition holds for
any nilpotent'® or semisimple ** Lie algebra.

The case G semisimple is the best known. ** Since G
is automatically algebraic, ! we conclude 7=dimG - 7(G)
In other words, the number of algebraically independent
Casimir invariants equals the rank?® of G.

Now we generalize the semisimple result to a larger
class of Lie algebras, including many other Lie algebras
of frequent use in physics.

Theorem 3: (G, G]l= G == D(%)?=D(AY).

Proof: The only admissible weight for such Lie
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algebra is A =0. From Proposition 1 part (i) we see that
D(SY =D(ST). Furthermore, Lemmas 2 and 2’ imply
D) =D 7). QED

Since [G, G] =G forces G to be algebraic, '* we obtain
the following important result:

Covollary 2: [G,Gl=G=7=dimG - #(G).

In such cases Casimir invariants are all we need in
order to describe the set of formal invariants of G.

5. APPLICATIONS

While it is not generally true that 7/ =dimG - » (G),
there are many physically relevant Lie algebras having
only rational invariants. We quote a few typical exam-
ples. According to what has been said, we are provided
with two quantitative statements (Corollary 1 and
Corollary 2 above) concerning the number of algebraical-
ly independent invariants. Finding the explicit form of
the invariants is a quite different problem. In the fol-
lowing examples it has been solved in a straightforward
way.

(a) G=1{J,, P,}3.| with commutation relations

[J,.,Jj]zie”ka, 75 Pj]:ie”,(Pk, (7a)

[P, P;]=0 (i,j,k=1,2,3). (Tb)

It is the Lie algebra of E(3), the Euclidean group in
three dimensions. It satisfies |G, G]=G. An easy calcu-
lation shows 7(G)=4. A maximal set of (polynomial) in-
variants is given by

C,=P?, C,=JP.
(a’) If we add dilatations to E(3), we obtain G’
= {J'., P,.,D}il. The only new (nonzero) commutators are
[D’Pj]:ipj! 021,213)- (8)

One finds »(G')=6, 7=0, 7" =1. There is a rational in-
variant (JPP(P?)-.

(b) Let G be the Lie algebra of the Galilei group G
={J, K, P, H},. The commutation relations are in
addition to (7)

(J, K =te;, K, (K, Hl=iP, (1,j,k=1,2,3); (9)
one easily verified »(G)=8, 7=7"=2. A maximal set
of invariants is given by
C,=P?, C,=(KXP).
(b”) Let G'={J,K,, P,H,M}}, be the Lie algebra of

the central extension of Galilei group, with modified
commutation relations:
(K, P,]=i5,,M (10)
In this case »(G')=8, 7=17"=3, with a maximal set
Cy=M, C,=MH-3P?, (C,=(MJ-KXP),

(b”) Now let G”=1{J ,K , P H,M,D} , D =dilatations.
This is a 12-dimensional Lie algebra with added
relations:

[D,P]=-iP, [D,K]=iK
[D,H]=-2H (j=1,2,3).

(11a)
(11b)

J?
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We get this time 7(G”)=10, 7=7'=2, with maximal set
C,=M, C,=(MJI~-KxXP)y

Remark: The Lie algebras in (b), (b”), (b”) do not
satisfy the hypothes is in Corollary 2.

(c) Let us consider now the Poincaré group. Its Lie
algebra G admits the usual basis {J,,, P, } (i, v
=0,1,2,3), J,,=~J,,. The commutation relations are

[Juu’JnuJ:i(gvvJuu"gquw'gqupu+gvu‘]pu)’ (12a)

(Jau’ Pu]:i(guopp_guapu)' (12b)

As we see [G,G]=G. In fact T=17' =2, with the well-
known (Casimir) invariants:

C,=P, C,=W?
where W* = j¢""*J P .

(¢’) By adding dilatations to G, we go into the so-
called Weyl group, with Lie algebra

G'=1{J,,, P,,D} and [D,P,]=-iP,. (13)

An easy calculation shows #(G’)=10. This time there is
no polynomial invariants. It is straightforward to verify
that P2(W?)! is a (rational) invariant for G’.

uy?

(d) In a series of articles” P, Roman et al. have in-
vestigated some Lie groups containing the Poincaré
group. We proceed to compute the number of their in-
dependent invariants in the light of the general results
stated in Sec. 4.

Let us begin with " SO(3, 1)X(T4X TJ). Its Lie algebra
admits a basis {J,,, P,, 11, } such that both sets {J,,, P,}

Hy?
and {J . Hu} satisfy the Poincaré commutation relations.
Moreover,
[P,,m,]=0 (1,v=0,1,2,3). (14)

Hence dimG =14, and we find #(G)= 10, Since [G, G]
=G, we conclude that 7=17’'=4. By letting W"
=3€e"v*oJ P and V* = ;€**°J T, a maximal set of in-

variants is given by
C,=F, C,=11?, Cy=PI, C,=WIl=~VP,
This is to be compared with Ref. 17 where neither the

number nor the explicit form of its six (!) independent
polynomial invariants are correctly stated.

(d) By addition of a new generator S to (d), we obtain
a Lie algebra called (;; in Ref. 17. This generator
verifies

(s,pP,]1=0, [S,n,l=iP, (u=0,1,2,3). (15)

We find dimG =15, #(G)=12. Furthermore, 7=7"=3,
with Casimir invariants:

C, =P, C,=(PIO)Z-PI®, C,=WI,
once again in contradiction with Ref. 17,

(d”) Finally let us consider the Lie algebra of the
group'? 4/, which admits for its Lie algebra a basis

{Ju P,y 11,,S,C, D} The only new nonzero commutators
are

C,P,|=~in,, [D,P,]==~iP,, (16a)
1584 J. Math. Phys., Vol. 16, No. 8, August 1975

[D, Cl=2icC,
[s,D]l=2is.

(D, m,)=im,, (16b)
[S,Cl=iD, (16¢)

In this case we find dimG =17, (G, G]=G, »(C)=14.
Therefore, 7=7'=3. A maximal algebraically indepen-
dent set of polynomial invariants is the following:

C,=(PNY - PP11?,
C,=3d, (P*II" = P’II*) + STI* + CP? - DPI1I,
C,=WII.

The last one was not considered in Ref. 17.

Remark: By its very definition »(G) is always an even
integer (rank of an antisymmetric matrix M ;). In con-
sequence, as can be verified in all preceding examples,
the number of formal invariants has the same parity as
dimG does. In particular, G algebraic =7/'=dimG
(mod 2).
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The nth excited state reduced Coulomb Green’s function in coordinate space for the one-dimensional Kepler
problem is investigated, and a closed expression for this function is obtained.

1. INTRODUCTION

Reduced Green’s functions defined by

K(ry, 1, E )=~ o— ET—UTM—”—(—&-) (1.1)

2 k#n 1
are basic structures occurring in Rayleigh—Schrddin-
ger bound state perturbation theory for a quantum me-
chanical particle moving in a potential field V(r), Here
the E, denote the distinct energy eigenvalues of the un-
perturbed Hamiltonian

H,=~(72/2m)V*+ V() (1.2)

including continuum eigenvalues, if they occur.® The
¢,, are the corresponding eigenfunctions of H,, [being
a degeneracy quantum number. The energy £, is one of
the bound state eigenvalues of H,, The reduced Green’s
function (1.1) is just the coordinate space representative
of the familar sum over intermediate states encountered
in the Rayleigh~Schrddinger bound state perturbation
theory. As such the reduced Green’s function enters in
the calculation of the first order corrections to the
bound state wavefunctions belonging to the eigenvalue
E,, and also in the second order corrections to the en-
ergies of these states, when the Hamiltonian H, is
modified by the addition of a perturbation term. An
important part of the work of any bound state perturba-
tion calculation is thus summarized in the function
K(r,,r,,E ). Since this function is independent of the
particular perturbation problem; in principle it could be
calculated once and for all and then used as a tool in the
investigation of various physical effects.

The reduced Green’s function is related to the Green’s
function

G(rzy r,E)= —21[;—/1 ZE w)_qoéE—(I})

k1 k
of the Hamiltonian H,, in that K(r,,1,,E,) is obtained
from G(r,, r,, E) by removing the »th pole term

7 s @ () el (r (r) o (x)
- Z E ral

2m

(1.3)

(1.4)

and evaluating the other terms at E=E, In Eq. (1.3)
E takes on arbitrary complex values not in the eigenval-
ue spectrum, discrete and continuous, of H,. We refer
to K(r,, 1y, E) as the “nth excited state reduced Green’s
function” and (when necessary to avoid ambiguity) to
G(r,, ry, E) as the “full Green’s function, ”

Reduced Coulomb Green’s functions, for which H, is
the Coulomb Hamiltonian, are of interest for example
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as a possible tool for use in atomic and molecular cal-
culations, and have been the subject of a number of
previous investigations. Hameka® has derived a rela-
tively simple closed form expression for the S-wave
component of the ground state reduced Coulomb Green’s
function in three-dimensional space; and subsequently
Hostler® expressed the complete ground state reduced
Coulomb Green’s function, including all partial wave
contributions, in closed form. More recently, Swier-
kowski and Suffczynski,? investigated the excited state
three-dimensional reduced Coulomb Green’s function.

We will here obtain a closed expression, Eq. (2.28),
for the excited state reduced Green’s function of the one-
dimensional Kepler problem. The one-dimensional
Kepler problem is of special interest because of its rel-
lative simplicity and because of a result of Hostler® that
the one-dimensional Coulomb Green’s function and re-
lated structures serve as generating functions for the
corresponding objects in spaces of any higher odd
dimensionality. Because of this relation between Cou-
lomb Green’s functions in spaces of different dimen-
sionality, the results to be presented here for the one-
dimensional Kepler problem are significant also for the
three -dimensional problem.

Our plan of attack is to obtain the one-dimensional
reduced Green’s function from the known one dimension-
al Coulomb Green’s function of Meixner®:’

Gip(7yy 733 E)
-~ taivT (1 =iv) Wi 12027,/ asiv)/ 1s1 287 /agiv),
E=-%%2ma(iv)?, Reliv)>0, a,=41h*/mZe?,
(1.5)
by exploiting the relation between the reduced Green’s

function and the full Green’s function, This is made
possible by the formula

[(E -E )GLD('VZ, 7 E) lE =E, "

Ky p(u, v;E )— (1.6)

u=2r,/na;, v=2r /na,,

which expresses the relation between the two functions
analytically.®®

Equation (1.6) is readily verified by use of the eigen-
function expansion (1,3). Let O denote the operation

performed on the full Green’s function in Eq. (1.6).
Then for any function f(E)

Of(E)=3(E - E )f(E))/3E| 5.,
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Let Obe applied term by term to the eigenfunction ex~
pansion (1.3). When O acts on the terms regular at
E=E_ it simply evaluates them at E=E, ., However,
when O acts on the pole term (1,4) it removes the
(simple) pole and gives the derivative of a constant,
which is zero. As a result the eigenfunction expansion
(1. 3) is converted into precisely the sum of terms (1. 1),
i.e., into the reduced Green’s function. According to
Eq. (1.6) in order to calculate the reduced Green’s
function one merely has to differentiate an appropriate
expression involving the full Green’s function with re -~
spect to energy, and substitute E=E . The expression
being differentiated is analytic at E_ since the pole of

the full Green’s function is removed by the factor E - E..

By Eq. (1.5) the Coulomb parameter iv is a function
of energy determined through the conditions E = %2/
2mai(iv)® and Reiv >0, The latter condition Re(iv)>0
renders iv a unique function of E, for E values not in
the eigenvalue spectrum of the Coulomb Hamiltonian.
The bound state eigenvalues of the Coulomb Hamiltonian
(Bohr energy levels) correspond to the values iv =n
=1,2,38, - of the Coulomb parameter: E = —#2/2main®
Before proceeding with the differentiation in Eq. (1.6)
it is convenient toc make a change of independent vari-
ables from E to the Coulomb parameter i¥. In terms of
iv as independent variable the effect of the operator O is

. RN ) |
O =ip| — -
i (iv) 2n[aiu <w n) L ~fli ))]
The pole of the full Green’s function occurs at the point
iv=n in the complex iv plane and is removed by the
factor (iv - x) in Eq. (1.7) when f(iv) is taken to be the
full Green’s function.

a.mn

iv=n

Section II A begins with the result of substituting the
expression (1.5) for the full Green’s function into Eq.
(1.7) to give the reduced Green’s function in the form
(2.1). Since the Whittaker functions W, ,, and /¥ .1 2
ar “~aring in Meixner’s Green’s function have variable
order; differentiation of the Green’s function with re-
spect to {v will entail differentiation of the Whittaker
functions with respect to their order. This differentia-
tion of the Whittaker functions with respect to order is
the principal difficulty in the calculation of the reduced
Green’s function. This problem has been dealt with
before within the context of the earlier calculation of the
ground state reduced Coulomb Green’s function. There
relatively simple expressions

[0W,, 2/ 0k a =€ %210z 1], (1.8)

£ lef=1)
L0/ 1 jo/ 2k] |y =72/ = e"/z(z +1 +zf i ——

0 (1.9)
for the derivatives with respect to order [aW,., ,,/3k]|,
and [a/M,., ,,/2k]|,., were obtained by term by term dif-
ferentiation of appropriate infinite series representa-
tions of the Whittaker functions.??® I has been found

that the straightforward application of this same meth-
od to the derivatives with respect to order

[aWk;nlz/ak]lkﬂn*l)/Z and amk;nlz/ak]lk=(n+l)/2

provides the natural generalization of Eqs. (1.8) and
(1.9) to Whittaker functions of higher order. The ap-
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propriate infinite series representations of the Whit-
taker functions required for this are!®

Z(lm)/z ~z/2

Mk,n/z = 7l
Z(1+n)/2 ® lil_l__n) ] A
PO, 2/2 2
M Z ETINE (1.10)
and
inml 21+ #) — (en) /2 -2 /2
W = sinal 31+ n) - k] i +m)+p —€ °

T2 +7n) -k 2 n!

_ _sinﬂ[ (1+n) k]

- T3 +n) + &) Msas2Inz

sinml (14 ) - (Len) /2 -2/ 2
—-—————-—~"[2(n n) = k] i1 +n) +2) & -
n!

x (U3 +n) —p+1] =¥[1]-w[1+4]}

P31 +n) = ) ELE(LE ) 4 k]

Z(’-*n) /26-2/2

I"%(1+n)—k+1
s b=t 1
X =12 TR ~n) t kta]

14
_ sinal$(1 +#) < £] TIA(1 +0) + R] 2@ 120272

7

[3(1+ ) 14 ;

Z, S A -k

ZX
—W[14n] = W[l 4+ +n]}:l—. (1.11)

Here the notation [a] =a(a +1)(a +2)- - (@ +2-1), A
=1,2,3,---, [a],=1 is used. Note that for x=1,2,
3,--+, [3(1 + n) = &), contains a factor [1(1 +n) - k]

having a zero at = 3(1 +#). In each equation all except
the first term has a zero at k=%(rn+1). The occurrence
of these zeros gives rise to considerable simplification
in the derivatives with respect to order when % is set
equal to 3(n+1), and this is the feature which makes the
calculation of

[aW,., /3R] henery 2 and [0/, 2/ 2k oty 2

go entirely parallel to the earlier ground state calcula-
tion. Because of the occurrence of the zeros; relatively
few terms generated by the term by term differentiation
of Egs. (1.10) and (1.11) with respect to k actually
contribute after setting 2= 3(n +1), and relatively sim-
ple expressions, Eqs. (2.5) and (2.6), are obtained for
the more general derivatives with respect to order.

Equations (2.5) and (2. 6) still do not provide the
derivatives with respect to order

[a/}"k;x /z/ak] |

needed for the calculation of the reduced Green’s func-

tion, but in Sec, ITA it is shown that the latter deriva-

tives can be related to the derivatives of Egs. (2.5) and
(2.6) by use of appropriate identities for the Whittaker

functions. However, in the explicit evaluation of the

lew,..,./2k]|,., and
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derivatives [aW,,, ,/0k],., and [0/, ,,/3k]l,., a con-
siderable proliferation of terms is encountered. Sec-
tions IIB and IIC are devoted to organizing and sim-
plifying these terms for [0W,., ,/0kll,., and [8/,, o/
dk]l,.,, respectively. In these reductions we are guided
by the possibility of writing the new derivatives with
respect to order without the introduction of new hyper-
geometric functions not already appearing in the ground
state reduced Coulomb Green’s function, Also as far
as possible all polynomials encountered are written in
terms of the same orthogonal set of Laguerre polyno-
mials, L}(z), p=0,1,2,3,.-. Our final result, Eq.
(2.28), is a rather symmetric and relatively compact
expression for the one-dimensional excited state re-
duced Coulomb Green’s function. This result is pre-
sented and discussed in Sec. IID,

Finally, in Sec. IIE we investigate the differential
equation and orthogonality condition which determine
K, ,(u, v, E,) uniquely. This leads to an interesting al-
ternate derivation of Eq. (2.28).

Il. DERIVATION OF EXCITED STATE GREEN'S
FUNCTION

A. Further development of equations for K, p (v, v, £,)

When Eqs. (1.5) and (1.6) are combined and the re-
sult expressed in terms of iv as independent variable
instead of E, we obtain {see Eq. (1.7) for the form of
the operator O in Eq. (1.6) when iv is the independent
variable]

K, plu,v,E)

Y 2 < iy =n) (=1)nD

1 iy \sinn Gy - n) T +iv) G+ iv)
XW,, .0 227/ aiv)/ 1t 7227 /aliv)>

The removal of the pole at iv =# of the full Green’s
function is reflected in the structure of Eq. (2.1) in
which the combination 7(iv - #)/sin7(iv - #) is analytic
near iv=n, The terms generated in the differentiation
in Eq. (2.1) can be simplified as in Ref, 3 by use of
the identities'?

Mostomy (@) =01z 127220 (2)/T(L+n+p) (2.2a)

B

(2.1)

iv=n*

Wy 2(2) = (1)l z @0 /2g2 /2L b (z), (2.2p)
and*?

(3/22)T(2) = T(2)¥(2), 2.3)

\1/(1+n):\p(1)+?";11, Y1) = -7. (2.4)
Here 7 is the Euler—Mascheroni constant. As dis-

. cussed in the introduction the calculation of the deriva-
tives with respect to order [aW,., ,/0k]l,., and [0/, ./
dk|l,., needed in Eq. (2.1) proceeds in two steps. We
first obtain the generalization

[0/, ) 2(2)/ 3] | kmtnoy /2

z n A
=—z‘”"”/2e"/2f dtt'"'l(ef—E t—) (2.5)

r=oM!
0

and

{a Wk;nlz(z)/ak]lk=(n+1)/2 (2.6)
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n 1

=01 M1y p25np2(8) N2 = 2(m /2 =2 /2 E;l (n-ri_—m ,
to Whittaker functions of higher order of the earlier
ground state results of Egs. (1.8) and (1,9), This is
accomplished by term-by-term differentiation of Eqs.
(1.10) and (1.11), followed by substitution of £=3(n+1).
Then we seek to relate these derivatives with respect to
order to the derivatives with respect to order needed in
Eq. (2.1). The equations bridging the gap between the
derivatives of Egs. (2,5) and (2.6) and the derivatives
with respect to order needed in Eq. (2.1) are found to
be the special cases of'?

dr o/ (n- . 1-
G (75 g o2)) = D 1)

dz?
: 2.7)
an
ar /. .
dzb (e e szk:n/z('g))
= (—1)”e"/22("'1"’)/2Wk+p/z;(n-p>/z(z), (2.8)

for which p=#»-1. If both sides of Eqs. (2.7) and (2. 8)
with p=n -1 are differentiated with respect to ¥ and
evaluated at k= 1(x+1), then on the right-hand sides the
desired quantities [3/1],,, ,,(2)/2k]|,., and [aW, , ,,(2)/

ak| »n appear. These quantities are thus expressed in
terms of derivatives which can be evaluated in terms of
Egs. (2.5) and (2.6). In the following, some further re-
ductions are used to simplify the derivatives with re-
spect to order, before substituting in Eq. (2.1),

B. Further reduction of the expression for
[aWk; % (z)/0k] f=n

Use of Eq. (2.6) in conjunction with the derivative
with respect to &, evaluated at k= 1(n+1), of Eq. (2.8)
with p=nr -1 leads to the expression

-1

~2/2_(n~1)/2 4,
= (e £/2, 1)/ /}/(ml)/Z;n/Zan)

dn-l 5, gragn
—(=1 n=1 ! z/2 2% ___ 7\ S,
(=Dute dz"! (;{ (n—h)!?\)

dar
-1 n-l,1,2/2
(=) nte i

for [6W,.,,,/2k]l, .. This expression is further reduced
1

n
as’s

n-1 -1-)
. 3 n=1\ 4 - -
(-1)»tpte?/? —"( > lews/2 1)/:2/}"(rr'f1)/2;71/2]

o\ A Jdzri

!z'“‘e'zL'*{1
(n=x)1x

x L (1nz) ~(=1)yipreere 3 (=)
dz a=1

- e n-1\n=1-0)! 5o &
= (vt 8 (1ot e e

n =~z
=(=D)mintes? 2 S (=1L
A=

by use of Eq. (2.7) with p=n-1-x, Eq. (2.2a), and the
two identities'®

etz * g

L) = nl dz"

(e2z*7), u arbitrary, (2.9)
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andl'?

(=z)m (=2)" Z)
m

Lm n( )= L" m(z), n,m=0,1,2,

(2.10)
The A =0 part of the first A —sum above is written sepa-
rately. After working out the derivatives of the loga~-
rithm, the remaining part of the first x —=sum is com-
bined with the second x-sum to give

[6 Wk;1/2/ak] | k=n
= (=1 n=1)1e*/%z L} , Inz

+ (=1 (p=1)1e72/2 5 (_1731-1

(L% —nLXD).

A0
@.11)
The identities!®
L Lre) = (ArLEG) (2.12)
ande
d -1
24 Li= =L+ (u+ )L (2.13)

dz

allow the combination of Laguerre polynomials in Eq.
(2.11) to be rewritten as

2L =LAt L} - 2pLt,

n-1-2 n-x n=x n=x

After this rearrangement, one of the two terms of the
A—sum becomes?

(2.14)

n=1¢

D (=i, =18
r=1
At this point we have the formula
[8 Wk:l/z/ak”k:n
= {=1)"(y-1) !e"/z,sz,_1 1nz
+ (=1 (n=1)1e7#/2L0

— (=1 pn=1)120e2/% 7] (Gt e,

r>0 A

(2.15)

This remaining A -sum is investigated in Appendix B
where it is shown that

E ( 1) L)"l( Y= La B/ BL“(z)

x>0 a

(2.16)

p=-1
and that the derivative with respect to u can be re-
expanded as

oLk (z) > L.
a[J. o;;:n ?\(n—li
in which only the lower index of the Laguerre polyno-

mial varies with the summation variable ». The final
result of the reductions of this subsection is the formula

ak(((n—lz;_' WWZ) .

L
-z/2 1 o _ 55 15
= (an_llnz +L, =2 +2n2 ZK," A(n_k)>, (. 18)

1
= — -z
a1 n

(2.17)

=n

and this is the form which will be used with Eq. (2.1)
for the reduced Green’s function,
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C. Further reduction of the expression for
[0/ k; % /0k] li=n

In the integral of Eq. (2.5) the substitution

1 (—1)" dn+1
L= gt

is made and » +1 integrations by parts are performed
giving

zdtt‘"'* et = E £
o M!

0

1 z
== —f dte'Int + i(e‘—l)lnz
n! Jo nl!

S LB (% 2y,

n! o &"? w0l

which is transformed into

et - —
0 ( )\:07\!>

_g_(z_g -g (:‘;n—pp)' ( Z: f;) (2.19)
g(z)zj ett'l ——ze‘fldte‘“ln(l—l), (2. 20)
(s) 1]

by changing the integration variable in [Zdfe’In/ to £
where f={1-£)z and performing another integration by
parts. The function g(z) occurred before in connection
with the ground state reduced Green’s function. It has
the simple differentiation property

dg(z)/dz = (e* = 1)/z (2.21)

which is needed occasionally. Our task is now to sub-
stitute the right-hand side of Eq. (2.19) into Eq. (2.5),
substitute that into Eq. (2.7) with p=n -1, differentiate,
and simplify. Some of the initial steps in this reduction
are

[amk;l/z/ak] I k=n

e?/?2 1l fp=1\ gr-lm P il
IT = — npTZz + —
n! :Lo( >d,,_ 5 lene ] = g(e)
—e?l? nz-i nz-f (n-—l—p)' (n=1)1zo o= (1) -zLOHp-(n-l)

pOaOn"

e/

zL} 1g(z)

e-z/2

n-1 d’“'1 ef—1
- . 1 A+l 7 Len .
n! oqé—l( A >(n 1-2)tz Lniin s [ z ]

ez/2

n

-5/22-1 "YEP(n l—p)'(OI +p)‘ ( 1)a+p+n—1Ln =1-Ca+p)

0 «=0 nlal
2/2
= - zL‘_lg(z)
- e‘/z Z: ZMI qu E ( 1) 1
N ogen1 AT dz°? z
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e2/2 T YOG s |

7 ogen1 Al

ez/z
n
-z/2
+é L Py
- -z/zz‘/ (n— >t)'( 1))-11}_1"2" (n— I'L)‘
oo (m=x~p)!
e-z/z
== ZLrlz-lg(Z)
e?/? -t (=)
- 2 (=12 2Ly 2 =1
n o <n-1 =0 .
/2
- 2 (=1~ [AL" —nL"'l
n or=n
2 -z/2 n
+eZ/ e zLi_lzl
n n el A
—1p-1 i
_e-z/Z E ( 73 L,);_i.
oQen

To obtain the expression to the right of the first equal
sign here Eq. (2.9) was used. The next step in the
reduction follows from Egs. (2.21) and (2,10), In the
next to the last step in the reduction the x~1 derivatives
of z ' expz are worked out, and the double sum involving
Ll ‘e jg rearranged by taking » =n—(a + p) as new
summatlon variable, with the A =0 term split off as a
separate term. The last expression was obtained by
using Egs. (2.12) and (2.13) as in Sec. IIB, to reduce
zL:% ., =—-(zd/dz)L}.,, and also by using a form of
Lerch’s theorem®

n-1-p n

L))
Use of Egs. (2.14), (2.16), (2.17), now gives the final
result of the reductions of this section:

(M es1,2/ %] | pen

-z/2
£ [‘ZL,I,-xg(Z) +L3-1 -2

U |
4 _._n;.L-_L ZLl_ 5—‘ _]
2nz E‘(n An—n)" ST
ez/z
t SO (2. 22)
The polynomial
1) -1 ()
O@=1-2 » Sy, § X 2.23)
0a<n =0 .

is studied in Appendix C, where it is shown to have the
simple integral representation

0(2) = f “ases a2l @) (2. 24)

S =z
0
From this integral representation other forms of 0 (z)

can be derived.? Two of these are

O=1+ ‘KZ;P’[Lz,_I-ZE:( ¢ )“;’,’] (2. 25)

0 <n n=1-p
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in which () (z) is exhibited as a sum of z~*!’ times
truncated forms of L} (z), and
(£2), (2.26)

1
O@R)=1-z 22 | agt™**L},

0 n
0

which is free of indeterminate forms. The expression
(2 18) for [oW,,, ;o/2k]|,., and (2.22) for [a/M,,1,5/

R]| .., have each been checked by direct substitution into
thelr respective differential equations (2.36 a,b) to be
derived in Sec. IIE, In checking the expression (2, 22)
the differential equation

a0 40

tz == +n0=L%

5 7z -2zL%,

2z (2.27)
for () was encountered. The check of Eq. (2.27) is

included in Appendix C.

D. Closed form for excited state reduced Coulomb
Green'’s functions

The necessary ingredients needed for the evaluation
of Ky (u, v;E,) using Eq. (2.1) have now been assembled.
Basic among these ingredients are the two new results
expressed in Eqs. (2.18) and (2.22). By working out the
derivative in Eq. (2. 1) the following expression for
K, v;E,) is obtained™:

Km(u’ U§E,,)

= 3a,e” /2uvL1_1(u)L1_1(v)

<1nu—g(v)
= +U -2 7‘ -=2 +y)

Zn 5; Xl
+ 3a, Pl /2vL1 2@ L W) + 3a,e /zuLi_l(u)L (v)

+aye 9 3L 0)0 (v), (2. 28)

+

-2+2nz 2 Liaa +(z-1)L}_, 2.29)

ocnen N (n=2)

L)=L"

This is the excited state reduced Coulomb Green’s func-
tion for the one-dimensional Kepler problem. The
similarity in form between Eq. (2.28) and the earlier
ground state result® in one dimension is quite remark-
able. In the ground state case (#=1), the factors

L} ,,0, and /[ become just factors of +1(Li=0| ,=1,

[ |,5=-1). The expression (2.28) consists essentially
of terms of the ground state result which have picked up
additional “form factors” made up of the polynomials
L' ,, 0, and /. For example, the same Inu and g(v)
terms of the ground state result appear again in the
excited state Green’s function except that they pick up
the additional form factor L} ()L} (). -No new hyper-
geometric functions appear in the excited state Green’s
function.

As pointed out in the introduction, our expression
(2.28) can be used to generate excited state reduced
Coulomb Green’s functions in spaces of higher odd di-
mensionality. In particular, the three-dimensional re-
duced Green’s function can be calculated as®

2
av

in which K, ,(u, v, E,} is the expression (2. 28). What is
essentially the result of Swierkowski and Suffczynski*

KSD(rZ’ Iy, E"):— K, D (u’ 1),En)

1 2
2mna; | T~y | \0u
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for the three-dimensional reduced Green’s function is
thereby obtained by a straightforward differentiation of
the simpler one-dimensional function,

In view of the relation
{2.30)

between the S-wave component® of the full three~di-
mensional Coulomb Green’s function and the Coulomb
Green’s function in one-dimensional space, and the fact
that this relation will be preserved by the operations
of Eq. (1.6) generating the reduced Green’s functions,
it is apparent that the expression (2.28) doubles as
essentially [i. e., aside from the factor (r,7)!], the
s-wave component of the three-dimensional excited
state reduced Coulomb Green’s function. Thus Eq.
(2.28) is essentially the excited state generalization of
Hameka’s original result, %

g,=0(7’2, ri3E)= (727’1)-1(311;(7'2; 1, E)

E. Differential equation and orthogonality condition

The differential equation of the reduced Coulomb
Green’s function is derived by investigating the effect of
the differential operator H-E , where H is the Hamilto-
nian, on the eigenfunction expansion (1,1) defining
K(r,,ry; E,). For the one-dimensional Kepler problem
this differential equation is

(_@2_+ 2 _ 1

— K, (7, 7;E)
3r: v nzaf) 1pt'es T1n

4dy,r.
=0(r,—ry) — e eV fmy =& I (29, /nay) L2 (27, /nay).

wa; T

(2.31)
As shown in Ref. 3, the differential equation together
with suitable regularity conditions at the origin and at
infinity uniquely determine the reduced Green’s func-
tion, except as regards its component in the sense of
Hilbert space along the energy eigensubspace of H to
energy £, Thus the solution of Eq. (2. 31) becomes
unique when the magnitude of the projection of K, (v,, 7,;
E ) along the energy eigensubspace to energy E, is pre-
scribed. A look at the eigenfunction expansion (1.1)
shows *hat this projection is zero.

<

~Z
J d72¢:(72)K11)(72’ 71;En) =0, (2.32)
o
where
(1)"(7-2) _ e-r2/nal(Zra/nal)L},_l(Z’Vz/nal) (2.33)

172
n3/2a1/

is the nth state energy eigenfunction. The orthogonality
condition (2. 32) together with the differential equation
(2. 31) and boundary conditions serve to uniquely charac-
terize the reduced Green’s function. A remarkable
simplification of the differential equation for K, occurs
if one expresses K, as a function of the two variables
u=27,/na, and v = 2r/na,, instead of 7, and 7;. By use
of the equations
u/ar,=20(r,—r)/ nay, 8v/8v,=20(r,-7,)/na
(2.34)

in which 6(x) is the unit step function, with d6(x)/dx
=5(x), one finds that the differential equation (2.31)
splits into three relations®
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2 1 n a (=1)"?
(o =+ ) ot s B == B2 W s 50,
- ( . (2.35a)
0 n a, (=1)y"
(s = 1+ 5) Pt 580 = = S Wo )00,
(2. 35b)
0 2
(5-1;— 5—;) KID(u,v;En)L:v:nal/Zo (2. 35¢)

The two differential equations (2. 35a,b) have the ad-
vantage that separable solutions can be found. The con-
dition (2. 35c) ensures that the delta function singularity
of 8°K,,/97% has unit magnitude as required by Eq.
(2.31). It should be emphasized that Egs. (2.353,b,¢)
and boundary conditions must be supplemented by the
orthogonality relation (2.32) in order to provide a
unique characterization of K,,. In the following we in-
dicate briefly how the closed expression for K, can be
rederived from the stand point of the differential equa-
tion.

Inhomogeneous terms of the form occurring in Eqgs.
(2. 35 a,b, c) can be generated by differentiation of the
homogeneous Whittaker’s equation for W, /2(nu/ k) and
Mes17200/k) with respect to the order k, followed by
substitution of #=#. Thus

[aWk;i /‘z(”u/k)/ak] ’ k=n

=[0Wa1/20)/3k] | yon = Gt/ IV, ,5()
and

(M3t 72000/R)/ 2k} | e
= [BMkn/z(U)/ak] lk:ﬂ - (U/")m"u/z(v)

obey the inhomogeneous equations

32 1 g (aW. u 1
_—— = B kil2 -2 W ——
<8u2 4 u) ben n mb/2 2n W

ok mid /2
(2. 36a)
and
92 1 » Mrit/2 v 1
Lok ; Ay ———
<av2 4 v) ( ok pen ’1/}1,,;1/2) 2nm"‘”2°
(2. 36b)

Comparison of Eqs. (2.36a,b) and Egs. (2. 35a,b) shows
that the function

nay (=1 aWas1/00m/k)
2 (n-1)! ok

/}7,‘;1/2(1))

R=n

obeys the inhomogeneous Eq. (2.35a) and the homoge-
neous form of Eq. (2.35b), while the function

=1 n-1 . k
n_%L((n_)l)x Wn;l/z(u) '————‘—a/nk'”;’:nv/ )

k=n

obeys the inhomogeneous Eq. (2.35b) and the homoge -
neous form of Eq. (2.35a). Addition of these two func-
tions therefore produces a simultaneous solution of both
inhomogeneous Eqs. (2.35a,b). But the sum of these
functions is just

-1 n-1
n_aé’“ §n_)1)! :_k (W12 00t/ R) M1 12010/ )] | e

a particular integral of Egs. (2.35a,b). The most gen-
eral solution of Egs. (2.35a,b) is then

2.37)
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1 1
Kp= m2l En—i)l ok [Wk;l/z(nu/k)/n kil /2(m)/k)] Ik:"
-1
+C n_gl g )1)1 Won s M 5,20, (2. 38)

which is just (2. 37) plus a general solution of the homo-
geneous Eqgs. (2.35a,b) obeying appropriate boundary
conditions. It is evident that the differential equation
has lead back to the original representation (2.1) of K,
modulo a solution of the homogeneous equation~—addi-
tional terms in Eq. (2.1) generated by the action of
3/0iv on factors outside both Whittaker functions are
proportional to W, ; )/, ,,(v) and are homogeneous
solutions as dema.nded by Eq. (2.38).

When we investigate the effect of imposing the further
condition (2. 35¢) on our solution (2. 38) we find that the
constant C drops out, and we encounter the relation

L @) O
udet

L, @) 0@

=y +u[L} L, @P+Q —vu)L"_l )0 )

which can be shown to be an identity by showing that the
derivatives of both sides are equal, and that both sides
agree for #=0. In order to show that the derivates are
equal, the differential equation (2.27) for () and the dif-
ferential equation of the Laguerre polynomials is re-
quired. Our general solution (2. 38) therefore obeys
condition (2. 35c), for any value of C,?®

The orthogonality relation (2. 32) will now be used to
fix the value of the constant C, whereby complete agree-
ment between Eqgs. (2.38) and (2.1) including the mag-
nitude of the homogeneous solution is achieved. The
integration region in Eq. (2. 32) is split up into two
parts O0< 7, <9 and 7, S¥, <+

forl dy?‘p:(rz)Km(zrl/n(ln ZTJnal': E)
+ [ dry,0¥(r)Ky, 27,/ nay, 271 /nayE,) =0.
71

The function K, ,(u,v;E,) is understood here, and the
relations « =27, /na;, v=2r _/na, have been taken into
account in arriving at this expression. For conve-
nience, we denote 27,/na, by u and 2,/na, by v in both
integrals obtaining

fvdue_" 2Ll K, (v, u; E,)
()

+ [* duePuL} (K, p(u, v;E,)=0

which is then rearranged in the form
Alv)=0, (2. 39)
where

A@) zf ® due™/*uL} (WK, (u, v;E)
4]

- [0 ® due/2u L}, (K, plu, v;E,) = Ky p (v, w3E )}

Equation (2. 39), which must hold identically in the
variable v, provides in alternate expression of the or-
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thogonality relation in terms of the variables « and ».
The function A(v) is here understood to be constructed
with the general solution (2. 38) of Eqs, (2.35a,b,c). It
will be shown that this function A(v) obeys the homo-
geneous Whittaker’s equation {5%/32% - 1 +n/v)Alp) =0,
for any value of C. Thus

%(.q_).: - due-u/ZuLl ( ) 0K, D(u v, E)
n-1 V4 ov
- fv due'“/ZuLi_l(u){aKln(tg)vvz En) _ aK]_n;z;) U, En)]’

[}

22A(v) c 3K, p(u, v, En)
—-5112— = due “/zuL:,_l (u) avZ

—fvdue'“/zuL1-1( )( (:,v £ Kl%(: a ")>

0

e/ 2L} (1) (aKln(uz_'UJ E,) - 9K p (W, u, En))
n-1 av ov

u=v

and

22 1 =

L _Z+%)a
(azﬁ 4 v) ®)

= due™2uL} | (u) (—82 - 1— +
n-1 av? 4
0

- J’ " due “/zuLl_l(u)[< -3

2 1 g
—(a—v-E - Z + ;) KlD(v’ u, E")]

- e'v/va:_l(U)(aKm(”! v, E,)

n
;) Km(u, v, E")

n
+ 1—}) Ky, v, E )

- KW, 1, EH))
av v

°

u=v

When this relation is simplified by use of Egs. (2. 35a,
b,c) [and Eqgs. (2.2a,b)]; the integral with variable

limit drops out due to a vanishing integrand and the other
terms simplify to

(ajzz n) Aw)

1
4
= [—;L—J due (L} () Pe/ 2L} (v)

0

nay
+ -—21 ev/2Ll | (v)

which vanishes identically, by virtue of the integral

f“"due"‘/2 L )=

It can be shown that in addition to the homogeneous
Whittaker’s equation the boundary condition A(0)=0 is
obeyed by A(v), again for any C. Now we wish to choose
C to make A(v) vanish identically. This can be achieved
by imposing the further boundary condition [3 A(v)/
9v]|,.0=0; since the trivial null solution is the only
solution of the homogeneous Whittaker’s equation obey -
ing both boundary conditions A(0)=0 and [0A(v)/20]],.,
=0. The problem of exploiting the orthogonality rela-
tion (2. 39) is thus reduced to the problem of exploiting
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the addition boundary condition (3 A(v)/3v]| _,=0. More
explicity, this boundary condition reads

J due™ul}  (u) —Km(—“;iLE—) =0 (2.40)

v=0
[o]

which proves to be adequate for the unique determination
of C, as required by the arguments above. When the
derivatives in Eq. (2. 38) are worked out using Egs,
(2.18) and (2, 22) then Eq. (2.38) goes over essentially
into the closed expression (2, 28) for K p except for the
coefficient of the term

Saye” 0 Py LY (W) LE ().

If one further applies Eq. (2.40), the equation

n Lwdue"‘uz[lf:.q(u)] (1nu+ o "2 E —+C)

2n NP
+n 7 due™ull () [ ()
4]

+ [ e L, FL -3 (0) +1.0) + 20(0) +0(0)]
-0 (2. 41)

results.
lations

[(0)=-1,

n ﬂ

The calculation is completed by use of the re-

0(0)=1,

1
-)—\ (2.42)

> | ’Ma

0'_@:1_"2

n r=1

R (2.43)

o

a1
[ de™uPlnul L ()P =2n* = n + 212 25 o =2
=1 (2.44)

and standard integrals involving Laguerre polynomials.

Equations (2.42), (2.43), and (2.44) are derived in

Appendix D, In order to evaluate the integral involving

/[ (u) it was necessary to rewrite the series (2.29) in-

troduced earlier for / (x) as®

- L:}_)L + ZLi_)\_1 -
A

n-x-2

[ (w)=2n i

r=1

~(n=2)L} , +(2n = 3)L}_, - (n-1)L}_, (2.45)

The integral involving / (x) can now be evaluated with
the use of the standard orthogonality and normalization
integrals®

Tlp+u+1)
-—”—n#———. (2.46)

f due *u* LMu)LE (u) = -

0
This result of this calculation is

} 1
°—2n‘z’,>\+y

A=

As mentioned earlier, this brings Eq. (2. 38) into
complete agreement with our earlier derivation.

APPENDIX A

Equation (2, 14) follows quite simply from the integral
representation®

1 o e
Li(z)= éﬁﬁ(ondle e ol
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(A1)

15692

Thus
__§ le -tz (1+t)ﬂ

l""
» (=1prrr = - —,fdte‘“ (1:1) ‘Z')( 0H*.
i1 " 2w =

Here 7, can be replaced by .1 since the high powers
of { in the additional terms remove the pole of the inte-

grand and give zero contribution after integration. Thus
- 1 A+ /1

7\—1"17‘:—— -tz ——

;jl( YL == g pte™ T -

n n-1

27 (< = L ; drete L0

Pl " 27i r

2 (DL, =L QED
APPENDIX B

Equations (2.16) and (2.17) will be derived here. The

integral representation (Al) is differentiated with re-
spect to u to give

oL* 1 1+ fys
—-{ww(lte‘” @rome In{1+)

Dn 2w el (B1)

Equations (2.16) or (2.17) are obtained from Eq. (B1)
according as In(1+¢) is expanded as

@ +)==3 (:i{)i B2)
or as
In(l+4)= <1+t>/7\' (B3)

As in Appendlx A only the first n terms of either sum
(B2) or (B3) contribute to the contour integral (B1). If
the truncated series are substituted into Eq. (B1) and
Eq. (Al) is used to identify the resulting integrals, the
following expansions of 3L%/ 9y are obtained:

aLY E (=1 lew (B4)
CTT Y
and
o n
z’;‘Lﬂ -5t 1 Ls (B5)

au_)\‘)\ n=x°

Here Eqgs. (B4) and (B5) arise from the use of the series
(B2) and (B3), respectively. Equation (B4) implies Eq.

{2.16) as a special case obtained for u-=-1, Substitu-
tion of w =-1 in Eq. (B5) gives
oL o, 1
n =27 - LY B6
BLL p=-1 =1 A ( )

This expression is further transformed by use of the
identity

-1 Z 1
Ly =- > L, ®B7)
p=1,

which is a special case of Eq. (2.10). Care must be
exercised in this use of Eq. (B7) since the \ =# term of
Eq. (B6) does not obey the p= 1 condition. Separation
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of the A ==» term and use of Eq. (B7) then converts Eq.
(B6) into Eq. (2.17). QED

APPENDIX C

The representations (2.24), (2.25), and (2.26) of 0 (z)
will be derived in this appendix, and the differential
equation (2. 27) will be verified. We begin with the rep-
resentations of (J(z). These representations are trans-
formed by introducing a new polynomial () (z) through

0=1+z0, (C1)

The integral representation

O(z) :fwdse-s L (s) - L}, (=)

s—2
follows from Eq. (2.24) if one replaces the coefficient
of L} ;(s) in the numerator by s=(s-z) +z and splits the
integral into a sum of two parts.® The desired repre-
sentations of () (z) will be established if it can be shown
that the integral (C2) for O(z) can be expanded in the

(C2)

forms
o)== 2 (‘lr Ltti-fz (—‘(f)— (C3)
<aln <-s= (_Z)D
(=1)1 [ oo )—— , (C4)
O(2)= o§</n P L:;-l - ;23 (n-l—p p! ]
and
oz) =~ 2, ' dggmi LY (¢2), (C5)

O<n

corresponding respectively to Eqs. (2,23), (2.25) and
2.26).

To transform the integral (C2) into the form (C3) we
begin by Taylor expanding the difference L}, (s) =L} ;(z)
in the integrand in ascending powers of s—z

L (s) - IRy ()= El boal £ 1240

(C6)

or
140 - Late)= Bls-ar S 220,

by Eq. (2.12). Each term of Eq. (CG) contains a factor
s—z, since A = 1. Therefore, when Eq. (C86) is substi-
tuted into Eq. (C2) one obtains simply

Ozfmdse'sil(s—z)""( =P L, (2)
A=l

;Z__i( -1 L4, (z)f dses __,( 01) (=z)0sM10

n=1

_ 5 1’ (@) 5 b

ey L TTh-1-0y] ("2rA-1-9)1,

or

-1 Al (Yo
- n S @ F e
[Zexe 0=0 ol
which is just Eq. (C3).
equivalent,

Thus, Egs. (C2) and (C3) are
To obtain the representation (C4) from the integral
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(C2) we begin by expanding the Laguerre polynomials in
the integrand using®?

n -7\
=% (LT )
o\2=-p/ p!
and reducing the ratios (s’=z”)/(s-z) according to
L 5 PN (c8)
§=2 0=0
p= 1 ) 2: 3’ ¢

Making these expansions and integrating term by term
gives the double series representation

(e 0=0

which can be written
A1)t & L
0=z BUS( v e
oren ? Z=2=p/ p:

by a change of summation indices from

(C9)

pand otopand x=p -0,

The p—sum in Eq. (C9) will be recognized as just the
truncated form of Li-1 which appears in Eq. (C4). This
establishes the equivalence of Eqs. (C2) and (C4).

In order to obtain the representation (C5) we extract
a factor s-z from the numerator L} (s)—L}_,(z) of the
integrand of Eq. (C2) by means of the device

L (s) = L y(2) ==L} ((1-€)s + £2) | {23
1
-- f 452 La((1 - s+ &2)

0

=— (s—z)fo1 d’;’Lf,_1((1 - E)s+ £z).

Thus

O=- [ dse's[‘ dELL5((1 - §)s + £2). (C10)
The identity®

Linzd(x4y) = 2 La(x)Lez, () (C11)

is used to split up the Laguerre polynomial in Eq. (C10)
into a sum of separable functions of s and z

O= -fwdse'sf at Z) LY, (1= g)s)Li(s2).

Now by Eq. (C7)
Jrdse Ly, ((1-0)s)

_ o _ ne2=) n—z —X [ (1 - E)]
=| dses Y
£ se Eo (n --2—>~-p) p!

_TEY p=2-x o
=2 () -
=[1-(1-g)]2

— gn-?. =2

Substitution of this value of the s integral into Eq. (C12)
and changing the summation index to A’ =» +1 gives Eq.
(Cs). QED
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As the final result of this appendix it will be verified
that (J(z) obeys the differential equation (2.27). In order
to do this, we first convert Eq. (2.27) into the equiva-
lent relation

dd, 0+@+2) £ 0+ (n+1)0

Ln-1 2L2 (C 13)

for O(z). It will be sufficient to show that O(z) obeys
Eq. (C13). This will be done by use of the integral re-
presentation (C2) of O(z). The derivative d0/dz is
computed by differentiating Eq. (C2) under the integral
sign. One of the terms of the intergrand produced by
this differentiation contains the factor 3/9z(s-z). This
factor is converted into a factor (-3/9s)(s~z)™" and then
the derivative 3/3s is removed from the denominator
(s=2)" by an integration by parts. This technique leads
to the relation

do o
dz —_Ja dses

L2i(s)-L2,(z) | L}.(2)-n
§—=2 F4

b

(C14)

(z)-n)/z being “surface” terms from
Also, the identities (2.12)

the last terms (L},
the integration by parts.
and®

- Lu+l

Lp= LW+« LY (C15)

were required. Applying this same technique to Eq.
(C14) leads to

42 w© 3 I
‘—?:j dse™s L——————"’l(s-—-————) Lya(2)
dz S=z
0]
+ n{n+1) ~ L2, (2) _ L (2)-n - L2 ,(z) )
z z* z
(C16)

For the differential equation zd0/dz and zd’0/dz* are
required. In computing these quantities using Eqgs.
(C14) and (C16) the nonsymmetric combinations zL2%3(s)
-zL%}(2) under the integral signs are encountered.
These are reduced by writing the coefficient of L%3(s)
as z=(z —s) +s and then splitting off the symmetric
parts sL?3(s) —zL%}(z). One then encounters the in-

el
tegrals®®

[=dsesLi,(s)=3nln+1).

0

[=dsesLi,(s)=n and
o

The results of these reductions are

a0 _ —fwdse's sLi (s)=2L2 (2) + L, (2)

z dz s=z
° (C17)
and
2 o LS - L3
z 9 ?:J dses 2 wal8)= 2L ()
dz s§s=2
4]
L2 ,(z) - Llu-1(z) -n. (C18)

- nz-x(z)‘ p
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The representations (C18), {two times) (C14), (C17),
and (z +1 times) (C2) are now combined to produce the
representation

‘; e +z) a9 +(n+1)O
= fwdse s—el_s—é{[sLﬁ_l(s) =(2+s)LE () + (e + 1)L (s)]

—[2L2,(2) = @ +2)L2 \(2) + (e + DL, (2)]}

1
~2L2 ,(z) + Loa)-n
z (C19)
of the left hand side of the differential equation (C13),
But the integral in Eq. (C19) vanishes by virtue of the
identity™”

ZLP* — (u +2)LE+ (n+y)LE =0 (C20)

and consequently Eq. (C19) goes over into the required
differential Eq. (C13).

APPENDIX D

Here Eqgs. (2.42), (2.43), and (2,44) will be derived.
Equation (2.42) follows from the representation (2. 29)

L@)=Lye) =2+ % ealdd s (-1 00)
of / (z). Thus

[O=12,0+2n T L2212 0110,

O0<a<n

But by Eq. (2.12) L' ;=~L%,and I} ,=~LZ .
by Eq. (C7)

(n=1)(n-2)
.

Also,
} (=),

This gives /(0) =2n=7,1/x -2 which implies Eq. (2.42)
when divided by n.

Li-s(o) =

In order toc obtain Eq. (2.43), we first note that (J(0)
= 0(0), because of Eq. (Cl). The representation (C5)
of O gives for O(0) the value

o0)=-5
:—il 1

1/
o A\ =]

1
dEE™ L, (0)
Q

__E
x=1 =2
& (n=2)=n
_;,1 —y
n=1 1
. x
a=1
a1
=n-nl =,
r=1 A

and this implies Eq. (2.43) when divided by #.

As the final result of this appendix, we obtain Eq.
(2.44). This is obtained from the standard integral®
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© +pu+1
f dueuP{LEG) P = @n+p +1) ﬁ’in—{*—) (01)
A !
by differentiation with respect to u. This differentiation
produces

1
f‘due"‘u“dlnu[L":(u)]z +f due™u oL Li(u)
0

0

— E’Q_JI_V‘LU+(2”+“+1) M\I/(n+u+l)

n! (D2)
in which the desired integral having the factor Inu in the
integrand appears. In the second integral of Eq. (D2)
the factor 8L%9u is expanded using Eq. (B5) and the
factor uL* is expanded as™

ult=Q@n+p + DL ~(m+p)Lli, ~(m+1)LE, (D3)
giving
j due ™ u***2L* (u) aL (u)
0
E (@n+p +1) f due i LE @)L ()
(n+u)f due*ut LY, ()L, ()
A= 1 X
5 2 | dueer L2, 00 L2, 60
5 , Queu u)LY, (u (D4)

in which orthogonality of the Laguerre polynomials
eliminates all terms except the A =1 term of the second
sum. This surviving term is evaluated with the help of
Eqg. (2.46). Thus

f due " y* 2L Hu) =2~ (D5)

0

oL¥ (u) M T+p+1) ]
ou n!

Equations (D2) and (D5) imply

f“’ due™u** Inu[ L)

0

°

=(@2n +1)—r—(-’—‘—“;ﬁ-1~) +@ntp +1)M—P—+1—)‘Il(n+p+1)

(DS6)
The desired integral (2.44) now follows as a special case
of Eq. (D6) obtained by setting 1 =1 and changing » into
n=1.

IQuantization in a large sphere would be required to give the
sum in Eq. (1.1) a meaning for the continuum states.
H, F. Hameka, J. Chem. Phys. 47, 2728 (1967); and
erratum in J, Chem. Phys. 48, 4810 (1968).

L. Hostler, Phys. Rev. 178, 126 (1969).

Yswierkowski and Suffczynski, Bull. Acad. Polon. Sei.
XXI 285 (1973).

L. Hostler, J, Math. Phys. 11, 2966 (1970), Eq. (9).

8], Meixner, Math, Z. 36, 677 (1933).

"The functions Wy, /, and /H,,,,I/z are Whittaker functions
as defined in Herbert Bucholz, Die Konfluente Hyper-
geometrische Function (Springer-Verlag, Berlin, 1953).
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fReference 3, Eq. (2.4).

*The function Kyplx,v;E,) in Eq. (1.6) is obtained by express-
ing Kyp(7,,7;E,) as a function of the two variables u = 2r,/
nay and v =2v,/na; instead of 7, and »,,

%Reference 7, p. 12, Eq. (7); and p. 22, Eq. (25a) together
with p. 21, Eq (24a)

"The identities 2I(2) =I'(1+2), [(z)T(1 -2)=n/sinnz
[Whittaker and Watson, A Course of Modevn Analysis
(Cambridge U, P., Cambridge, 1927), 4th. ed., pp. 237
and 239] have been used to write Eq, (1.11) in such a way
as to resolve all ambiguities due to expressions which as-
sumed an indeterminate form for k=%(n +1). Another identity,
(1/z) +¥(2) =4¥(1+2), needed in this connection is obtained
by differentiating hoth sides of the equation zI'(z) = I'(1+2)
and using the defining equation I'z)y(z) =dT(z)/dz (Whittaker
and Watson, p. 236).

2Reference 7, p. 13, Eq.
p. 23, Eq. (28a).

%See Ref. 11.

UReference 7, p. 46, Eq. (41b), and p. 47, (43b).

15Multiple derivatives of a product of two factors are ex~
panded by use of the identity

n
a - n\ df d*°g
dz" Vo) = Z;, (p) dz° dz'™°

in which(j) is the binomial coefficient.

Reference 7, p. 135, Eq. (2).

lReference 7, p. 136, Eq. (6¢).

18Reference 7, p. 136, Eq. (8).

BReference 7, p. 137, Eq. (10g).

208 quation (2. 14) is dertved in Appendix A,

“Bateman, Higher Transcendental Functions (McGraw-Hill,
New York, 1953), Vol. 1, p. 86, Eq. (16), withm =
n+l—A, u=~n-x, v—>n-1,

2Derivations will be found in Append1x C.

2To obtain this form a term zL?_, was reduced using Eq.
(2.12) and Ref, 7, p. 137, Eq. (10g) to give zL,,_z
= —z(d/dz)L,,_l(z) =—(n - I)Ln_l(z) +nLn_2(z)

HMReference 5, Eq. (17).

%The partial wave components g,(vy,7;E), 1=0,1,2,..., of
the three-dimensional Green’s function are defmed through
the partial wave expansion

(10) (with the upper sign), and

Gyplryry;E) = zZ:) TP 1(cosb)g;(ry,7;E).

For the Coulomb Green’s function
17y, v E) = = ivay(rgr )= 1T (1 +] - W)Wipet /20 (2¥5/ivay)
X miu;1/2+l(2y>/iva1) .
For 1=0, the S-wave component, this is seen to agree with
Eq. (1. 5) aside from the factor (vgry)-l,
26Reference 2, Egs. (97) of the erratum.

2"The rlght-hand sides of Egs. (2.35a,b) have been rewritten
using

expl—(ry+7 ) /nay }(272/na1)(Zrl/nai)n‘iLrl,_i(Z'rz/naI)L},_i (27(/nay)

=expl~ (ry+v)/na(2ry/na) (2vy/nan='LL (2ry/nay)

X L,il_i(27</na1) s

which follows from the symmetry of the expression on the
left hand side under interchange of v, and »;, and Eqs.
(2.2a,b).

BTherefore, the differential Egs. (2.35a,b) together with
appropriate boundary conditions and the orthogonality rela~
tions already uniquely determine K, p(u,v;E,).

29Equation (2.10) was used to r-ewriteL as

-1
[=Liy-2+2m 3 “EB2 ozl -1,
tn A

Equation (2.45) was obtained from this expression by
repeated use of the identity LE=Lg*1— L& [Ref. 7, p. 136,
Eq. (8) combined with p. 137, Eq. (10d)].

PReference 7, p. 136, Eq. (9).

HReference 7, p. 135, Eq. (2).

$2The integral f‘(’,°dse“9L1 1(s)=1,7=1,2,3,..., is required.
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This integral may be established for example, by writing it
as

0 0
—/ dse™s g—%‘s(i) =—e™SLYs)
o

and using Eq. (2,46).
BReference 7, p. 135, Eq. (1),
%Reference 7, p, 142, Eq. (17).
¥See Ref, 29,
%A special case of Eq. (C11) gives

(n—}d—m—l) Lg(s);

o

—/; dse~LYs)LYs)
0

Mgy = 0 mel(g) = 3
L (s)_:L_“{)Lh(s)z,,,_xm)»§J n—1

the integral

© n P
’A‘ dse~*L7(s) = Z\a (n —:‘lt’: - 1)[ dse™LY(s)L{(s)
*
0

1596 J. Math. Phys., Vol. 16, No. 8, August 1975

()

now follows from Eq. (2.46), Substitution of m=2 or 3
and » —n — 1 gives the special cases of this integral cited in
the text,

S'Reference 7, p. 137, Eq. (10a).

38gquation (D1) is obtained by splitting the integrand into the
product e™u*L ¥ times uL}, The second factor is expanded
as [Ref. 7, p. 137, Eq. (10h)]

uLl=(2n+pu+ 1)L}~ m+ WL — (n+1)L5,

and then Eq. (2.46) is used.
¥See Ref, 38,
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Continuous subgroups of the fundamental groups of physics. I.
General method and the Poincaré group *
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We present a general method for reducing the problem of finding all continuous subgroups of a given Lie group

G with a nontrivial invariant subgroup N, to that of classifying the subgroups of N and the subgroups of the factor
group G/ N. The method is applied to classify all continuous subgroups of the Poincaré group (PG) and of the
Lorentz group extended by dilatations [the homogeneous similitude group (HSG)]. Lists of representatives of each
conjugacy class of subalgebras of the Lie algebras of the groups PG and HSG are given in the form of tables.

. INTRODUCTION

The present article is the first in a series devoted to
a study of the subgroup structure of the fundamental
groups of physics. In this first installment we present
a general method for classifying all continuous sub-
groups of any Lie group that has a nontrivial continuous
invariant subgroup. We then apply the method to find
all classes of continuous subgroups of the Poincaré
group PG (the inhomogeneous Lorentz group) with re-
spect to conjugation under the Poincaré group itself
(i. e., with respect to inner automorphisms of the
Poincaré group).

Part 2 of this series is appearing simultaneously
and is devoted to a classification of all continuous
subgroups of the similitude group of space—time, i.e.,
the Poincaré group extended by dilatations. 1 Articles
in preparation will deal with the de Sitter groups, the
conformal group of space—time and other groups of
interest, This series was preceded by two related arti-
cles. In the first? we developed a method for construct-
ing all maximal solvable subgroups of an arbitrary
semisimple Lie group and applied it to construct all
maximal solvable subgroups of SU(p, qg). In the same
paper we found all continuous subgroups of SU(2,1). All
maximal solvable subgroups for the groups SO(p, q)
were obtained in a separate article.®

The importance of studying the subgroup structure
of a given group has been discussed previously. »® Let
us just mention several points here.

1. There exists a direct connection between group
representation theory for a given group and its subgroup
structure. On one hand, this connection is provided by
the theory of induced representations, where different
subgroups can be used to induce representations of a
group. ! On the other hand, chains of subgroups will pro-
vide us with bases for group representations. Indeed,
each chain of continuous subgroups provides us with a
chain of subalgebras of the corresponding Lie algebra,
Let us restrict ourselves to algebras whose enveloping
algebras have nontrivial centers, i.e., to algebras that
have Casimir operators. We can then define bases for
representations of the group as the common eigenfunc-
tions of a complete set of commuting operators, con-
sisting of the Casimir operators of all the algebras in a
definite chain of subalgebras (which we may have to sup-
plement by some further operators). Each nonconjugate
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chain of subgroups thus provides us with a different
basis. For physical applications one usually needs a
definite and specific basis, rather than just an abstract
one, Different bases will in general lead to quite differ-
ent applications, in particular, to different expansions
of physical quantities, like scattering amplitudes and
form factors. Indeed, when the basis functions are
realized in definite representation spaces we find that
different bases correspond to different special functions.
Let us mention that discrete subgroups of Lie groups
are also of very definite interest in this connection. In-
deed, bases for the representations of Lie groups, pre-
viously called “nonsubgroup bases,” have numerous ap-
plications. ® The basis functions in this case are eigen-
functions of certain operators, not related to any Lie
subgroup, which may however be invariants of certain
discrete subgroups. For a discussion of expansions of
scattering amplitudes in terms of representations of the
Lorentz and Galilei groups and in particular of the role
of different subgroup and nonsubgroup bases we refer to
a recent review. ®

2. Most symmetries of interest in physics are broken,
e.g., by the presence of symmetry breaking interac-
tions or boundary conditions. The symmetry breaking
often reduces the symmetry group to one of its sub-
groups. A classification of subgroups thus provides a
classification of possible symmetry breakings.

3. Different subgroups of a given group correspond
to different Lie subalgebras whose generators can be
identified with certain physical observables. A classi-
fication of the Lie subalgebras thus provides us with a
list of different possible sets of observables for a
given system. Different observables clearly corre-
spond to different possible physical situations, e.g.,
to different possible measurements performed on the
system (e.g., angular momentum versus linear
momentum).

The above considerations are valid for any group
figuring in physics (or elsewhere) but are particularly
true for any group reflecting the fundamental proper-
ties of space—time. Such are the Galilei group for non-
relativistic physics, the Poincaré group in the relativ-
istic case, the de Sitter groups for curved universes
and also the similitude group and conformal group of
space—time,.
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The present article is devoted to the Poincaré group,
all other groups mentioned above will be the subject of
subsequent publications. The importance of the
Poincaré group, underlying the whole kinematics of
any relativistic theory, is obvious.

In addition to the points listed above for arbitrary
Lie groups, the subgroups of the Poincaré group are of
interest for further reasons. Thus:

1. An elementary physical system is conventionally
defined to be a system whose state vector transforms
according to an irreducible unitary representation of
the Poincaré group. ! This refers to an isolated system
in vacuum. If we wish to discuss elementary systems
(particles) in external fields that break the homogeneity
and isotropy of space—time, then it seems natural to
consider the largest subgroup of the Poincaré group
that leaves the external field invariant and use its
unitary irreducible representations to define elementary
particles.

2. A related problem arises when formulating rela-
tivistic equations for particles in external fields (e.g.,
generalizations of the Bargmamn-Wigner8 equations).
The equations involving the fields will no longer be
Poincaré invariant, they may however be invariant with
respect to various subgroups of the Poincaré group.
The use of the corresponding integrals of motion will
simplify the treatment of these equations and the rep-
resentation theory of the corresponding group will pro-
vide properties of their solutions.

3. When developing elementary particle dynamics,
e.g., two particle interactions, it sometimes proves
to be fruitful to give up relativistic covariance (i. e.,
an over-all Minkowski space—time viewpoint) and to
proceed in specific frames of reference. This in turn
may lead to the use of different subgroups of the
Poincaré group. In particular, the infinite momentum
frame®!® or Dirac’s “front form” of dynamics!! lead to
an eight-parameter subgroup of the Poincaré group and
to “Galilean subdynamics. %13

4. The subgroups of the Poincaré group will have
applications even in classical physics. Indeed, the
Maxwell equations of classical electrodynamics are
Poincaré invariant (in vacuum) and as a matter of fact
they are even conformally invariant. A classification
of subgroups again provides us with a classification of
external fields (classical electromagnetic fields) that
can be infroduced into the Maxwell equations to describe
various physical situations.

In Sec. 2 of this paper we present a general algorithm
for classifying the subalgebras of a Lie algebra L with
a nontrivial ideal N into conjugacy classes with respect
to a group of automorphisms A. Two interesting special
cases are treated separately in greater detail. One is
the case when the ideal N is Abelian and the algebra L
splits over N, the second is that when L is the algebraic
sum of two Lie algebras L=L,;® L,. The results of Sec.
2 are applied in Sec. 3 to obtain all conjugacy classes
of subalgebras of P, the Lie algebra of the Poincaré
group, with respect to transformations of the Poincaré
group itself, In Sec. 4 we provide another application
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of the results of Sec. 2, namely we use the Lie—Goursat
method to classify all subalgebras of D® LSL(2, C),

i. e., the Lie algebra of the homogeneous Lorentz group,
extended by dilatations.

Section 5 contains our conclusions and future out-~
look, as well as some comments on related papers
that recently came to our attention, 1% 15

2. GENERAL METHOD FOR CLASSIFYING THE
SUBALGEBRAS OF LIE ALGEBRAS WITH
NONTRIVIAL IDEALS

A. Introductory comments

In this section we develop a general method for
classifying the subalgebras of a Lie algebra L of finite
dimension d(L) =dim,L over a field k. We consider the
case when L has a nontrivial ideal N of dimension d(N)
=dim,N [0 <d(N) <d(L)]. Our aim is to reduce the prob-
lem of finding all conjugacy classes of subalgebras of
L (conjugacy under some group of automorphisms A) to
that of classifying the subalgebras of the ideal N and of
the factor algebra F=L/N under related groups of
automorphisms.

The task can be conveniently linearized if the ideal
N is Abelian, It becomes particularly simple if L splits
over N, that is there exists a representative subalge-
bra F such that FNN=0and F + N=L. Note that this is
precisely the case which we encounter when considering
the algebra of the Poincaré group, since it is the semi-
direct product of the homogeneous Lorentz group O(3, 1)
[locally isomorphic to SL(2, C)] and the four-dimensional
Abelian group of translations T4. Thus in this case N is
the algebra LT, of translations, F is the algebra
LO(3,1), and A is the inner automorphism group of P.
The required list of conjugacy classes of subalgebras
of LO(3,1) under transformations by 0(3,1) is known!®17
and we shall make full use of it in the next section. The
conjugacy classes of subalgebras of LT, under PG are
easy to find, hence an algorithm reducing the problem
for the Poincaré algebra P to that of LO(3,1) and LT,
would clearly be of use,

In part B of this section we present an algorithm
solving our classification problem in the simplest case,
i, e., when N is Abelian and F N N=0 (up to conjugacy
under A)., We also restrict ourselves to the case when
A is the group of inner automorphisms of the consid-
ered algebra L, i.e., A=G=expL is the Lie group
generated by the algebra L. The algorithm makes use
of cohomology theory but is presented in a directly usa-
ble manner, i.e., as a “kitchen recipe, ” operative for
physicists interested in the subalgebra structure of a
specific algebra.

In part C we formulate the algorithm more general-
ly, considering the ideal N to be not necessarily Abelian
and the algebra L not necessarily splitting over N, and
prove that the algorithm does actually provide us with a
complete list of representatives of all mutually noncon-
jugate classes of subalgebras of L, The important spe-
cial case of invariant algebraic sums of Lie algebras is
treated in part D and leads to a Lie—Goursat type '*-2°
classification method.
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B. Algorithm for classifying the subalgebras of a Lie
algebra with an Abelian ideal

Consider a Lie algebra L of finite dimension d(L)
over a field # with an Abelian ideal N of dimension d(N)
satisfying 0 <d(N) <d(L). Consider the factor algebra
F=L/N and assume that a representative subalgebra
F of L exists such that

FnN=0, L=F+N. 1)

Consider also a group A of automorphisms of L over
k leaving N invariant and containing all automorphisms
of the form

explad(@)]: L~ L, (re N),
explad(n)](X)=X+[n,X], X e L).

(2)

Note that the set exp[ad(N)] of all special automorphisms
exp{ad(n)] with » in N is an Abelian normal subgroup of
A. If k is the real number field then those automor-
phisms are the traditional inner automorphisms asso-
ciated with the elements of N,

We wish to provide a representative list S(L, N, 4)
of A-conjugacy classes of k-subalgebras of L. Since all
automorphisms in A leave N invariant the action of A
induces an automorphism group 4 =wA of F according
to the homorphism

w : A — Aut,(F)
walx/N)=a(x)/N (a€A,xcL)

®)

of A into the automorphism group of F over k.

Step 1: Find all conjugacy classes of subalgebras of
the algebra F under conjugation by the group A and
choose a representative algebra of each class. Label
these subalgebras F; (i=0,1,...,p) with F;=F and
F,=0. Further consider each algebra F,; separately.
For each F; find F the representative subalgebra
contained in F and 1ts normalizer in the group A4, i.e.,
the subgroup Nor +F; of A leaving F, invariant. If £ is
the real field the Lie algebra LNor, F, of Nor, F,;
satisfies

[LNor, F;, F;1< Fy; {4a)
in fact,
LNor,F; =Nor,F; ={x|xe L, [x, F;]C Fi}. (4b)

It must however be remembered that the normalizer
of F; in A may also contain additional discrete elements
not obtained by exponentiating LNor,F;.

Any k-subalgebra S of L determines the subalgebra
(S+N)/N of F. _’I_‘here exists an element a of A such that
wa[(S+N)/N]=

F; is a member of the representative
lists S(F,0 A) uniquely determined by S.

Before describing the remaining steps of the recipe
it is necessary to point out that our problem leads to
the execution of a number of computational cycles.

We want to find a list of A-conjugacy classes of the
k-subalgebras S of L for which it was already stipu-
lated that (S+N)/N is one of the F;’s. We observe that
SN N is an Abelian ideal of S, invariant under the action
of F;, which under the action of Nor, F; may be trans-
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formed into a privileged position without changing the
previous stipulation (Step 2 below).

Having fixed SN N, it is now clear that S will be found
as a subalgebra of F ; +N and that the remaining task is
to pick out a representative set of conjugacy classes
under the group A* =Nor ,(F;) N Nor,(SN N) acting on
F,- + N, 1t is to our advantage, computationally, to take
factor algebras over SN N.

Thus the scene of action became

L=(F;+N)/SNN (5a)
with the Abelian ideal

N=N/SNN (5b)
and the representative subalgebra

F,=(F,+SnN)/SNN, (5¢)

isomorphic to F;.

The group under consideration is the group A of all
automorphisms & of L that are induced by the action of
the elements & of Nor,(F;) N Nor,(SM N). The task is
to determine a representative set R(L N, A) of the A-
conjugacy classes of k-subalgebras

S=8/SNN 6)

of L representing L/N F;. Note that A contains all
automorphisms of the form exp[ad(z)] with 7% in N.

At this point it is clear that this task has to be per-
formed many times over (“there are many algorithmic
cycles to go through”), depending on the choice of F;
and the fixation of SN N. However, in explaining the in-
dividual task we avail ourselves of the initial notation
of Sec. 2. Thus we change L to L, N to N, Ato A.

Step 2: For each subalgebra F; find all invariant sub-
spaces in N, i.e., all subspaces N, satisfying

[FhNia]gNia' (7)

Classify all N,, into conjugacy classes under Nor,F;
and choose one representative N;, of each conjugacy
class. Each such representative provides us with a
subalgebra of L that is a “split extension” of N, by F;:
F +N;

ta’

F,CF, N,CN, (8)

In this manner we obtain a representative set of all
split extensions for all F; under A-conjugacy, i.e., all
subalgebras of L that can be written in the form (8).

Step 3 will consist of finding all nontrivial splits of
L, i.e., algebras for which a basis can be chosen in
the form

B, +; CriXy, ? d,; X, (9)

where ¢,; €k and d,; € k are fixed constants (not all
zeros) which cannot be transformed simultaneously
into zero by an element of A, To ensure that the gen-
erators (9) form a Lie algebra the additional terms

2. ¢pX; must form 1-cocycles of cohomology theory.
Among these there are certain trivial cocycles, called
coboundaries which are the ones that can be trans-
formed away by the group exp(adN), These should be
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used to simplify (9). To do that one proceeds as
follows.

Step 3: Re;present the algebra F on the space N by the
matrices (8};) defined by

[Bi9Xa] :Zb> B:.leb’ (10)
where

{BI,BZ,”'rBd(F)} (11)
is a basis chosen in F and

{XI,XZ’---;Xd(N)} (12)
is a basis chosen in N, Obviously one has

(6, 8%1=21 £ 87, (13)

where f}, are the structure constants of F, i.e.
[By, B} =3, /4B,

For each B; define a 1-cocycle as a vector in N with
components c¢;; in the chosen basis

¥(B;) :?/ € X

b

(14)

The components ¢;; must satisfy a set of linear homo-
geneous equations obtained from the conditions

Y{(Bi, Bi) = B'y(By) ~ B*v(B)) =23 fl,v(B,). (15)

Find first the coboundaries 3(B;)=[B;, X] for some X
of N which happen to solve (15) in a trivial manner. We
use the following equation for the components d;, of the
basic coboundaries:

a“’)(Bi):[Bi,Xk]:? Bi; X, =22 dl X; [k=1,2,...,dW)].
(16)

Forming linear combinations X=3, x,X,, we find the
components of the vector 3(B;) [for eachi=1,2,...,d(F)
from

2B =2 diyX; =24 xkg) & X;. an
Since Egs. (15) for c;, are linear homogeneous and
since also d;; are solutions of (15), the numbers

c,.,.@) xpdb; (18)

will also be solutions for arbitrary choice of x, in (18).
We use this freedom to simplify Egs. (15), e.g., by
requiring that as few as possible of the basic solutions
of (15) together with the 1-coboundaries span all co-
cycles over k.

This is done, e.g., by producing an adapted k-basis
Y, Yy, ..., Y3 of N as follows.

Seek out the first nonzero 1-coboundary among the
9%’ 5 say avy=0%t’ with

Yi=X;, Y,=X,4q, 0Y,=0 (1<k<i).

i (19)
Thus 3Y,(B,)#0, say d;f #0. Replace the subsequent

1-coboundaries 2%’ by 2Y,, where

!
Y, =X, - %1 X, [i<k=d®)). (20)

iRy

For the new k-basis Yy, Y,, ..
commutation rules

., Y3 of N we have new
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1
[Bis Yk]:E dié Yll’
such that we have the zero components

o . <
At =0 if1<k<d(®),

@1)

but
134 B
djlki#:o, ]1:1.

Now continue if possible in the same manner to simplify
Yo, ooy Yamy.

In the end we will find a new k-basis Yy,..., Y, of
N such that the structure constants of (21) satisfy

s

1:
v, * 0, d,-ﬁjzo if k<i<d(N), 1<j <7,

di,=0 it r<j<dN) [i=1,2,...,dN)]. (22)
Then 8Yy,...,3Y, form a k-basis of 1-coboundary
space, With this simplification of the 1-coboundaries we
obtain the required additional solution basis of (15) by

imposing the condition

€1, =0 (1=j=7) (23)
in addition to (15) on the ¢;;. Examples are shown in
Sec. 3.

Thus, Step 3 consists of finding a k-basis of the 1-
cocycles y(B,), B, < F modulo the linear space of the
1-coboundaries of F acting on N, So far we took into
consideration only the transformation action by the ele-
ments of exp(adN).

Step 4: I the algebra F; has any outer automor-
phisms (i. e., Nor,F; properly contains expF;) use
them to further simplify the generators (9).

In the case of the real number field £ =R the group A
has a natural topology so that the component of 1, forms
a normal subgroup A; of A. In the applications we are
confined to the case that A is a closed subgroup of the
full group of automorphisms of L over K. In that case
A, happens to be a continuous Lie group with infinitesi-
mal ring LA, and the transformation effect of A; on the
1-cocycles can be described totally by the action of LA;.
Even though in the Poincaré group case the ensuing
linearization of the search for the A-equivalence classes
was never used it should be pointed out for further
applications.

Firstly, let us observe that LA is a subalgebra of
the R-derivation algebra Der, L of L. Then for every
element D of LA, we have

D{x +v)=D{(x) + D(y),
D{xx) = D(x), (24)
D((x,y)) =[D(x),y]+[x, D()],

where v, y€ L, A€ R. Also, D(N)C N because of the
invariance of N under A.

We associate with D the 1-cocycle D, of F; acting on
N defined by
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D,(B) =y(D(B)) - D(y(B)). (25)

The 1-cocycle properties of D, can be directly verified
by lengthy computations. The mapping v on D, defines
a linear transformation AD of the linear space C'(F, N)
of all 1-cocycles of F; acting on N, It leaves invariant
the linear subspace B’(F;, N) = 9N of all 1-coboundaries
of F; acting on N. The mapping A of LA, into
Endz[C’(F;, N)] is a representation in the Lie theoreti-
cal sense,

Using the exponential function we obtain a represen-
tation ¥ of A, acting on C’(F,, N) via the rule

Y(expD)(y) =exp(AD)(y)
which, due to the fact that
Aq=(exp(LA),

permits an accounting for the transformation effect of
A; on the factor algebra

H'(F,, N) = C'(F;, N)/B’ (F;, N)

completely in terms of the representation A of LA,
with C’(F;, N) as representation space. It is now only

a question of forming the orbits of A; acting on H'(F;, N)
and representing each orbit by a single element.

In the applications the discrete factor groups A/4,
will always be finite and one gauges the effect of this
factor group by a careful case for case discussion.

C. The classification of subalgebras of Lie algebras with
proper nonzero ideals

Consider the following situation, Let a Lie algebra
L of finite dimension d(L) over a field k2, an ideal N of
L such that N is a linear space of dimension d(N) over
k satisfying the inequalities 0 <d(N) <d(L) and a group
A of automorphisms of L over k that leave N invariant
be given, It is clear that also in this case there is the
homomorphism

w 1A — Aut, (F),
wa(x/N) = a(x)/N

of A into the automorphism group of the factor algebra
F=L/N

over k.

Speaking in more general terms than we did in part
B we ask which advantage we can draw from the know-
ledge of the behavior of F under wG=G and from N
under G/N for the task of establishing a representative
list S(L, N, G) of the G-equivalence classes of k-sub-
algebras of L.

Initially we apply the same 3 steps as in part B,

Step 1: Find a list S(F,0, G) of the G-equivalence
classes of £-subalgebras of F. For each member F;

of S(F,0,G) find the normalizer
Nor,(F))={a|ac A & wa(F,)=F}
of F;in A,

Step 2: For each member F, of S(F,0, G) find a rep-
resentative set S(V, 0, Nor, (F,)/N) of the Nor, (F,)-
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equivalence classes of k~subalgebras of N. Delete from
the list all those members for which the normalizer in
L does not cover Fy. This is safe because the deleted
members could not serve as SN N in the case S/N=F,.
There remains the sublist S(N,0,Nor, (F,)/N, F,) of all
members X of S(N,0,Nor,(F,)/N) with the property that
the normalizer

Nor (X ={x|xe L & [x,S]C S}
covers F; so that
(X +N)/N2F,.
Hence the k-subalgebra
Norg, (X) ={x |x € Nor,(X) & x/Ne F;}
of Nor ,(X) satisfies the condition that
(Norp, (X) + N|/N=F,.

It follows that Norp, (X)N N is a k-ideal of Norg, (X) with
factor algebra isomorphic to F;.

Delete from the list S(N, 0, Nor,(F,)/N, F;) all mem-
bers X for which the Lie algebra NorFi (X) does not split
over the ideal NorF (X)N N. This is safe because the
deleted members could not serve as SN N such that S/N
= F;. There remains the sublist R(N,0, Nor, (F,)/N, F,),
consisting of representatives X of those Nor, (F,)-equi—
valence classes of k-subalgebras of N for which

(a) (Nor,(X)+N)/N2 F;,

(b) NorFi (X) contains a k-subalgebra R(X, N, F;)
satisfying the conditions

R(X,N, F;)N

R(X,N, F;)+ (NorFi(X) N N) =Norpg, (X).

Step 3: For each member X of R(N,0,Nor, (F,)/N, F,)
form the Lie algebras

L= Norp, x)/X,
N=LnnN/x,

F=L/N,

F=[R(X,N, F})+X|/X

N=0,

and the group A of all automorphisms & of L of the
form

a(y/X)=a(y)/X,
[yeL,acNor,(X)n Nor 5, (X)].

We observe that each member of Ais a k- linear
automorphism of L leaving invariant the k-ideal N of
L and that F is a representative subalgebra of L
modulo N so that the splitting conditions are satisfied

FniN=0, F+N=L,

There remains the task of establishing a representa-
tive list R(L N, A) of the A-conjugacy classes of k-
subalgebras of L that form a representative subalgebra
of L _modulo N. If that task is solved then to each mem-
ber S of R(L, N, A) there corresponds in one-to-one
fashion the k-subalgebra

S={x|xeL &x/XxcS}
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such that the $’s for all X’s and all F;’s together are
compiled into the desired list S(L, N, A).

_ Changing notations as previously from £ to L, N to N,
Fto F, A to A we have the initial situation of this sec-
tion with the additional information that L is a splitting
extension of N so that there is given a k-subalgebra F
of L for which

FNN=0, F+N=L.

The initial task is reduced to the less demanding task
of establishing a representative list R(L, N, A) of the
A-equivalence classes of all k~subalgebras S of L for
which

SNN=0, S+N=L.

Again as in part B, we observe that the elements of S
are of the form

B+y(B) (BcF)

such that y is characterized as a k-linear mapping y of
B in N subject to the additional conditions

v((B,B')) =B,y (B")] - [B’, y(B)] + [¥(B), y(B")]
(B,B' € F). (26)

Again, a k-linear mapping y of B in N satisfying (26)
may be called a 1-cocycle of F acting on the k-ideal
N of L via Lie multiplication. However, due to the ad-
ditional term [y(B), ¥(B')] on the right-hand side of (26)
the system of equations (26) for the 1-cocycle is not
necessarily linear homogeneous so that the set CY(F,N)
of all 1-cocycles of F acting on N may not be a linear
space over k. Also, in general, we will not have a nice-
ly behaved linear subspace of 1-coboundaries so that
the discussion of Ci(f, N) and the orbits of A acting on
CY(F,N) requires new tools (e.g., of algebraic geom-
etry in case A is an algebraic group) for its successful
treatment.

We abandon the discussion of the most general prob-
lem and ask instead the obvious question: Which further
advantage can we draw from the existence of a nonzero
ideal Nj of L that is properly contained in N and invari-
ant under A, for the purpose of establishing the list
S(L, N, A), provided we have all the required informa-
tion for L/Nj.

It is clear that S(L, Ny, A) serves in the capacity of
S(L, N, A), since in fact the only connection of N with
the problem of finding S(L, N, A) is the condition that
N be invariant under A.

In order to carry out Step 1 for the task S(L, N, A) we
need to establish

S(L/N, N/Ny, wA),
where wy is the homomorphism
wy 1A= Aut,(L/N,)
wialy/Ny) =alx)/N; (a€A,xcl).

For example, in the case that N, =[N, N|=DN, the task
of establishing S(L/Nj, N/N1, w;A) essentially is solved
by the methods explained in part B where a small modi-
fication will be needed only in case w;A would not con-
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tain all automorphisms of L/N; of the type exp[ad(n)]
with 7 in N/N,.

Similarly, in the case that
[N17 ‘VII = 0)

i.e., that Ny is a nonzero Abelian A-invariant ideal of

L properly contained in N, the task of establishing
S(L,N,,A) is solved by the methods of part B provided
we can carry out Step 1 which is tantamount to establish-
ing S(L/Ny, N/N;, N, A).

There remains the discussion of the case that Nis a
perfect ideal of L which does not contain any nonzero
Abelian ideal of L.

Over fields of reference of characteristic 0 it is
known that the radical ideal R(N) of an ideal N of a
finite-dimensional Lie algebra L always is again an
ideal. In other words there only remains to discuss
the case that

0=R(N)C N=[N,N]<L,

i.e., N is a semisimple ideal of L. It is known that in
this case (for characteristic 0) there holds the
decomposition

L=NYZ,(N)
of L into the direct sum of N and the centralizer
Z, N ={x|xeL & [x,N]=0}

Clearly, both N and Z;(N) are invariant under 4. Then
we have a special case of the Lie—Goursat problem
which we deal with in its general form below in part D.

D. The Lie-Goursat classification method for the
subalgebras of albegraic sums of Lie algebras

The Goursat problem!? is that of establishing a list of
representatives S(Gy, G, A) of the classes of A-conju-
gate subgroups of the direct product G{® G, of two
groups. The conjugacy is considered with respect to a
given group A of automorphisms of G;®G,, leaving each
factor G, and G, in the direct product invariant. It is
assumed that the corresponding subgroup classification
problem has already been solved for the groups G,
and G,.

Correspondingly, the Lie—Goursat problem is that of
establishing a representative list S(L,, L,, 4) of the
classes of A-conjugate k-subalgebras of the algebraic
sum L=L{® L, of two Lie algebras L, and L, over the
field k. Here A is a group of automorphisms of L over
%, leaving L, and L, invariant. We wish to reduce the
problem to well-defined classification problems for sub-
algebras of L; and L, and their factor algebras.

We use the Goursat lemma for quasirings. We recall
that a quasiring is a system with two binary operations,
addition and multiplication, such that the system is a
module under addition and the multiplication is distribu-
tive on both sides. If L, and L, are both quasirings then
L,® L, is defined as the set of all symbols a; D a,

(a; € L;, i=1,2) with “componentwise” operational rules:

a, Pay=b Dby a;=b, i-1,2,
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a; ®a, + by ®by={ay + b)) D (@, +by), @7
(01 B az)(bi 5] bz) = a1b1 b azbz
{a;, by Ly, i=1,2),
Note that the mappings
nyiLly = Ly ® Ly,
n@) =a;®0;  1y(a,)=0@ay , (28)
(ai ELiri:I’ 2)
are monomorphisms with ideals as images such that
L,®L,~=n,L,+n,L, and that the converse of this state-
ment holds as well., Usually L; and n;L; are identified.
We shall abbreviate the words “subquasiring” to
“subring” and “factor quasiring” to “factor ring,” Now

let L,® L, be the algebraic sum of two quasirings L,
and L,. We have:

(a) For every subring S of L;® L, there exist the
ideals SN Ly, SN L, and their direct sum SN L;® SN L,,
which is also an ideal of S. The projection
homomorphisms

6;S— L,

0x =(x+Ly)N Ly, Ox=(+L)NL, (29)

of Sinto L;(=1,2), such that SN L; is an ideal of
6,S (=1, 2) and that we have a Goursat isomorphism
of 6,5,/SNL,on 8,5,/SNL, (xc8).

(b) Conversely, given two subrings S; of L; (1=1,2)
and ideals N; of S; and an isomorphism o of the factor
ring S;/N; onto the factor ring S,/N,, then there exists
the subring S={x,®x,1x,€8,, 5,8, and o(x,/N,)=x,/
N,}of L,® L,, such that

6;S=S;, SNL;=N; (i=1,2).

Proof: (a) All that needs to be shown is the existence
of the Goursat isomorphism (also called the Goursat
twist). For this purpose we observe that the
congruence

fyx= 61y (modSnN Ly).
implies an equation
x=y+u withucSN L,
so that
x+Li=y+u+L=y+Ly,
Bpx=(x+L)NLy=(y+L{)N L,=0yy.
We hence have the onte mapping
0:0,8/S0 Ly~ 6,5/SN L,
0(01x/SN L) =0,x/SN Ly (x<S).

(30)

Since both 8, and 6, preserve addition and multiplica~
tion, the same is true for 0. The kernel of the epi-
morphism ¢ consists of all cosets 8x/SN L, {x < 5) for
which 6yx belongs to SN L,. In other words

x = 0yx + Byx,
bxcl; (-1,2),
Oox € SN L.
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This implies that 6;x =x — 8,x belongs to S. Hence
6,x € SN Ly, 6,x/SN Ly=0. Thus the isomorphism prop-
erty of 0 is established.

(b) For the converse we must verify the subring
property of S which is straightforward because o pre-
serves addition and multiplication.

We thus obtain the following algorithmic solution of
the Lie—Goursat problem (we use the same notations
as in the beginning of this section).

Step 1: Establish a representative list S(L,,0,4/L,)
of the A-conjugacy classes of k-subalgebras of L, and
their normalizers in A.

Step 2: For each member S, of S(L,,0,A4/L,) estab-
lish a representative list S(L,,0,Nor S,,/L,). For each
S, of S(L,,0,Nor,S,,/L,) find the normalizer

Nor ,(S;; @ S;) = Nor 4 (Sy;) N Nor 4(S,).

Step 3: For given S;; and S, establish a representa-
tive list S(Sy;, Sy, Nor,(Sy; ® S,) of the Nor,(S;; D S,)
equivalence classes of pairs of subalgebras. Find

Ny; <544, Np<S,
for which
Sts/ N1y S/ Ny
and find the intersection
A* :NOI‘A(S“GS Sz) n NOI‘A(N“(D NZ)

Step 4: For given Sy;, Sy, Ny;, and N, determine a
representative list S(Sy;, Sy, Ny;, Ny, A*) of the A*-
equivalence classes of the Lie algebra isomorphisms
of Sy;/Ny; and Sy/N,.

Step 5: Form all the Goursat twisted subalgebras

S={x; + 25| %1 € Sy;, X, € Sy and 0 (x;/Ny;) = x5/ Ny}
for o of S(Sy;, Sy, Ny;, Ny, A*) and compile the desired
list S(L,®L,,0,A) by gathering together, for all ¢’s of
S(S 11, Sz, N1z, Ny, A*) all Nyy, Ny of S[Sy;, Sy, Nor4(Sy; @ S)],
all S, of S[L,,0,Nor,(S,,)/L,] and all S,, of S(L,,0,4/L,).

An application of the Lie—Goursat method to a classi-
fication of the subalgebras of the algebra of the homo-

geneous Lorentz group, extended by dilatations, follows
in Sec. 4.

3. CONTINUOUS SUBGROUPS OF THE POINCARE
GROUP

A. Subgroups of the homogeneous Lorentz group
Let us first introduce some necessary notations.

The Poincaré group can be defined as the group of
linear transformations

xp =N, x,+a, (31)
of a real linear vector space with metric
dst=dxl - dx} - dxb - dx3, (32)
leaving the distance (32) invariant.
Its Lie algebra has 10 generators. We chose a basis
that is convenient for our purposes, although it differs
from the one conventionally used in physics. Let us

write the generators of the homogeneous Lorentz group
in a four-dimensional representation as
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i 0 0 O 1 0 0 0 0
0o -7 0 0O {0 -10 0 |o
B“oo-io’B2"001o’B3‘o
0 0 0 ¢ 0 0 0 -1 0
07 00 00 0 O 0
0000O 10 0 O i
B4‘000i’35‘0000’36‘0
0000 00 -10 0
The generators of translations are
00071 001 0 00:¢ 0
{00O0O 000 -1 {0004
X1‘0000’X2‘oooo ’X3‘oooo
0000 000 O 0 00O
0000
0077 O
X=100 0 0 (84)
0000
Note that all the above matrices satisfy
XJ+JIX*=0 (35)
with
0001
0010
J_0100 (36)
1000

All complex matrices X satisfying (35) and detX =1
constitute a realization of the algebra of the pseudo-
unitary group SU(2,2). This is convenient for our
future purposes since we can in a simple manner en-
large the basis (33), (34) to that of the similitude group,
by adding the element

100 0
01 0 0

P=100-1 0 37
00 0 -1

The conformal group of space—time would then be ob-
tained by adding four more generators (of special con-
formal transformations). We shall need the commuta-
tion relations of the Poincaré algebra; they are sum-
marized in Table I.

The translations commute:
[Xu,Xv]:O, u,v=0,123,

The relation to the usual physical operators, namely
the angular momentum L; (rotations), boosts K;
(proper Lorentz transformations), energy—momentum

TABLE 1, Commutation relations for the Poincaréalgebra.

OO oM

o O oo

0 0
0 0
0 -1
0 0
33
0 0 (33)
00
00
i 0
,PO, P, (translations) is as follows (i =1, 2, 3):
B1:2L3, B2:—2K3, B3:—L2—K1,
By=Li-K,, Bs=Ly-K, Bg=L;+K,, (38)
and

X =3(Py~P;), X,=P,, X;=- Py, X;=3(Py+P,). (39)

The subalgebras of F=LSL(2,C) are known'®1” and
we list them and some of their properties in Table II,
In the first column we introduce a notation for each
subalgebra, in the second we give its dimension dimgF;
(over the field of real numbers), in the third we list the
generators. In the fourth we give Nor,.F;, i.e., the
normalizer of F; in the Lorentz group LG ~expF
~SL(2, C). Relevant comments are made in the fifth
column,

Notice that F; and Fy, are actually infinite classes
of subalgebras, depending on one real continuous pa-
rameter 0 <c <7, c#7/2. We could have combined
several subalgebras together by simply letting ¢ take
all values 0 <c < (then F;, Fg, F; and Fy,, Fy,, Fy3 would
have been bunched together). This was actually done,
e.g., in Ref. 16. However, the properties of these al-
gebras are sufficiently specific for ¢ =0 and ¢ =7/2 to
justify their separate treatment. All other entries F;
(7#5, j#11) are single algebras, not depending on any
parameters.

The normalizers sometimes involve discrete ele-
ments, In particular, we have

0 10 0 i 00 0

-1 00 0 0 -7 0 O
Zi= 1 00 ~1) Bi~Bs Ze= 0 0 -7 0/) Bv

0 01 0 0 0 0 ¢
(40)

and C, is a cyclic group consisting of the elements

Zy, Zi=—-1,Z3=~Z, and Z}=1. The symbol [ indicates
a semidirect product of two groups where the second
group is an invariant subgroup. Note that Z, is a rota-
tion through 7 about axis 2, Z, a rotation through #
about axis 3.

By B, B, B, B B, X, X, X, X,
B, 0 0 2B, - 2B, - 2B, 2B, 0 2X, - 2X, 0
B, 0 0 2B, 2B, - 2B, - 2B, 2, 0 0 - 2X,
B, - 2B, - 2B, 0 0 B, B, 0 0 2X, X,
B, 2B, - 28, 0 0 By -B, 0 - 2X, 0 -X,
B 2B, 2B; -B, -B, 0 0 X, 0 2X, 0
By - 2B, 2B, - B, B, 0 0 X, 2X, 0 0
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TABLE II. Representatives of conjugacy classes of subalgebras of F=LSL(2,C) under SL(2,C). In column 3 the generators to

the right of the semicolon span the derived algebra of F;.

Notation dimgF; R-basis NoryeF; Comment on subgroup
F, 6 3Biy. .., Bg Inner SL(2,0)
Fy 4 B,,By;B;,B, Inner Borel
7y 3 :B,,B,-B;, By+B; Inner SU(2)
F, 3 ;By,B3+B;5, By—B; expF,U expF+ Z, SU(1,1)
Fy 3 B_=coscB;+sincBy;B;, By, expF, SE)
0<c<n/2, 1/2<c<m
Fy 3 By;B;, B, expF, E(2)
Fq 3 By; B3, By exply DO Ty
Fy 2 By:B, CyDexpFy c(1)
Fy 2 By,By; expFyU expFy-Z, Abelian, T
Fy 2 Bs,By; expF, Abelian, Ty
Fy 1 B_=coscB, + sincB,; expFyU expFy+ Z, 5(1)
O<c<a/2, 1/2<c <7
Fy 1 By; expFyU expFy- Z, 0(2)
Fiy 1 By; expFyU expF, * Z; 0(1,1)
Fy 1 o C,0 expF; E(1)
Fyg 0 0 expF, 1
To each subalgebra F; of LSL(2, C) there corresponds To=expF,, Ty=expFy,. (45)

a continuous subgroup expF; of the Lorentz group. We
do not go into the question of discrete centers, efc.,
for these groups and do not discuss the question of how
many different locally isomorphic Lie groups corre-
spond to each algebra.

Most of the groups are obvious (see last column in
Table II). We shall call expB, =B the Borel subgroup®!
since it is the maximal solvable subgroup of SL(2, C).
Throughout we denote

B_=coscBy +sincB,, 0<c<w, c#7/2. (41)
The corresponding group which we denote
S(1) =expFyy 42)

corresponds to a rotation about a space axis with a
simultaneous boost along the same axis (a “screw”
with ¢ the corresponding angle). Similarly, we denote

S(3) = expFj. (43)

This group corresponds to screw-like transformations
along one axis and translations in the plane perpendicu-
lar to this axis.

The group expF; corresponds to transformations of
a straight line, i.e., translations and dilatations:

x'=ax +b. (44)

A matrix realization of expF; is given by

_fa b>
g7\ 1
acting on the vector x = (). We shall denote this group
C(1), the conformal group in one dimension.

The groups expFy and expFy; are both Abelian and
can be interpreted as translations. Since expFy contains
a compact generator By it can be identified with trans-
lations on a cylinder; expFy, corresponds to transla-
tions on a plane. More precisely, if we interpret the
Lorentz group as the group of motions of a real
Lobachevsky space then expF;, corresponds to transla-
tions on a locally Euclidean subspace—an horosphere. %
Let us denote
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The group expF,~D 0O T, corresponds to dilatations and
translations in a plane,

B. Splitting subalgebras of the Poincaré algebra

We now proceed to apply the algorithm of Sec. 2B,
to find all subalgebras of the Poincaré algebra P. Step
1 has already been performed, i.e., we have given a
list of representatives F; of the conjugacy classes of
subalgebras of the factor algebra F=LSL(2,C)=P/N,
where N=LT, is the algebra of the translations. Con-
jugation was considered under the proper orthochronous
Lorentz group and the normalizers Nor; . F, in the
Lorentz group were also found. All of this is sum-
marized in Table II,

Step 2 of the algorithm will provide us with all sub-
algebras P, , of P that split over their intersection with
the translations (are splitting extensions of N, N by
F;, where N; , is a subalgebra of N). This step must be
performed separately for each subalgebra F;, i.e., for
each F; we must find all invariant subspaces N; ,C N.
They satisty [F;, N; ;]S N, , and provide us with the re-
quested algebras according to the prescription P; ,
=F;+N, .. The label k2 simply serves to distinguish dif-
ferent invariant subspaces N; , corresponding to the
same F; and different subalgebras P; , of P,

Simultaneously, we apply Step 4, i.e., use elements
of NorF,/(expF;), i.e., the outer part of the nor-
malizer, to simplify N, ,.

For each F; we thus face a trivial problem of linear
algebra. Let us run through the individual F;.

F;—The algebra F; is represented irreducibly on the
space N. Hence the only invariant subsapces are

N, ,=LT,, Ny,=0. (46)

F,—The Borel subalgebra F, has four invariant sub-
spaces in N, namely
No =LT,, Npp={X;, X5, X3}, Noy={Xi}, Np4=0.
(47)

Obviously, we have [F,, N, ;,]C N, ; and we check direct-
ly that there are no other invariant subspaces.
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F,—Since Fj is the Lie algebra of SU(2), it is im-
mediately clear that the invariant subspaces are
Ny =LTy Nyp={X, - X, X5, Xo}, Ny y={X+X,}, Ny,=0.
(48)

Here Nj , are the space components of linear momen-
tum py, py, p5 and N; ; is the time-component (energy)
Py [see (39)].

F;—8ince F; is the Lie algebra of SU(1, 1), the re-
sults are equally obvious:

Ny =LTyy Nyp={X;+Xy, X5, X5}, Nys={X; =X}, Ny =0.
(49)
Fs—Putting [F;, Ny, |- N5;, we find
N5 =LT, Nyo={Xy, X, Xs}, N5a={Xi}, N5=0.
(50)
Fg—The same holds as for Fy, i.e.,

Fg =LT,, Ng,=1X1, X5, X3}, Ng={Xi}, N 4=0. (51)

F,—The invariant subspaces in this case are
{o, {x.}, {X,,X,cos¢ + X;sing, 0< ¢ <n}, {X;,X,,X,}
and LT,. However, remembering that the normalizer of
F,; is Nor o F;=expF, (see Table II), we can simplify the
subspace: {X;, X, cos¢ + X, sing}. Indeed, we have

exp(xB,){cosdX, + sindX,) exp(— xBy)
=c0s(2x + P) Xy + sin(@x + ¢) X, (52)
Putting x = — ¢/2 we transform our subspace into {X;, X,}.
Thus we obtain
Ny =LTy, Ny, :{XI, Xy, Xa}, Nog :{Xi, Xz},
Ny, 4 ={X}, Ny,5=0. (53)
Fy—The invariant subspaces obtained by investigat-
ing the equation [Fg, Ny ,]< Ny , are
Ng1=LT,, Ny ={X, X, X3}, Ny 3 ={X;, X3, X4},
Ng 4 =1X1, Xob, Ngs=1X, X3}, Nyg=1X{, X, +bX;, b+ 0}
N ={Xi}, Nyp={Xs}, Nyy=0.
(54)
The normalizer in this case is C, [J expFg and we can
check that it cannot be used to simplify the invariant

subspaces (e.g., the value of b in Ny, is invariant under
NOI'LGFs).

Fy—The invariant subspaces directly obtained are
LT4’ {Xqu,Xs}, {XzyX:a’le}s {X1’X4}, {XZ:Xs}: {Xl}’
{X,}, and 0. However, the transtormation Z, of (40)
in NorF, satisfies

ZXZT =Xy,  ZX,Z{' =X,

(55)
ZyXaZi' == Xy, Z X Z7 =X,

The subspaces X; and X, and similarly {X;X,X;} and
{X,, X,, X,} are thus conjugate to each other and we ob-
tain the following independent invariant subspaces:

No=LT,, Ny 2 =Xy, X5, X3}, Ns,sz{Xz,Xa}, Ny, ¢ =1X1, X4}
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Ny 5=1Xi}, Ny g=0.

(56)

Fyy—The invariant subspaces obtained for Fy, are
LTy, {X1, X5, X.}, {X,,co80X,+sin¢X,,0< ¢ < 1}, and
{Xl}a We can again make use of the fact that expxB, is in
the normalizer of F,; and rotate cos¢X, +sin¢X, into X,,
leaving X, invariant. Thus we obtain
NlO,l:LT4’ NIO,ZZ{X15X27X3}7 N10,3:{X13X2}s

Nyg, 4= {X4}, Ny, 5=0. (57)

F;—The invariant subspaces of B, are found directly
to be

N1 =LTy, Nygo={X1, X, Xsh, Ny, 3=1%,, Xg},
Nig, =X, Xob, Nygs={Xi}, Nygg=0.

F,—The operator B, leaves the space aX, + bX, in-
variant for any # and b. However, using the fact that
exp(xB;+vB;) and Z, are in the normalizer of Fj,;, we
can transform aX; + bX, into X, if ab=0, into X, +X, if
ab> 0, or into X; — X, if ab <0, Similarly, the three-
dimensional invariant subspace {aX, + bX,, X,, X,} can
also be simplified. We obtain the following independent
(nonconjugate) invariant subspaces:

Nig, =L Ty, N12,2:{X1,X2,X3}, Nyg, 3 =1X, = Xy, Xp, X},
Nig o ={Xy + X4 Xo, Xa}, Npp s =1X1, X4}, Nig,e=1X,, X5},
Np = {Xh, Nig s =1X1 = Xy, Nige={x + X4,

Ny, 10=0.

(58)

(59)

F;—The operator B, leaves both X; and X, invari-
ant. However, Z, is in the normalizer of Fy; and trans-
forms X, into X,. Similarly, aX,+bX; is invariant for
any a and b but can be rotated by expxB; into X,. The
invariant subspaces {X;, X, cos¢ + X5 sing, 0 <¢ <7} can
similarly all be rotated into {Xj,Xz}. The other invari-
ant subspaces are obtained directly. Thus

Ny, =LT,, Nigo={X{, Xy, X5}, Nygs={Xy, X3, X,},
Nig, 1 =4X1, X, Nig,5={Xp, Xob, Ny 6= {0, X},
Nigr=1X1h, Nygg={X}, Ny 9=0.

(60)

F,;—The operator By leaves the following spaces
invariant:
Ny =LTy, Nygo={X1, X0, Xa}, Nygs={Xy, X5, X0},
Nig o =1X1, Xa, Nigs={X1, X5k, Nigs=1X,, Xp +0X5, b+ 0},
Ny, r={X1}, Nis={Xah, Nips=0.
(61)

Since Nor ;;Fy, does not contain expB; we cannot rotate
in the {X;, X;} space so each value of b in Ny4, 5 Will cor-
respond to a different subalgebra (mutually nonconju-
gate for different values of b).

F;;—The algebra Fy; is empty, i.e., contains the
element 0 only. The space of translations N can be
split into orbits under SL(2,C). We have
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The mutually nonconjugate subspaces of N and their

0 0 c+id ia ! o
00 b -—-c+id signatures are
N= =aX;+cX
00 0O 0 aX;+cXy +dXs+bX, N15,1=LT4 + - =), N15.2:{X1,X2,X3} (0--),
00 0 0
Nis, 3 =X ~ X4, Xp, X3} (= = =), Nis, 4 =1X1 + Xy, X, X3t (+= =),

Nis,5=1X1, X} (0-), Nys, 6 =1X1, Xo} (+-),
Nys, 1=1{X2, X3} (= =), Nis,5=1X1} (0), Ny, o=1X1 + X4} (+),
N15.10:{X1‘X4} (=), Nys511=0, (64)

This completes our list of invariant subspaces for all
F,. The resulting splitting subalgebras

Py y=F;+N;,

:<—“;b) Py-dP, +cPy+ (‘ "2+b> P,

[we have used (39)]. The orbits will clearly differ by
their signature, i.e., by the number of mutually
orthogonal timelike, spacelike and lightlike vectors
contained. For G SL(2,C) we find that the

transformation
CNG™t=N (62) are listed in Table III. The first column introduces a
1 s notation P; , (k simply differentiates between different
eav subalgebras of P obtained from the same F,). The sec-
A=ab-cl-d (63) ond lists F;, the third gives the dimension of P;,, (over

the field of real numbers). The generators of F; and
N,,, are given in columns 4 and 5. The normalizer of
P,,, in the Lorentz group is given in the sixth column.
Comments on the corresponding subgroup of the
Poincaré group are given in the last column, in particu-
lar, we indicate the signature of N, ,. Again the Borel
group is the maximal solvable subgroup of SL(2, C),
E(3) and E(2) are the Euclidean groups in three and two
dimensions, E(2,1) and E(1, 1) the pseudo-Euclidean
groups in three and two dimensions. C(1) is the group

invariant. An individual vector
X=a;X;

will be characterized by A=a,a,—a}—a}. Wecalla
vector, respectively,

timelike (+) if A>0,
spacelike (-) if A<0,
lightlike (0) if A=0.

TABLE III. List of representatives of splitting subalgebras P; , of P.

II;Iotation F; dimgP;, Generators of Fj Njp Nor oF ;N NoryoN;,  Comment on subgroup

I
P11 10 X0, X, X5, X PG=L

. F B,.... 1522, 23534 GoT,
Py i 6 o0 Bs 0 Inner LG~SL(3,0)
1;2’1 '? X1,X;,X3,X, BorelU T,

22 X, X,, X Borel()(0- =)

F By ... 1 2,443 ore
Py 2 5 1r-eesBs Xy Inner BorelO (0)
P4 4 0 Borel
;;3,1 Z X1, Xy, X3, X, su(2 LT,

52 » B B X, - X, X5, X; SU(2) 0 (== =) ~ E(3)
Py, 3 4 1:By—B5, By + B, X+ X, Inner SU2)® (4)

Py 4 3 0 SU(2)
;’4,1 Z Xy, Xy, X3, Xy SU(1,1) 0T,

o2 r _ X, +X,, X, X, SU. 10 ==~ E2, 1)
Py 4 4 B,,By+B;,B,~ B - X, expF,U expFy -2, SU(1.1)® (=)
Py 3 S
> (1,1)

Pr.,t 'g Xy, Xy, X5, X, ST,

5,2 F B X(,X,,X; S§(3) (1{0——)
P, y 4 Be Ba. By X, expFy S(3) 07 0)

Psa 3 0 S(3)
}};G,i Z X1, X,,X3,X, E(2)UT,

82 F B, B, B XlsX2,X3 E(Z) D(O“')
P, ¢ 4 A X, expFy E(2)8 (0)

Pgy 3 0 E(2)

}Izm 'g Xy, X5, X5, %y expF, (DOTy O T,
P . X1, Xy, X3 expFy (DO Ty O (0--)
P 7 2 B,,B;,B, X, X, C, 0 expF, (DOTROO-)
P7,4 N X expF, (DOT OO
Plls 2 0 expF, (DOTy

P8,1 . X1,Xy,X5,X, c()o7T,

P X1, X, X3 (1 oo--)
P8.3 2 Xy, X3, X, CD(+=--)
P8,4 . );uffz c(1)a(-)

8,5 F B.. B 1,43 C(1)n(o-)
5:8'6 ’ 4 B3 Xy, Xy +bXy, b#0 Ci 0 expFy C(1yO(-)
iy f§ Xy C(1) 13(0)

Ps,& ; X, C(1)® (-)

8,9 0 C(1)
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TABLE I continued

Notation

F;

dimpP; ,

Generators of F;

NorpgF; M NorpoN;

Comment on subgroup

Pjn e

Py 4 6 X1, X, X5,X, expF,yU expFy+Z, T, 4T,
Py, 5 X1, Xy, X, Inner T,.00(0~-)
11:99,;': Fy i B,,B, ))gz,;\;g cxp?,g expFy+Z, T,[1(=-)

y 15Xy expFyU expFy < Z, T 0(+-)
Py 3 X, Inner T, ' (0)
Ps.¢ 2 0 expF,U expFy-Z T,

Py, 6 X, X,, X5, %, expF, T, (1T,

Pyo, 5 X, X, X5 expFy Tyio(0--)
Pioa Fyg 4 By, By X, X, C,UexpF, Tyl (0-)
Py 3 Xy expF, T, &(0)
Pigs 2 0 expF, "

Pyy,4 5 X,X9,X3,X, expF,U expFy - Z, ST,
Py 4 X, %5, X, expF, S(1)11(0 - =)
‘;:11,3 Fy 3 B, Xy, X3 expFy,U expFy+Z, S(1)1 (=-)

11,4 3 X, Xy expF,U expFyZ, S(1) 1 (+ =)
Pyy g 2 X, expF, S(1)1:(0)
Piye 1 0 expFyl expFy+ Z, S(1)

12,1 5 X1,X,, X, X, expFyU expFy+Z, O2)1T,
Py, 4 Xy, Xy, X, expFy 0(2)11(0 - -)
Py s 4 X -X,,X,, X, expF,U expFy,-Z, 0(2)! (=~ =)
Pioa 4 X+ Xy, Xy, Xy expF U expF iy Z4 O(2) | H{+ =)
Pyys Fyp 3 By Xy, X, expFyU expFy~ Z, 0(2) & (1 )
Py 3 Xy, X expFyU expFy-Z, O(2) Vi (—~)

i1 2 X, expFy 0(2) ® ()

Piys 2 X, - X, expF,U expFyy+Z, 0(2) & (-)

Pyog 2 X+ Xy expF,U expFy+ Z, O(2) & (+)
Pia.10 1 expFyU expF, - Z, o)

Pysq 5 X, X,,X;, X, expFyU expFy+ Z oa,nyo:T,
Piss 4 X, X5, X, expF, 01,17 (0 - )
Py 4 X, X, X, CyT{expFy3U expFy3-Zy)  O(1,1) 1 (+ — )
Pysy 3 X, X, expFyU expF, - Z, 0(1,1)" .(+-)
Pz s Fi 3 By X1, X, Cyl'expFyy O(1, 110 -)
Pise 3 X,, X, expFyU expFy* Z, O(1,1) & (=)
Py g 2 X, expF, O(1, 1) 10}
Pyys 2 X, C," (expF U expFy3-Zy)  O(1,1) & (=)
Py 1 0 expFy,U expFy - Z, 0(1,1)

P 5 Xy, %y, X5, X, C, lexpF, E() 1T,
Py 4 Xy, Xy, X, C, lexpF, E(D1 (0~-)
P, 4 Xy, X5, X, Cy lexpFy E()1 (+--)
Pyy 3 Xy, X, C, DexpF, E(1)62(0 =)
Pis Py 3 B, X, X, C, MexpF; E(1)( (0-~)
Pl 3 X, X, +bXg, b= 0 €, expF; E(1) (0-)
Py 2 X, C,DexpF, E(1)E(0)
Pyy,g 2 X, C,ilexpFy E(1)& (=)

s 1 0 C, I expF; E(1)

5 7 X, X,. %5, X, SL(Z,0) T,

15,2 3 X1, X3, Xy expF, (0--)

153 3 X=Xy, Xy, Xy expF; (~—-)

154 3 X+ Xy, Xy, X, expF U expF = Z, (+=-)

5.5 2 X,, X, Cy expF; (0 -)

156 Fis 2 0 X1,%) expFylJ exply - Z, (=)

Py 2 X5, X, expFyl expFy-Z, (=-)

Pys,g 1 X, expF, (0)

Pirg 1 X+ Xy expF ()

Pys 10 1 X~ X, expF,U expF,+Z, (=)
1511 0 0 SL(2,0)

of transformations of a straight line (44); S(3) and S(1)
are defined in (42) and (43).

The normalizers of column 6 are easy to obtain from
Nor;F; of Table II by inspecting its action on N; ,. We
do not present the details.

C. Nonsplitting subalgebras of the Poincaré algebra

Following the algorithm of Sec. 2B we now come to
Step 3, which together with Step 4 will provide us with
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a list of all the remaining subalgebras of P, namely
those that are nonsplit extensions of the subalgebras
Np CN by Fy,

The algebras Fy, F;, and F, [corresponding to
SL(2,C), SU(2) and SU(1,1)] are semisimple and hence
cannot provide any nonsplit extensions. All other sub-
algebras F; of F are contained in F, [the only maximal
solvable subalgebra of LSL(2,C)| and we need only con-
sider F, and its subalgebras in connection with Step 3.
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First of all let us construct the matrix representa-
tions (10) of F, on N. Using the commutation relations
of Table I, we find

00 0 O 200 0
g l00-20) 5 [000 0
“{o2 0 o) " looo o |’
00 0 O 000 -2
0020 0-200
;s [0 000 . o o o -1
F=looo1 )" #{o 0 0o (65)
0000 00 00

[in the basis given by (33) and (34)]. These matrices
immediately provide us with the basis coboundaries of
Eq. (16), (17). Indeed, we have
aBi = ZX3X2 - 2x2X3,
6B2:—2x1X1+2x4X4, (66)
0Bg3 =~ 2xX, ~ x4 X3,

834 = 2x2X1 +x4X2.

The four arbitrary constants x;,...,x,; can be used to
simplify the nontrivial 1-cocycles (14). Indeed, adding
combinations of the coboundaries to cocycles corre-
sponds to simplifying possible generators of subalge-
bras by transformations of the type expN.

Let us now consider the individual subalgebras F; of
LSL(2,C), remembering that the semisimple subalge-

bras Fy, F;, and F, are of no interest in this connection.

F,—The Borel subalgebra F, does not provide any
nonsplitting extensions. Indeed the generators of a non-
split subalgebra would be

- 4
B,,:B,,+‘Zl) cuXy, k=1,...,4,

and

N2,j, ji=1,...,4, (67)

where Ny; is one of the invariant subspaces (47). Putting
2x3=Cyq, —2%5=Cy3 and subtracting B, from B, we ob-
tain €5 =c(3=0 in {67). Similarly, put -~ 2x; =¢;y, 2%,
=c¢yy and subtracting 9B, from ﬁz, we obtain ¢y =cyy

=0 in (67). Using relations of the type (15) or demand-
ing directly that B,, ..., B, with N, ; form an algebra,
we find that for each of the four subspaces N, ; of (47)
these conditions lead to the equations

=0, k=1,...,4, i=1,...,4,

i.e., to splitting subalgebras already listed above in
Table III.

F;—The results in this case are the same as for F,,
namely no nonsplitting algebras are obtained.

Fy;—This case leads to new subalgebras, so we con-
sider it in somewhat greater detail. The generators
involving F; can be written as

B, =B +a,X;+a,Xy,
By=By+c X +CX, +CyXy,

54 :B4+d1X1 +d2X2 +d3X3 +d4X4.

(68)
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We have already made use of the coboundaries 2By,
9Bj;, and 2B, to eliminate a,, a;, and ¢;. The commuta-
tion relations are

[Eb ‘§3] = 234 + (2(,‘2 - (14)X3,

[By, B,] = - 2B, + 2d, X; - 2d,X, +a,X,,

(By, Byl =2d; Xy +dy X3+ 20, Xy + ¢y X

(69)

Now consider the individual invariant subspaces N ,
of (51). Adding Ng ,=LT, to (68), we obviously obtain
the splitting subalgebra Py ;. The other cases are less
trivial,

Take Ny, ={X{, X3, X3} We can immediately put a;
=Cy=Cy=dy=dy=dy=0 in (68). From (69) we find ¢, =d,
=0 and we cbtain the subalgebra:

B +aX,, By, By, X,, Xy, X,;, a#0. (70)

According to Step 4 of the algorithm we can further
simplify (70) using other automorphisms of F,. Indeed,
we have

exp(xBy)(B; +aX,) exp(— xBy) =By +eX,, €=x1, (71)

where exp(2x) =a/e and €=+ 1 for sign a=+1. The other
generators are left unchanged by expxB, and we obtain
two new algebras:

Py
ﬁz'z}B1+€X4:B3!B4’X1,X29X3’ e=x1.

(T2)

Note that these algebras are new—not only are they not
conjugate to any of the splitting subalgebras of Table III
but they are not even isomorphic to any of them.

Now take Ny, 3={X,}. We put @;=c;=d;=0in (68). The
commutation relations (69) imply in this case d, =d,
=¢4=0 and ultimately a,=0, d;=c;. The subalgebra in
this case is reduced to

B1,B3+CX2’B4+CX3) XU —w<c <o,

This can again be simplified using the outer automor-
phism expxB; and we again obtain two new algebras:
1:38; 7

P } Bi,Ba+€X2’B4+€X3,X1, €=% 1. (73)
8 8

Finally, take Ny ;=0, The commutation relations (69)
now imply d; =d; =dy=cy{=c;=a,=cy=d;=0. Thus we
have

B1 +aX1’B3, B4‘

Again expxB; can be used to simplify and we obtain two
algebras

P,
136'9} By +€Xy, Bg, By, €=+1, (74)
8, 10

These are both isomorphic to P, 4 = F; but not conjugate
to this algebra under the Poincaré group.

F;—The generators involving F, can, after subtract-
ing the appropriate combinations of coboundaries (66),
be written as
By=By+bX;, By=By+c,X;, B,=B,+dX,,

b1=b4 =C4 =dl:0' (75)
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The commutation relations are
(B,, B;] = 2B, - 2¢,X,~ 2b, X,
[By, By]=2B ;- 2d, X, + 2by X,
[By, By) =2d, X, +d, Xy + 2¢,X,.

(75%)

Consider the invariant subspaces Ny , of (53). Ny y,

Ny, 2, and N 5 lead to splitting subalgebras only (all
b;=c;=d; =0). Consider Ny ;={Xj,X,}. We have b,=c,
=d2—0 and (75') implies c3=c;=dy=d;=0. The obtained
algebra is {By+cX;, By, By, X{, X,; x#0}. The element
Z, in the normalizer Nor ;. F, [see (40)] transforms

Z,(By +¢X3) Z5' = By - X,

No further simplifications are possible, and so we ob-
tain a class of subalgebras:

P, gt By+cXs, By, By, X, Xy; 0<c<w, (76)

Taking Ny, 4 ={X1} as the invariant subspace, we find
¢;=d;=0 (i=1,...,4), thus obtaining the algebra

By = By + byX, + b3X3, By, By, X,; b3+ b3+0. The transforma-
tion (expxB;) with 2x =7/2 - arc tan(b,/b,) simplifies this
class of algebras to its final form:

P,y By+cXy, By, By, Xy; 0<c <. (77)

Fy—We take the generators as
By=B,+0,;X;, By=By+c/X,. (78)

Putting x; = - by/2, x,=+by/2, x3=-cy/2 and replacing
BZ,B3 by Bz - aBz, 15\‘3 - 9B;, we obtain generators in the
form (78) with #, =5, =c, =0. The commutation relafion
is

[By, By)=2{By - by X, - ¢ X,} (79)

implying that ¢y =cy=c4=0. The generators (78) thus
reduce to

By=By+by Xy +b3X;, By=B,, b3+b3+0, (80)

The only nontrivial outer element in the normalizer of
F, is Z, (40) and its presence makes it possible to con-
sider one of the coefficients b, or by to be nonnegative.
Now let us consider the individual invariant subspaces
Ng, . (54). Adding Ng, Ngo, Or Ny g to (80) leads to
splitting subalgebras only (b;=c;=0, i=1,...,4). Let
us consider the other cases. Taking Ny 5 ={X, X3, X},
we have by =0 and we obtain

Byt By+aXy, By, Xy, Xy, Xy, 0<a<e, (81)
Taking Ny 4=1X, Xof, we have b, =0, so that

Pyt By+aXs, By, X;,X,, 0<a<w, (82)
Taking Ny 5 =1X;,

By +aX,, B, Xy, X,

X}, we have by =0 and we obtain
158,12: 0<a<wo, (83)
Taking Ny g ={X;, X, +bX;, b#0}, we obtain

Py s By+aXy, By, X1, Xy +bX;, a>0, b#0.  (84)
For Ny ;={X\} we distinguish three cases:

;8,14:

Pg, 150

By+aX;, By, X, 0<a<e,
0<a<ee, (85)

b#0.

BZ +aX27 B39 le

By+aX,+bX,, By, Xy, 0<a<ew,

Py 4t
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Finally, take Ny 4=0. Relation (79) implies b, =0 and
we obtain

Py 11t By+aXy, By, 0<a<w, (86)
F,—The same procedure as above shows that the
subalgebra F, does not yield any nonsplitting subalge-

bras of P,

F—Using the coboundaries (66) we can write the
generators as

By=By+ayX, +ayX,, B,=B,+byXy+byXy+b,X,, (87)
satisfying
[B3, ] 205+ @) X+ a Xy + b, X5, (88)

The normalizer of (Fy, %Ny, ,) always includes

G =exp(xE, +yB,), except for the case Ny, 5 =1X1, X}
when only expyB, and Z; are available (see Table III),
Let us first consider Ny, , of (57) with 2#3. Then we
can use G =exp(xB; +vB,) to simplify (87). Writing

a 0 O 0
0 at 0 0

G=\o 0 o O a=1]a|explio), (89)
0 0 0 ot

we can transtorm {Bs, By} into
B, = GB,G 1 cos2¢ - GB,G sin2¢
= | a|®B, + (@, cos’e + by sin®p ~ by cos2¢ sin2¢) X,
+[(@y = by) cos2¢ sin2¢p — by sin®2¢] X5

+ Tale (a,cos2¢ — bysin2¢) Xy,

B, =GB,G!sin2¢ + GB,G cos26
= [ a|®By+[(a; - by) cos2¢ sin2¢ + by cos’2¢ | X,
+(ay Sin®2¢ + by cos?2¢ + by sin2¢ cos20 ] X,

1
" Tal?

(a,sin2¢ + by cos26) Xy. (90)

Using the coboundaries (66), again, we simplify to

B4=|a|*By+ (aycos2¢ + bysin®2¢ — by cos2¢ sing) X,

+ —lgll‘g ((14COSZ¢ - b4 Sin2¢))X4,

Bj=|a|*B,+[(ay - b;) sind¢ + by cosd ] X,
+(ay 5i0%26 + by 08?26 + by sin2¢ c0826) X,

+—l%1—2 {a,sin2¢ + bycos2¢) X,. (91)

Now consider individual cases. The subspace Ny, { can
obviously not give any nonsplitting subalgebras.

Take Nyg,z=1X1, Xo, X5h. Then az=by=b3=0. We put
tan2e =~ by/a,, |a|*=(@k+b5)'"?,
and obtain the subalgebra
By et By+Xy, By, Xy, Xp, Xy {92)

Take Ny, 3=1X1, Xof. Then By is not in the normalizer
and we must put ¢ =0 or 7/2 in (89)., We have @, =b,=0
and from (88) also b,=0. Taking ¢ =0 in (31), we have

By=|a|’By+(a)/|a|) Xy, Bi=|a|’By+b3X,.
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TABLE IV. List of representatives of nonsplitting subalgebras 51.,, of P,

Notation F; dimRIN:’j'k N Generators not in N, NorpgP; 4 Comment
Pir

Ee, 6 Xy, X,,X; By+X,,B3,B, C,DPg,

136'6 6 XI’XZv 3 BI—XAI,BBsBd C4DP61

Py, F 4 X, By, By+Xp,By+ X5 C,DPy,y

Pog @ 4 X, By, By—X, B, - X, C, 0B,

P, 3 0 By+X,,B3,B, C, 0Py, = Pg
P10 3 0 By~ X{,B;, B, C4O P =P,
Eas 5 X, X%, B,+aX, B, B,, a>0 Py,

Py, I 4 X, B,+aX,,B;,B,, a>0 P,

Py 1o 5 X, X,, X, By+aX,,B,, a>0 Py, =Py,
Po 1y 4 X, X, By+aX;, B, a>0 Py,

P, 12 4 Xy, X5 By+aX, By, a>0 Pg, =Py
P 13 4 X,,X,, +bX,, b=0  By+aX, By, a>0 Py, =Py
g, 14 Fy 3 X By+aX,,B,, a>0 Py,

Py 15 3 X, By+aX,,B,, a>0 Py, il
P 16 3 Xy B,+aX,+bX; B;, a>0, b= 0 Ps 5

8,17 2 0 By+aX,,B;, a>0 Pg g =Pg 4
Pyo 5 X1, X0, Xy By+Xy,B, Lo
P, 4 Xy, X, By+ Xy, By+bXy, b0 Pio,s
B8 4 X1, X, By+Xy,B, 10,6
Eio,9 4 Xy, X, By, By X, 40Py,

Pig,10 4 X, % B, By - X; C4 0Py,
Pig,14 Fig 3 Xy B;,Bj+ X, CyT Py, =Pygy
Pio,12 3 X B3+X2,B4+aXZ+X3, a>0 c,0 10, 2
P1o,13 3 Xy By~ X,,B,+aXy, - X3, a>0 C40 Py,
Pio,14 3 Xy By+X,,B,+ X5 C,0 P,
£10,15 3 Xy B;-X,,By—X; CiD P,

10,16 2 0 B3, B,+ X, CyB Py =Py,
P12, 11 4 X1, %5, X3 By+ X, CyOPyy =Py,
Lo, 12 4 X1,%5,X; By - X, ati Py, ~ Pyyy
£io,13 4 X=Xy, X3, X5 Bi+a(X;+Xy), a>0 Cy0Pyy 4 =Py 3
P12, 14 4 X+ Xy, X, X, By+b(X; X)), b=0 Cy Py UPp mZy =Py,
B, 15 3 Xy,X, By +X, CCPyy,q =Pyy
£19,16 3 Xy, Xy B, -X, CyUPyy Py g
Pis, 11 3 Xy, X3 Bytal(X;+Xy), a>0 Cy 1Py =Py
Py 13 3 X, X, Bl+b(X1—X4), b#=0 C4D(P12’1UP12'1'21) P12.6
P21y Fiy 2 Xy B+ X, CyUPyy 5 =Pyy
L1220 2 X, B -X, CyL3Pyy, 5 =P
£12,21 2 Xy =X, Byt+alX;+X), a>0 C,OPyy 5 =Py
Py 2 X+ X, By+b(X - X)), b=0 Cyl(Pyy, U Py 5+ Zy) = Pyyy
£12,23 1 0 B+ X, CiPyy 5 Pyy 10
B12,24 1 0 By -X, CyLPy Py 10
Piz,25 1 0 Bita(Xj+Xy), a>0 Cyl0Pyy, s ~Pp10

12,26 1 0 B +b{X(—-Xp, b= 0 COPp M Py 5 Zy) =Py
L1510 4 Xy, X3, X, By+aX,, a>0 Py =Py
Pys 1, 3 1, X3 By+aX,, a>0 Py, =Py g
Lis1e Fy 3 Xy, Xy By+aX,, a>0 13,1 =Py
Ei3,13 2 Xy B,+aX,, a>0 13,2 =Py
E13,10 2 X By+aX,, a>0 13,6 =P34

13,15 1 0 By,+aX,, a>0 13,5 =Py
P, 10 4 X1, X5, X By+ X, Py, =Py,
Lin 4 Xy, Xy, %, By+X, CyLPy,y = Pyys
L, 10 4 Xy, X5, X, By - X, CiLPyy,,y ~Pyy3
Pis 3 Xy, X, B+ X, 10,6 =Py,
P10 3 X, X3 B+ X, 14,1 ~ Py
Lis, 15 3 X, X By+ X, CyLPyg,q =Py 5
P, ts 3 X, X; B;—X, PRy ST =~ Pyy s
P2 3 X, Xy+hX;,b=0 B;+ X, 14,10 =Py
Py, 18 Fy, 3 X, Xy +bX;, b=0 B+ X, CyLPyy,2 =Py
P19 3 Xy, X,+bXy, b=0 B,-X, CiliPyy, ~P
P20 2 X, B;+ X, 14,10 EPM:?
Pig, 2 Xy B3+ X, 10 Py =Py q
Big,2 2 Xy B;-X, C Py =Pis
L14,23 2 Xy By+ X, B, 13 = Pyyg
~14,24 1 0 By+ X, 14,13 =Py
E1a,25 1 0 B;+ X, CyPyyy =Py

14,26 1 0 B3—X, C 0Py, =Py
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The presence of Z, in the normalizer allows us to take
a,> 0, and then set | al*=q, (@,#0) or |al®=z+0,
(a;=0, b3=0). Taking ¢ =n/2 in (91) we obtain the same
result. Thus, we obtain the algebras
7o By+Xy, B, +bX,;, X;,X,;, b#0,
1310.81 By +X,, By, XX, (93)
Py, 9 By, By+X;, Xy, X5,

Pyg, 10t B3, By-X; Xy, X

Taking Ny, ,=1X1} we find @, =b;=0 from (88). In (90)
we choose tand¢ = (a, - by)/b, and obtain

Bj= |°‘¢233+£2;_b‘3X2,

Bj=|a|®By+[(ay - byt + B3] /2X, + _a_z;_ba Xs.
If by=—a, we put | a|?=(4a} +b3)!/2 and obtain

Piy, 118 Bgy By+ Xy, Xy, (94)

If b3+ — a, we obtain two different subalgebras for
[(ay — b3)* + b%] equal or not equal to zero. Thus,

1310.12: B3+ X,, By+aX,+X; X;, 0<a<ex,
Pio13: By—=X,, By+aX,—-X; X;, 0<a<w, (95)
Py, 140 By+Xy, By+Xs Xy,

Pig 150 Bs—X,, By-X;, Xy

Finally, take Ny 5=0. Then by=—a,, a,=b,=0. We
choose tand¢ = 2a,/b, and | a|?=(4a} +b3)!/? in (91) to
obtain

ﬁiO,lG: B3,B4+X2. (96)

Fy;—The algebra Fy; does not lead to any nonsplitting
subalgebras, since all 1-cocycles for B, =coscB,
+sincB,, 0<c<w, c# 7/2 can be cancelled by the
coboundaries.

Fp,—Putting x5 =a,/2, x;=- a;/2 and subtracting 3B,
of (66) from By +a;X;, we obtain

By =B+ aX; +aX,. (97)

To this generator we add the invariant subspaces Ny,
of (59) and then simplify using the outer part of
Nor ;s Fjs, i.e., exp(xB,) and Z;, if these also leave
the considered Ny, , invariant. The procedure is abso-
lutely straightforward and we drop it here, listing the
results in Table IV as Py, ,.

Fy;—Making use of the coboundary 9B, in (66), we
write

By =B, + byX, + b;X,. (98)

The external part of Nor,,Fy; is expxBy and Z;. Using
these to simplify for each Ny, of (60), we obtain the
subalgebras Py; , of Table IV.

F,;—Using 0B, of (66), we obtain
53 :Bs-f-CzXz +C4X4. (99)

The outer part of the normalizer of Fy, is expxB;,
expyB,, and Z,. Making use of these to simplify for
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each Ny, of (61), we obtain the subalgebras Py, ,
listed in Table IV,

In Table IV we give a list of representatives of all
Poincaré group conjugacy classes of nonsplitting sub-
algebras of P. In the first row we introduce a symbol
P, , for each subalgebra [the tilde indicates a nonsplit-
ting algebra, k enumerates all algebras, splitting and
nonsplitting, obtained from the same F, (column 2)].
Column 3 gives the dimension of P, , and columns 4
and 5 the generators of FN’M. The normalizer of P; , in
the Poincaré group is given in column 6. In the last
column we indicate whether the corresponding P; , is
isomorphic to one of the nonsplitting subalgebras. The
normalizers of column 6 are easy to derive—we just
present the results.

4. CONTINUOUS SUBGROUPS OF THE HOMOGENEOUS
LORENTZ GROUP EXTENDED BY DILATATIONS

In this section we apply the algorithm of Sec. 2D, to
classify all the subalgebras of D® LSL(2,C), i.e., the
direct sum of the dilatation algebra and that of the homo-
geneous Lorentz group. We use the realization of this
algebra discussed in Sec. 3A.

Step 1 has already been performed, namely all sub-
algebras F; of LSL(2,C) and their normalizers Nor ;. F;
are given in Table II. Each F; will in itself be a rep-
resentative of a class of subalgebras of D® LSL(2,C).
To each F; we may add the generator D. We thus obtain
all splitting subalgebras of D® LSL(2, C).

Now let us find all nonsplitting subalgebras, i.e.,
those obtained by a nontrivial Goursat twist. We let F;
run through all subalgebras of F=LSL(2, C) (see Table
II) and perform all the steps of the algorithm. Note that
the semisimple algebras Fy, F;, and F, cannot provide
nontrivial twists. Indeed, for B;< F; we can obtain a
generator of the type B; +aD with a+ 0 only if
B,€[F,, F,], i.e., B, is not in the derived algebra
of F;.

F,—The derived algebra is {B;, B;} so we can write
a nonsplit subalgebra as

By+aD,B,+bD, By, B,, a®+b*#0. (100)

Since F, does not have any outer automorphisms we
cannot simplify (100). Thus, each pair of real numbers
—w<a<w, —w<h<wo, a®+b?#0 determines a different
conjugacy class of nonsplit subalgebras.

Fs—The derived algebra is {Bj;, By} and we obtain
coscBy +sincB, +aD, By, By; a#0, 0<c<m, c+7/2.

(101)

The outer part of the normalizer of F; leaves e invari-
ant so (101) cannot be simplified.

F,—Similarly, as in Fy we obtain

By+aD,B,,B,, a#0. (102)

F,—As in case Fj and F; we obtain
By,+aD,Bg,B;, a#0. (103)
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TABLE V. Continuous subgroups of the homogeneous similitude group D® SL(2, C}.

Notation F; dimgD; Twisted generators Nontwisted generators Comment on subgroup
Dy
Dy, F, 7 D,B,,...,B; D®SL(2,C)

1,2 6 Bl""’BS eprlﬁSL(Z,C)
Dy, 5 D,B,,B, B, B, D®B
Dy F, 4 By,B,,B,;,B, expF,=B
Dy 5 4 B,+aD,B,+bD, a®+b%=0 By,B, ~B
Dy, F, 4 D,B,,B,~B; B,+By D®SU(2)

5,2 3 B, ,B;—B;,B+B; expF,> SU(2)
Dy, F, 4 D,B,,B,+B;,B,—Bq D®SU(1,1)
Dy, 3 B,,B;+B;,B,~B; expF, >~ SU(1,1)
D; 4 D,B_,B;,B, D®S(3)

Dy, Fy 3 B.,B,4,B, expF ;= S(3)
Dys 3 B,+aD, a=0 4,8, S(3)
Dy, 4 D,B,,B,,B, DRE(2)

8y2 Fyg 3 B,,B;,B, expF ¢ E(2)

63 3 By+aD, a=0 B,,B, E(2)

Dy, 4 D,B,,B;,B, D& (D' OTy
Dy, Fy 3 B,,B;,B, eXPqu(D’ 0Ty

1,3 3 By+aD, a#0 By,B, (D' OTy
Dy 3 D,B,,B, D®RC(1)

Dy, Fy 2 B,,B, expFy=>C(1)
Dy 5 2 B,+aD, a=0 B, =~ (1)

Dy 4 3 D,By,B, D®T,

Dy, Fy 2 By,B, expFy~ T,

9,3 2 B;+acoscD,By+asincD, 0 =T

a>0, 0=<c=nq
Dy 1 3 D,B,,B, D®Ty
Dy, F 2 B3,B, expFyo = Ty
010.3 16 2 B4+D B3 o~ T”
Dy, 4 2 By+D,By+bD, —0 <b<e 0 ~Ty,
Dy, 2 D,B, D®S(1)
Dy, Fyy 1 B, expFyy = S(1)

11,3 1 B,+aD, a>0 0 =~ S(1)

Dz, 2 D,B, D® 0(2)
Disa Fyy 1 By expFy =~ 0(2)

12,3 1 By+aD, a>0 0
Dy 2 D,B, D®0(1,1)
D13,2 F13 1 B2 eXpraz 0(1,1)
Dyz,5 1 By+taD, a>0 0 o(1,1)

Dyy 4 2 D,B; D® E(1)

Dy, Fy 1 By expFy = E(1)
14,3 1 B;+D 0 EQ)

Dys,4 Fys 1 D D

Fy—The derived algebra is B,;, so we have
By+aD,B;, a#0,
and this cannot be further simplified.
Fy—This algebra is Abelian, so we can write
By+aD,B,+bD, a®ib>+#0.

The element Z; in the normalizer will change the sign
of @ and b, so one of them can be constrained to be non-
negative. Thus we can put

Bi+acoscD, By +asineD, a>0, 0sc<m. (104)
Fiy—The algebra is Abelian, so we have

By+aD,B,+bD, a?+b%+0.
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This algebra can however be simplified, using the outer
part of Nor Fy,, i.e., exp(xB;+yB,). Indeed, if a+0
we can transform this algebra into

B3+D, B4+bD, -0 <h < oo,

If a=0 we obtain

Bs, B4 +D.
Fy—We obtain

€oscB; + sincBy+aD, a>0, 0<c<w, c#7u/2. (107)

The presence of Z, in the normalizer of Fy; makes it
possible to take a> 0.
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F,—As in Fy; we have

B;+aD, a>0. {108)
Fi;—As in Fyy and Fy, we have
By+aD, a>0. {(109)

Fyy—Making use of the transformation expxB, in the
normalizer of Fy;, we obtain one nonsplitting subalgebra

(110}

All subalgebras of the “homogeneous similitude al-
gebra” D® LSL(2,C) are summarized in Table V. A
notation Dj,, for them is introduced in the first column,
the second column indicates the subalgebra F, they were
obtained from and the third column gives their dimen-
sion over the field of real numbers. The generators of
D;,, are given in the fourth and fifth columns. In the
last column we show which groups the corresponding
Lie subgroups are isomorphic to. The notations are
the same as in Table IL. In particular, B, =coscB;
+sincB,, 0<c<m, c#m/2.

B;+D.

5. CONCLUSIONS
The main results of this paper are given below.

1. The general method of subgroup classification
presented in Sec. 2, in particular, the algorithms of
Secs. 2B-—D.

2. The complete classification of subalgebras of the
Poincaré algebra, summarized in Tables I, III, and IV
of Sec. 3. Some properties of the subalgebras are also
listed in the tables.

3. The complete classification of subalgebras of the
“homogeneous similitude algebra” D® LSL(2, C), sum-
marized in Table V of Sec. 4.

While finishing this paper we became aware of two
preprints on the subgroups of the Poincaré group. '*13
The authors use different methods than we do, but the
results should be equivalent. We have actually made a
comparison of the results and found some differences.
Since neither of these papers has been published (as
far as we know), we do not find it appropriate to publish
a comparison, Obviously, we assert that, in cases when
a contradiction occurs, our results are correct.

Our future plans were discussed in the Introduction,
They involve a similar classification of subgroups of
other relevant groups, a study of the properties of the
subgroups of the Poincaré and similitude groups and
their physical applications.
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subalgebras of the Poincaré algebra and ours. The only
differences that occur concern two- and three-dimen-
sional nonsplitting subalgebras (nonsymmorphic
algebras in their terminology), obtained from the sub-
algebra F,,={B,, B,}={L,+K,, L, -K,} of the Lorentz
group Lie algebra (generators A_and A, in their nota-
tion). We have only one such iwo-dimensional algebra
B, 16, they have four (one of which depends on a con-
tinuous parameter) in their Table VIII, 1, We have five
such classes of three-dimensional algebras P, ,,

~ P, 155 they have many more in their Table IX.2. The
arguments that we give in our article between formulas
{(87) and {96) inclusively, prove that we are right, i.e.,
that the additional subalgebras of Ref. 15 are conjugate
to others in their (and our) tables, Let us also note that
in our article, as in Ref. 15, conjugacy is considered
with respect to the proper orthochronous Poincaré
group (without parity and/or time reversal).
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All subalgebras of the similitude algebra (the algebra of the Poincaré group extended by dilatations) are
classified into conjugacy classes under transformations of the similitude group. Use is made of the classification of
all subalgebras of the Poincaré algebra, carried out in a previous article. The results are presented in tables

listing representatives of each class and their basic properties.

1. INTRODUCTION

This article is the second in a series of papers
devoted to a study of the subgroup structure of Lie
groups of fundamental importance in physics. In the
first article,! further to be referred to as I, we pre-
sented a general method for classifying Lie subalgebras
of Lie algebras with nontrivial ideals, The method,
making use of cohomology theory, was then applied to
classify all continuous subgroups of the Poincaré
group (inhomogeneous Lorentz group) and of the homo-
geneous similitude group, i.e., the Lorentz group ex-
tended by dilatations.

In this paper we make use of the previous results to
provide a classification of all continuous subgroups of
the similitude group, i.e., the Poincaré group extended
by dilatations.

Let us mention in passing that related problems were
treated in two other previous articles. In one of them?
we found all maximal solvable subgroups of the
pseudounitary groups SU(p, g) and all continuous sub-
groups of SU(2,1). In the other® we discussed all
maximal solvable subgroups of the pseudoorthogonal
groups SO(p, q).

The similitude group SG, also called the Weyl
group, ! is of considerable interest in elementary parti-
cle physics, the general theory of relativity and other
fields of physics. Its importance in high energy physics
is largely related to the phenomenon of scaling in deep
inelastic scattering and thus to short distance behavior
in elementary particle theory. For information on
various approaches to scale invariance we refer to re-
cent reviews and some of the original articles (some of
them also treat the more general conformal group of
space——time5‘1°). The similitude group also underlies
Weyl’s unified field theory4 and can figure as a gauge
group for field theories involving gravitation. 712

The similitude group is an 11-parameter Lie group
containing the Poincaré group as an invariant sub-
group. In itself it is the largest nontrivial continuous
subgroup of the conformal group of space—time.

The motivation for our interest in subgroups of Lie
groups was given, e.g., in our previous articles. 13
Let us just mention several points. In a situation where
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the similitude group is an invariance group of a physi-
cal system a classification of its subgroups provides

a classification of possible symmetry breaking inter-
actions (or boundary conditions). If we are interested
in the representation theory of the group SG, then each
chain of subgroups will provide us with a different
basis for the representations (at least those subgroups
the algebras of which have enveloping algebras with non-
trivial centers). Thus, if we wish to use the represen-
tation theory of SG to provide expansions of physical
quantities like scattering amplitudes, we will find that
different chains of subgroups provide us with different
expansions having different possible applications. (This
problem for the Lorentz and Galilei groups is treated
in detail in the review, 1) Different subgroups of the
similitude group may be of special relevance for the
construction of elementary particle dynamics in certain
frames of reference (see the discussion of the infinite
momentum frame and its relation to an 8-parameter
subgroup of the Poincaré group“).

In Sec. 2 of this article we review some known re-
sults on the similitude group in order to establish nota-
tion (which is consistent with that used in I) and then
discuss the method used to obtain all classes of sub-
algebras of the similitude algebra S (up to conjugation
under the similitude group itself). In Sec. 3 we obtain
our main results, i.e., a list of representatives of
each conjugacy class of subalgebras of S, summarized
in Tables. Section 4 is devoted to the conclusions and
future outlook.

2. METHOD FOR CLASSIFYING THE SUBALGEBRAS
OF THE SIMILITUDE ALGEBRA

A. The similitude group and its algebra

The similitude group SG can be defined as the group
of Lorentz transformations, translations and dilata-
tions of Minkowski space, i.e., the transformations

x:l.:hAu.vxv+au5 [J,,V=0,1,2,3, (1)
where % is a real positive number, A, are matrix ele-
ments of an O(3,1) matrix and @, are real numbers,

The vectors x ={xy, ¥, X,, X3} are real vectors in the
four-dimensional Minkowski space with metric ds?
=dx} — dx} - dxf — dxi.
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We shall, however, make use of a different represen-
tation of SG, remembering that SG is a subgroup of the
conformal group of space—time, i.e., the group of all
transformations of x,,, leaving the element ds? form-
invariant: ds® = hds'®. This group is isomorphic to
SU(2,2) (for reviews see, e.g., Refs. 5—7 and 10). We
shall use a somewhat nonstandard realization of SU(2, 2),
already introduced earlier, '~ namely the group of
transformations G of a four-dimensional complex vec-
tor space satistfying

GJG =J, (2)
where
0001
0010
Tt0 100 3)
1000

(the cross on G implies Hermitian conjugation). Ele-
ments X of the Lie algebra of SU(2,2) in this realiza-
tion satisty

X*J+JX =0 (4)

and the general element of the algebra can be writien as

a B € ia
] b —e*
X= z ic —lé* _e | a—a*s5-5%=0, (5)

id —£% —y* — X

where Greek letters denote complex numbers, italic
letters real ones, and the stars indicate complex con-
jugation. If we now consider the subalgebra of (5)
leaving a two-dimensional vector space

m
14

0
0

invariant, we obtain an 11-parameter subalgebra

d+c+iq a % ia
d-c~1 ib — ¥
S= B q Y
o 0 —-d+c—iq - o* - (6
0 0 - B* —d-c+ig

It is easy to verify that this algebra is isomorphic to
that of the similitude algebra, i.e., its structure is

S=DI(LSL(2, C)O LTy, 1)

where ) indicates a semidirect sum, D generates

dilatations, LT, four-dimensional translations, and
LSL(2,C) is the algebra of the special linear group

SL(2,C).

For our purposes a convenient basis for the simili-
tude algebra S is provided by the following matrices.

Dilatations:
10 0 0
01 a 0

D= 00 -1 0 J )
00 0 -1

The homogeneous Lovenlz lransfovmalions
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(LSL(2, C)):

i 0 0 0 1 00 0
0 -7 0 0 0 ~10 0
B, = -
Vo o —i0) By o1 0}
00 0 i 0 60 -1
010 0 0700
000 O 0000
B, = =
3"looo -1 Blgoo i) )
000 0 0000
00 00 0000
10 00 i 000
B = =
Y00 00} Bs=lo o oo}
0 0-10 00 70
Translations:
000 ¢ 001 0
0000 000 -1
X, = (. =
t“loooo) *looo o)
0000 00 0
0 (10)
0070 0000
000 ¢ 0070
X, = =
*Voo0o00)] X looool
0000 0000
The dilatations satisfy the commutation relations
[D,B;]1=0, i=1,...,6; [D,X]=2%, a-1,...,4,
11
and the translations commute:
[Xa)Xb]rOy a,b:l,_,_,4. (12)

All other commutation relations are given in Table 1.

The usual physical notation is different and less con-
venient for our purposes. Throughout the article we
shall use the generators B; and X,. Their relation to
the usual generators of rotations L;, proper Lorentz
transformations (boosts} X; (=1, 2,3) and translations
P, (p=0,1,2,3) is

By{=2L;, By=-2K;, B3=—Ly—-Ky,

By=L,~Ky, By=Ly—K,, Bg=Li+Ks, (13)

X(=3(Py~Py), Xo=Py, Xy==Pf, X;=35(P,+P,).

{14)

The commutation relations for the usual physical
generators are

[Li, Lel=€ile, [Kiy Kpl== €Ly, [Ly, Kyl =€k,

[Li, Pyl=0, [L;, Ppl=€ily, (15)

(K, PD]:Pia [Ki, Py]=84Po,

G, k,1)=(1,2,3).

An element of the similitude group itself can in the
considered realization be written as G=exp S, where S
is given by (6), i.e.,

._{G11 Gy
G_<0 Gay

and condition (2) implies that the 2 X2 matrices Gy,

(16)
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TABLE 1. Commutation relations for the Poincaré algebra.

By B, By B, Bs By X, X, X3 X,
B, 0 0 2B, - 2B, - 2B, 2B, 0 2X, - 2X, 0
B, 0 0 2B, 2B, - 2B, - 2B, 2X, 0 0 -2X,
B, - 2B, - 2B; 0 0 B, By 0 0 2X, X3
B, 2B, - 2B, 0 0 B, - B, 0 - 2X, 0 - X,
By 2B 2B, - B, - B, 0 0 X3 0 2X, 0
B - 2B, 2B, -B, B, 0 0 X, 2X, 0 0
satisfy subalgebras of the Poincaré algebra, that are not
. + s _ equivalent under the similitude group. To do this we
CudiGiy =1, Gud1Giy+ G1yi612 =0, amn must merely remember that the dilatation generator D
with commutes with all generators B; of SL(2, C), but

01
J1:<1 0).

Thus an element of the similitude group can be written
as

a B € 3
|79 K v —ab = By = A*
g= 0 0 a*/A —B*/A , A ad ﬁ’)/ A 5 (18)
0 0 —y*/A  &%/A

with Gy, satisfying
o*E+ af* + Bre+ Per =0,
YRE + %+ Bu* + av* =0, (19)

Y¥U+pr* + 6%y +6u*=0.

B. Classification of subalgebras of the similitude
algebra

In paper I we have provided a list of representatives
of all conjugacy classes of subalgebras of the Poincaré
group Lie algebra. The results were summarized in
three tables. The first of these (Table II of I) presents
all subalgebras of the algebra of SL(2, C) and hence all
continuous subgroups of the homogeneous Lorentz group
(these were known previously!®¢). Table III of I pre-
sents all subalgebras of the Poincaré algebra P that
split over their intersection with the translations LT,
(i. e., the bases for these algebras can be written in a
form containing elements of the type B; and X, only).
Table IV of I lists representatives of all subalgebras of
P that do not split over their intersections with LT,

(i. e., their bases will always contain elements of the
type B, +¢, X, where c,, are real constants that are not
all equal to zero and cannot be transformed into zero by
an inner automorphism of the Poincaré group).

In this paper we take the results of I and build them
up into a list of all subalgebras of the similitude algebra
(up to conjugation under the similitude group). We use
a related notation for the subalgebras of S, namely,

S;, where j runs from 1 to 15 and indicates the sub-
algebra F; of LSL(2, C) that has been extended to S; ,
by translations and dilatations. The label £ simply
distinguishes different subalgebras obtained from the
same F;,

The procedure consists of several steps:

1. Find representatives of all conjugacy classes of
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multiplies translations by a constant [see formula (11)].
The transformation exptD in the group SG will thus
multiply all generators X, by a constant, leaving B;
invariant. The matrix D itself is not of form (18), but
we shall include it in our group of automorphisms, to
simplify subalgebras of S. It corresponds to total inver-
sion (parity times time-reversal) and is contained in the
similitude group, but not in the component connected to
identity. It follows that the extension of the Poincaré
group by dilatations leads to the coalescence of certain
nonsplitting subalgebras of the Poincaré algebra. In-
deed, we have, e.g.,

D(B,-X,)D'=B,+X,, (20)
e*P(B, + x*X3)e*P = B, + X,. (21)

Thus the algebras B, + Xy, while inequivalent under the
Poincaré group, are conjugated under the similitude
group. Similarly, the continuous set of Poincaré sub-
algebras B, +x2X,, coalesces into one subalgebra

By + X;.

In Table II of the following section we list conjugacy
classes of subalgebras of P (and of S) that are inequiva-
lent with respect to the similitude group.

2. Subalgebras of the similitude algebra containing D
as a generator. Any subalgebra of this type has the
form

D+Py,, 22)

where P, , is a subalgebra of the Poincaré algebra. It
follows from the above discussion that we thus obtain
subalgebras of S if and only if P, , is a splitting sub-
algebra of P (Table HI of I) and that each splitting sub-
algebra of P provides a different subalgebra (22) of S.

3. Subalgebras of S not contained in the Poincaré
algebra and not containing any conjugate of D under SG,
such that the intersection with the Poincaré algebra
splits over the translations. Choosing one generator of
such an algebra as

D+Za,B,+Zx X, (l<su<6, 1<as4), (23)

there has to be at least one a, or x, nonzero even after
SG-conjugation. The other generators {BM,XG} form one
of the splitting subalgebras P, , of the Poincaré algebra
listed in Table I of I. To find all these subalgebras of
S we consider each splitting subalgebra P, of P, add
to it a generator (23) with ¢, and x, so chosen that we
obtain an algebra. The element (23) is then simplified
using the normalizer of P; , in the Poincaré group and
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possibly further transformations involving D and nor-
malizing (leaving invariant) the subalgebra P, ,.

4, Subalgebras of S not contained in the Poincaré alge-
bra and not containing any conjugate of D under SG, such
that the intersection with the Poincaré algebra does not
split over the translations, We choose one generator of
each of these subalgebras in the form (23), the others
{B, + Zx,,X,, X;} form one of the nonsplitting subalgebras
ﬁm of P listed in Table IV of I. To find all such sub-
algebras of S we consider each nonsplitting subalgebra
P, , of P separately and choose a, and x, in (23) in the
most general manner that forms an algebra with IN’M .
The element (23) is then simplified, using the normaliz-
er of ﬁj,k in the Poincaré group, supplengented by ele-
ments involving D and also normalizing P, , (i.e., we
use the normalizer of P, , in the similitude group).

This method provides a list of all subalgebras S, , of S.

Several comments are in order.

1. The subalgebras of S obtained by applying the above
steps 3 and 4 correspond to a generalization of the
“Goursat twist”!"™"!® method for obtaining subgroups of a
group that is in itself the direct product of two sub-
groups [e.g., O4) as 0(3)x0(3)].

2. We could have applied directly the general method
developed in I for classifying subalgebras of a given
algebra. The Poincaré algebra would then have served
as a nonabelian invariant subalgebra whose subalgebras
are known. In this particular case we found the method
described above to be more convenient.

3. COMPLETE LIST OF CONJUGACY CLASSES OF
SUBALGEBRAS OF THE SIMILITUDE ALGEBRA
A. Subalgebras of the Poincaré algebra P as subalgebras
of the similitude algebra

All subalgebras P; , listed in Table III of I split over
their intersection with the translations. These sub-
algebras are not affected by dilations. Hence Table II
of I also provides a list of representatives of conjugacy
classes of subalgebras of the similitude algebra S and
no two entries are conjugate to each other under the
similitude group. We shall not reproduce the table here
but only refer to I. For the purposes of this article all
subalgebras P; , of Table III of I will be denoted S;,,
(same value of j and k).

Table IV of I, listing all nonsplitting subalgebras
IT’M of P is modified when conjugacy is considered
under the similitude group. In view of formulas of the
type (20) and (21) many classes coalesce. Thus Table
IV of part I is replaced by the following Table IL

The first column in Table II introduces a notation for
the subalgebra, the second tells us from which sub-
algebra of LSL(2, C) it was obtained, the third lists the
subalgebras P;,, of P that coalesce to form the same
subalgebra of S up to SG conjugacy. The fourth column
gives the generators of S;,, and the last one its dimen-
sion (over the real numbers).
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B. Subalgebras of the similitude algebra containing O as
a generator

A complete list of such algebras is obtained by taking
each splitting subalgebra of the Poincaré group and
adding D to the basis. Thus, we take all algebras listed
in Table I of I and add D to them. No other subalgebras
of S, containing D as a basis element exist. Again, we
shall not reproduce this table and refer the reader to
I. We thus obtain subalgebras which we denote

St,3:S1,45 Sz,50 =5 Sa,85 3,50 => Sa85 St,5 = St, 85
S5, 5= S5 80 Ss,8— Se, 115 St,8— S,125 Sg 18— Sg2715
TABLE II. List of subalgebras SM that are nonsplitting sub-

algebras of the Poincaré algebra and that are nonconjugate un-
der the similitude group.

Notation F; B, Generators of S, dimgS; ,
Sg,5 Fg P, Bee B1+X,,By, By, X, X, X,
Se,6 Per.Bes  Bi, Byt Xy, Byt Xy, X,
Se,1 Peo,Poq  Bi1tXy,B5,B,
St,6 Fy; Py By +X3,B3,B4,X1,X,
L1 I By+X3,B3,B,,%,

BZ+X21BS7X1’X3!X4

Sg, 11 Pg, 11 B, +X;,B3,X,,X,

& 12 Ps, 12 B, +X),B3,X,X;

8,13 B, 13 By+ Xy, By, X, X+ X5,0 7 0
814 P14 By+ Xy, B5,X,

815 Bs, 15 By+X,,B3,X,

8,16 Bg 16 B, +X,+bX;,By,X,,b#0
8,17 Py 11 By+X,, B,

Si0,¢ Fiy Pyos By +X,,By,X(,X;,X;5

10,7 Py, By+ X, B+ X3, Xy, X,
Suos Biga . Byt X, By XX,
Si0,9 Pio,9:P10,10 B3, By+X;,X,X)
S1o, 10 Pioit ~ By, By+ Xy, X3

Pio, 1281013 B3+ X, By +bX,+ X3, X1, >0

S1o, 12 Pio, 14, P10,15 B3+ Xp, By+ X5, Xy
10, 13 Py, 18 By, Byt X, B
St 12 Proi1sPragie BrtXe, X, X5, X

Pio13 By + Xy + Xy, X - Xy, X, Xy
Pl ~ B+ X - X, X1+ X,X,,X;
Py 15, Pro16 B+ Xy, X5, X5

I TR B+ X+ X, X, X,y

P18 ~ B +X) - X, X5, X,

By, 19.P1a,20 B+ Xy, Xy

12,18 Bia, 2 B+ X+ X X - X,
12,19 Pis o B+ X - X, , X+ X,
12, 20 Ei2,23yP12,24 B,+X,

12,21 Pia,25 B+X +X,

12,22 Py o6 B+ X - X,

Sis, 0 Fiz Bys,10 By +Xp,Xy,X3,X,
13, 11 P13, 11 By+ Xy, Xy, X3
13,12 P31 By+X,, Xy, Xy
13,13 Py3,13 By+ X, Xy

S13,14 P31 By + Xy, X,

Si3,15 513.15 By+X,

S0 Fu B o By+X,,Xy,X,,X;5
14,11 Py, 115 Py, 12 B3+ X, Xy, X3, X,y
14,12 Py, 13 B3 +Xy,X;,X%

Si4,13 Pis1a B+ X, X, X3
14,14 P 15:Pug, 16 Byt X5, X1, X

Si4,15 Bt o By+ X, Xy, Xy +bX3,b =0
14,16 Py 15, Pia 10 By + X, Xy, Xp +0X5,0 0

Si4,17 P2 o B+ Xy, X
14,18 Py o1, Puyne Byt X0, Xy
14,19 P, B3+ Xy, X,

14,20 B o B+ X,

o PO DO DD L0 L0 O LI D R R DO DS 02 GO R (e NN W WWEA R RINWW W R RO DWW R DR o

Py 25, Py, 08 B3+ Xy

Patera, Winternitz, and Zassenhaus 1618



So, 7= Sq,12; St0,14 = S10,185 St1, 7~ S11,125

Siz,23 = S12,325 S13,16 — St3,245 S1g22— S14,305 Si5,12 — Sts, 22

24
Note that algebra S;; ,; is generated by D alone. @)

C. Subalgebras of S that are not contained in the
Poincaré algebra do not contain any SG-conjugate
of D and are such that the intersection with the
Poincaré algebra splits over the translations

We consider each subalgebra P;,, of Table III of I,
add the generator D=D+a,B, +x.X, to it and find a, and
x, in such a manner as to obtain an algebra. We put
a,=x,=0 for those generators B, and X,, that are con-
tained in P, ,. This algebra must then be simplified
using transformations contained in NorgsP; , (normal-
izer of P; , in the similitude group).

In view of the fact that transformations of D by trans-
lations produce all expressions

D=D+ZxX, (25)

it follows that for no SG-conjugate of D+#D can we have
a,=0, u=1,...,6.

We consider several examples to illustrate our meth-
od and then list all subalgebras of this type in Table III.

The algebras Py, and P, , (derived from F; and F)
of Table III in I cannot be extended in this way (i.e.,
a, =x,=0). Consider those derived from F;. The gen-
erators of the homogeneous part of P; ; are By, B;- B;,
B, +Bg. Hence we could have

D=D+aBy,+b(By+Bj;) +c(By— Bg) +x.X,.

Commuting D with By, we obtain y=c =0, commuting
with By — By, we find a=0. Now consider, e.g., P4,
not containing any translations. Commuting D with B,,
B;—Bj and B, + B, we find x,=x3=0, x;=x4 i.e.,

D+x(X,+X,;), By, By~B;, B;+Bg (26)
form an algebra. However, the transformation

exp[- %x(X1 +X4)] is in the normalizer of P; ; and we
have

exp[- 3x (X, + X)|[D +x (X, + X,)] exp[ix (X, + X,)]=D,

so that the algebra (26) is conjugate to one of the split-
ting subalgebras of (24) (and will hence not figure in
Table III).

As a further example, consider the algebras Py, , of
Table III of paper I, derived from F,,. The generators
of the homogeneous part of Py, (i.e., of Fyy) are By
and By, Putting D=D+a,B{+ayB; +a;Bg+agBg+x,X, and
commuting with B; and B, we find a;=a;=0. Algebra
Py, is thus extended to

D=D+aB+bBy, By, By, X1, Xy, X3, Xy,
—w<a<o, —w<h<wo, al+bi#0,
The algebra Py, 4, on the other hand, leads to

D=D+aB,+bBy+xX,, By, By, X, X5, X
The transformation expyX, leaves P, , invariant but
takes x into zero in D, if we put y =x/2(1 - b) for b#1,
For b=1, on the other hand, the transformation expyD
with e*=x"1/2 for x> 0 or D expyD with e” = (- x)/% for
x <0 will take x into 1. We thus obtain from Py, , two
types of subalgebras of S:
D+aB1+bB2’BS’B4’X1yX2’X37 (27)
—w<g<o, —w<h<o, a2+b2¢0,
and

D+aB;+By+X, B3, By, X, Xy, X3, —®<a<eo, (28)

We proceed quite analogously with all subalgebras of
Table I of I. The results are summarized in Table III.

TABLE IIL. Subalgebras of S that are not contained in P, do not contain any SG-conjugate of D and are such that their intersection

with P splits over the translations.

Notations | F, Py D Generators of P, , dimgS, ,
Ss.9 Fy Ps D+aB,, a» 0 coscB +sincBy, By B, X, Xy, X3, X, 0<Cc <, ¢#2/3 8
Ss, 10 Ps D+aBy, a=0 coscBy +sincBy, By, By, X, Xy, X;, O<c<m, c*n/2 7
S5, 11 Py, D+aBy, a=0 coscB; +sincBy, By, By, X, 0<c<m, c*n/2 5
S: 42 P, D+aB,, a=0 coscB; +sincB,, By, By, O<c<m, c*71/2 4
56,12 F, P6,1 D+aBy, a=0 31,33,34,X1,X2,X3, 8
56,13 P6,2 D+aB2: a=0 BhBa!BdsXth’X:b 7
Sg, 14 Py, D+B; +X, By, B;, By, Xy, X%, X, 7
Se, 15 Pgs D+aBy, a0 By, By, By, Xy 5
Sg, 16 Py D+aBy, a=0 B,,B;,B, 4
S, 17 P6.4 D—B, +X, B,,B,;,B, 4
S, 13 F, Py D+aBy, a=0 By,B,, By, X(,X,, X, X, 8
7,14 Py, D+aBy, a#0 By, By, By, X1, X%, X3 7
57,15 P7’4 D+aBl, a=0 Bz,B3,B4,X1 5
S1,16 Py s D+aB,, a*0 B,,B,,B, 4
10,19 Fig 10,1 D+aBy +bBy, @ +& = 0 By, By, Xy, %, X;3, X, 7
S10,20 10,2 D+aBy +bB,, & +#* =0 By, By, Xy, X3, X3, 6
Si1o,21 10,2 D+aB +By+X,,~® <a<o By, By, X, X, X 6
Sio,22 10,3 D+aBy, a=0 By, By, Xi, X, 5
S10, 23 10,4 D+aB, +bB,, a* +b* = 0 By, By, X, 4
Sy0,24 10,5 D+aB+bB,, @ +b =0 B,,B, 3
S10,25 10,5 D+aBy—-By+X,~® <a<= B3, B, 3
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TABLE 111, (Continued)

511,13 Fyy Pt D+aBy, a>0 coscB;+sincBy, Xy, Xy, X3, X,, O<c<m, c=7/2 6
S, 14 Py, D+aBy, a#0 coscBy +sincBy, X, X, X;, 0<c<w, c*7/2 5

11,15 Py s D+aBy, a>0 coscB; +sincBy,X,, X, O<c <, c=qn/2 4
511,16 Py D+aB, a>0 coscB, +sinch, X;, X, 0<c<r, c*r/2 4
St 11 Piys D+aBy, a=0 coscB, +sinch,, X,, 0<c<r, c=n/2 3
Siy18 1,6 D+aBy, a>0 coscB +sincB,. 0<c<m, c*n/2 2
S1,33 Fi, 12,1 D+aB,, a>0 By, Xy, X%,,X;,X, 6
Sta,3¢ 12,2 D+aBy, a=0 By, X, %, X; 5

12,35 12,2 D+B,+X, By, X,,X%,X, 5

12,36 12,5 D+aB,,a>0 B, X, X, 4
Sy, 3 12,6 D+aBy, a>0 B, %,X, 4
S19,38 12,6 D+By+X, By, X, X; 4
Sty 30 12,7 D+aB,, a=0 B,, X, 3

12,40 12,7 D+B,+X, B, X, 3

12,41 Py 10 D+aBy, a>0 B, 2

12:42 Piog0 D+B,+X, By 2

13,25 F, P13'1 D+aBy, a>0 By, X,X,,X;,X, 6
513,26 P13'2 D+aBy, a=0 By, X, X), X, 5
Sy3,07 Py, D+aBy, a>0 By, Xy,X, 4
S13,8 Pyse D+aBy, a>0 By, X, X; 4
Si3,29 Pysy D+aBi, a#0 By, X, 3

13,30 Py D+aBy, a>0 By 2

14,31 Fiy | Pun D+aB,, a*0 B3, X1, %, %5, X, 6
Si4,32 Py D+B, B;, X,,X,X,,X, 6
Si4,33 Py D+aB,, a*0 B3, X,%,X; 5
Sia, 34 Py D+By+ X, By, X;,%,X; 5
S14,35 Py, D+By By, X, X5, X3 5
S14,36 Pu,s D+aBy,a»0 B3, X, X3, Xy 5
Si4,31 Piys D+aBy, a=0 By, X, X, 4
S14,38 Pyyy D+B, By, X, X, 4
Sya,39 Piy,s D+aBy,a*0 By, X, X; 4
Sy4,40 Piy s D+By+X, By, X, X; 4
S14,41 Piss D+B, By, X, X, 4
Sia,42 Pyye D+aBy, a=0 By, X, X +cX3, =0 4

14,43 Piye D+B, By, X, X% +cX;3, c# 0 4

14,44 Py D+aB,, a=0 B3, X, 3
S14,45 Py, D+B, By, X, 3
Sis,46 Py D+aB,, a=0 B, X, 3
St4,47 Py D-B,+X, By, X, 3
Siuas Py D+aB,, a=0 s 2
Si4,49 §14,9 g-£2+x1 ga 2
S14, 50 14,9 + 0y 3 2
3415,23 F P54 D+alcoscB; +sincB,), a>0, 0=c<1 X, X%,X;,X, 5
Sis,04 Pys D+By X1, X%, X3, X4 5
15,25 Pl D+alcoscB; +sincBy), a>0, 0=<c<2r X,X,X, 4
S15,26 Piso D+B, X, Xy, X, 4

15,27 Pigs D+aBy, a>0 X ~X,X,,X;3 4

15,28 le D+aBy, a>0 X+ X, Xy, X, 4
515’25, P15',1 D+a(B;-Bg, a>0 X+ X4, X9, X3 4
515’30 Py D+B{+B;+B, X +X4, %, X; 4
81“1 Pys, 5 D+aBy, a=0 X, X, 3
S5, 22 Piss D+(coscBy+sincBy), 0=c<r X,X 3
Sisa3 Py D +a(coscBy+sincBy), 0=c<r X, X, 3
Sys,at Pyt D+a(coscBy+sincBy), 0=c<m X, X, 3
St 1;15,3 g+aB(coscBl+ sincBy 0=c<2r ))? g

+

:i;e Pi:fi D+aB,, a>0 X+ X, 2
Sis 35 Py 1o D+aBy, a>0 X - X, 2
S15,3 15,10 D+a(By+ By, a>0 Xy - Xy 2
545,40 15,10 D+By—By—B; Xy - Xy 2

15,41 Pys 11 D+alcoscBy+sincBy) ,a>0, 0=c<gy 0 1
Sts,42 Pys 1 D+By 0 1

In the first column the symbol S; , indicates that this
is the kth algebra obtained as an extension of F; by
dilations and translations. The second column lists the
subalgebras F; and the third column gives P; ., i.e.,
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the subalgebra of the Poincaré algebra that we are add-
ing the generator I to. All generators of S;,, are in
columns 4 and 5. The dimension dimgS; , ot S;,, over
the field of real numbers is given in column 6.
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TABLE IV. Subalgebras of S that are not contained in P, do not contain an SG-Conjugate of D and are such that their intersection
with P does not split over the translations.

~

~

Notation F,; Pir D Generators of P, , dimgS; ,
S‘;’w F 56,5 D+BZ+xX4,—"° <x <% Bl+X4,B3,B4,X1,X2,X3 7
6,19 S5 D+B, B,,B;+X,,By+ X, X, 5
Se, 20 Sa,‘z D—By+xX;,—® <x < B +X,B3,By 4
S10,26 Fi “Sio,6 D+ 3B, By +X,;,By, X1, X, X; 6
Sto, 21 Sio,8 D+3B By+X,,B,, Xy, X, 5
S10,28 S10,9 D+B, B3, By + Xy, X, X, 5
Si0,29 S1o,10 D+B, By, By+ X, X4 4
510'30 510,11 D+B, 33+X2,B4+bX2+X3,X1, b=0 4
S10,31 Sig,12 D+aB+By, —*<a<® B;+X,,B;+X3, X 4
Sioze S10.13 D+ B, By, By +X;, 3
Si2,43 Fyy Sz, 11 D+By+xXy, - <x < By+X,,X1,%,X; 5
Si2,44 Sia,14 D+By +xXy, —o<x<> B+ Xy, X;,X; 4
Si2,45 Sig, 11 D+By +xXg, —0<x< By+ Xy, Xy 3
Sia.46 Sig 90 D+By+xX,,—® <x < By+X, 2
S14,51 Fy Si4,10 D+3B, B+ X, X,X,, X, 5
Si4,50 Si,11 D+B, By+X,,Xy,X3,X, 5
Si4,53 Si4,12 D+3B, By+ Xy, Xy,X, 4
Si451 14,13 D+4iB, By+ Xy, Xy, X3 4
514'55 514,14 D+By+xX,,—® <x < B+ Xy, X, X3 4
S14, 56 Si1s D+}B,+b(By+aXy) ,-© <b<® By;+X, X X,+aX;,a=0 4
Su s Suq  D+bBy+2alb —1)X,,—o <b <o BytX, Xy, Xy+aXs,a=0 4
S14, 58 S, 11 D+232 By+ Xy, X, 3
Si4,59 S, 18 D+ B, By+X,,X, 3
14,60 Si,19 D+ Bz B+ Xy, X, 3
Sia, 61 Si4,20 D+3B, B3+ X, 2
Sia,62 Si4,91 D+By+b(By~Xy), b= B+ X, 2

D. Subalgebras of S that are not contained in the
Poincaré algebra, do not contain any SG-conjugate of
D and are such that the intersection with the Poincaré
algebra does not split over the transiations

We consider individually each subalgebra S; kzﬁj' 2

of Table II of the present article, i.e.,

the algebras ob-

tained from Table IV of I by using dilatations to make
certain classes of subalgebras of P coalesce. To the
generators of S; , we again add a further operator D
=D+a,B, +x,X,, putting the coefficient ¢, and x, equal
to zero 1f the corresponding B, or X, f1gures in P] &
(we can set @, =0 if B CP] v or B +y”Xch ,» Where
Vv, are real constants). Restrictions on the possible
values of @, and x, are obtained by requiring that b

+ P, , forms a Lie algebra. The element D of the algebra

is then simplified using transformations belonging to
the normalizer of P; , in the similitude group, i.e., the
normalizer of P; , in the Poincaré group, listed in

Table IV of I, supplemented by the discrete element D

in the similitude group and transformations of the type
e~xp{D+buBu +v,X,} with b, and v, so chosen as to leave
P; , invariant.

We shall consider some examples and then list all
subalgebras of S obtained in this manner in Table IV
above.

Consider the algebras S , of Table II. The element
D can be of the form D +aBy+bBs+cBg+x,X,. Commut-
ing with By +X,, By or B, +X;, as the case may be, we
find b=c =0. Consider first case S 5, i.e.,

D=D+aBy+xX,, B;+X,, By, By, X;,X,, X, (29)
We have
(D, B, +X,]=2(1 - 0)X

and hence a=1. Algebra (29) with a=1, x arbitrary real
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should be further simplified, i.e., we must attempt to
restrict further possible values of x. The normalizer of
Sg, 5 contains transformations generated by D+ B,, B, and
X, (in addition to the inner automorphisms expS; ;).
Using the commutation relations of Table I, it is easy
to see that none of these change the value of x and
hence (29) cannot be further simplified. Similar results
are obtained for S; ; and S; ; (see Table IV).

It can be verified directly that none of the algebras
Sq,r O Sg , of Table II can.be extended by dilatations.
Now consider algebras Sy, g and Sy, 4 involving B, + X,
By, Xy, X; and in the case of Sy, ¢, also X;. In the case
Sy4,¢ We find that the most general operator D forming
a Lie algebra with S, , is

D=D+1B,y+xX,.

The normalizer of Sy, ; is generated by B,, By, Xy, X,
X3, X, and D + 3 B,. We have

exp(yX,)D exp(- yX,) =D + 1B,

if we put y =x. We thus obtain a single algebra generat-
ed by

D+ 3By, By+ Xy, By, X1, Xy, X
Similarly, for S, ; we find that
D=-D+ 3B, +xX,

provides an extension for all x. However, expyX,
belongs to the normalizer of Sy ; and

exp(yXy)D exp(- yX;) =D + 3B,
if we put ¥ =x/2. We again obtain a single algebra
D+ 3By, By+ Xy, By, Xy, X,

Continuing along the same lines we obtain the results
presented in Table IV. The first column simply

Patera, Winternitz, and Zassenhaus 1621



enumerates the subalgebras of this type, the second
tells us which subalgebra of LSL(2, C) they were derived
from, the third lists their intersections with the
Poincaré algebra using the notations of Table II, the
fourth and fifth column give all the generators and the
last column gives the dimensions of the subalgebras.

This completes the list of all conjugacy classes of
subalgebras of the similitude algebra.

Since the subalgebras of the homogeneous similitude
algebra (the algebra of the homogeneous Lorentz group
extended by dilatations) represent separate interest we
provide a separate table of these (Table V). We suggest
the name “scaling group” for this group. In Table V
we use somewhat different conventions than in the rest
of this article, in order to be able to show the mutual
inclusions of the subalgebras. In this table B, =cosxB,
+sinxB, with 0 <x <7, i.e., we include the points x =0
and x =7/2. Subgroups of D® SL(2, C) that are con-
tained in SL(2, C) are separated out graphically. The
lines connect each subalgebra (or continuous subgroup)
with its maximal subalgebras. A full line indicates that
the inclusion holds always, a dotted line indicates in-
clusion for specified values of the parameters only.
Note that the way of writing the subalgebras in Table V
corresponds more directly to Sec. 4 of article I than to
the conventions of the rest of the present article.

4. CONCLUSIONS

The result of this paper is the complete classifica-
tion of all subalgebras of the Lie algebra S of the
similitude group SG. These subalgebras are of several
types.

1. Subalgebras of S that are also subalgebras of the
Poincaré algebra P and are splitting extensions of sub-
algebras of LSL(2, C) by translations. Conjugacy class-
es of such algebras under the similitude group coincide
with conjugacy classes under the Poincaré group. Rep-
resentatives of all such algebras are listed in Table
IIT of T and are not reproduced here. Their labels S; ,
are obtained by setting j and %2 equal to the values they
take in Table III of 1.

2. Subalgebras of S that are also subalgebras of P
and are nonsplitting extensions of LSL(2, C) by transla-
tions. Many independent conjugacy classes under the
Poincaré group coalesce under the similitude group.
Representatives of all conjugacy classes of such alge-
bras (under the similitude group) are given in Table II
of this paper.

3. Subalgebras of S that contain D (the dilatation) as
a generator. Representatives of all such algebras are
obtained by taking Table III of I and adding the element
D itself to the generators. We do not reproduce these
subalgebras here; they are however assigned labels
S;,» [see (24)].

4. Subalgebras of S such that (i) they contain an ele-
ment D =D +Za,B, + ZxX,, but no SG-conjugate of D,
(ii) their intersection with P splits over the transla-
tions, Representatives of all such algebras are listed
in Table III above.
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5. Subalgebras of S satisfying condition 4(i) above,
but such that their intersection with P does not split
over the translations. Representatives of all such alge-
bras are listed in Table IV above,

The notations of this article are not entirely self-
evident. It is, however, quite trivial to return to the
usual physical notations. For the generators, indeed,
the connection is given in formulas (13) and (14). Note
that in our tables we have sometimes let the continuous
parameters range through closed regions, e.g., 0=c¢
<2m in Sy5 95, sometimes through open ones like 0 <c
<a/2, 7/2<c¢ <mwin Sg, ¢. In the last case the end points
are separated out and listed separately. We could clear-
ly have bunched more algebras together under one
heading, but we did not find this appropriate, since the
algebras, corresponding to the limiting values of the
parameters often have quite specific properties.

The homogeneous similitude group expD SL(2, C) is
of separate interest and has already been treated in L
Indeed, in Table V of I we gave a complete list of sub-
algebras of D® LSL(2,C), obtained by using a version of
the “Goursat twist method, ”!™~1? also presented in 1.
The results of Table V of I are actually contained in the
tables of this paper in a somewhat different, but equiv-
alent form. Table V of the present paper is new and
shows the mutual inclusions of various conjugacy class-
es of subgroups of the homogeneous similitude group.

Let us just mention some related work on the classi-
fication of continuous subgroups of real Lie groups. All
one-dimensional subgroups of U(p,q) and SU(p, q)
groups are known. 20 A classification of the real semi-
simple subgroups of real semisimple groups was per-
formed. ! Subgroups of the Poincaré group were also
considered by other authors® and some work has been
done on certain subgroups of the conformal group,
Galilei group and others. ?*

In the following papers of this series we plan to
provide similar lists of subalgebras and continuous
subgroups for further groups of interest (de Sitter,
conformal and others), We shall also return to the sub-
groups of the Poincaré and similitude groups and dis-
cuss some of their properties (mutual inclusions,
isomorphisms, existence of Casimir operators, etc.).
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In a preceding paper, a new form of the structural equations for any Killing tensor of order two
were derived; these equations constitute a system analogous to the Killing vector equations ¥/, K

= w,5 = —wg, and Vy 0o = Ry,

K ®. The first integrability condition for the Killing tensor

structural equations is now derived. Our structural equations and the integrability condition have
forms which can readily be expressed in terms of a null tetrad to furnish a Killing tensor parallel of
the Newman-Penrose equations; this is briefly described. The integrability condition implies the new
result, for any given space-time, that the dimension of the set of second order Killing tensors attains
its maximum possible value of 50 only if the space-time is of constant curvature. Potential

applications of the structural equations are discussed.

1. INTRODUCTION

Lower case Greek letter scripts with values 1, 2, 3,
4 will be used to designate components. The signature
of our metric is + 2, and we choose the sign of the
Riemann tensor so that 2V VK =R,  K*, where V,
is the covariant differentiation operator, and K, is any
vector field.

In the precursor I' of this paper, we introduced the
following two tensors corresponding to any given sym-
metric tensor K, of order two:

LaBr:VaKBV_VBKaw (1)

MchYﬁ:%Ag)égéw(vao xw)a (2)
where

AZyp = 023085 + 64505 Q

L ;, has the symmetries L, =L 44, and L;,4,,=0, and
M 4,5 has the same symmetries as the Riemann tensor. !
If K4 is regarded as a small perturbation on g4, then

L g and M ., can be simply related to the corresponding
first order perturbations in the affine connection and
Riemann tensor, respectively. This geometric
interpretation is giving in Appendix A.

When K, is a Killing tensor, the following equations
were shown''? to be satisfied by K 5, L, , and M ;4
and were called the structural equations for a Killing
tensor of order two:

VrKaB:%(LyuB+LyBa)7 (4)
vaa87 = bgé[%waﬁv Kvw + %ROXWKVB
+%RSXYVKV0 +%R7‘XGV KV¢]+MaB‘rB’ (5)

VAMaBm: A?ﬁaﬁ? [% (VVRMW)K"A + %(VVRMM)K"“,
'%(VxRoxwv)Kvw ~ iRy "L
YL

+ %1 Ryy,’ (5L

oxx “dwy

4 1 v
+3Row qu+ 3R@$A wav

Avos + 7Lw).u)]‘ (6)
Equation (4) is equivalent to the definition of a Killing
tensor, Eq. (5) is the integrability condition for Eq. (4),
and Eq. (6) is the integrability condition for Eqs. (4)
and (5). These equations are to be regarded® as a
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system of linear homogeneous first order equations in
K,s L,s,, and M ., in the same way that the Killing
vector equations

V Ky=wap V0o =R s K,

aBrb

are often regarded as a system of first order equations
in the Killing vector K, and the corresponding bivector
W, s =—wy,. The tensors L ,, and M, , are Killing
tensor analogs of w ;.

734

The structural equations can be used to attack the
problem of computing the second order Killing tensors
of any given space—time. They also constitute a tool
for the attempts to classify and discover new space-
times which admit Killing tensors and which are perhaps
subject to some additional constraints on the metric
tensor, the Killing tensor, or both. Examples of suitable
constraints are the demands that the matter tensor
vanish or be that of a perfect fluid, restriction of the
Weyl conform tensor to some algebraic special type,
specification of the Jordan canonical form of the Killing
tensor, and the existence of some symmetry group.

The objective of this paper is to augment our general
formalism until it is ready for such specific applications.
The new addition to our formalism is the integrability
condition for Eq. (6). This is derived in Sec. 2. The
result is a system of equations of the form

S

tagtivs1 w1 =0,

where S|4 1,51 w1 18 totally symmetric in its three
bivector scripts [aB ], [¥5], (A1] and is a linear com-
bination of the components K, L 5, and M ; .. The
coefficients in this linear combination depend only on
the Riemann tensor and its first and second covariant
derivatives.

The basic idea of the structural equations and of their
integrability condition is far from new. In 1923 Veblen
and Thomas? considered quadratic first integrals
K ,zx*¥, along the paths of an affinely connected space
and calculated equations analogous to ours, using the
first and second extensions of K, in place of our L ,,
and M _, ., respectively. Their results can be special-
ized to a Riemannian geometry, and equations which are
equivalent to ours but quite different in form would
thereby be obtained.
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In fact, in 1971, Collinson?® did consider the problem
for an n-dimensional Riemannian space and obtained an
equation which is algebraically equivalent to our Eq. (6).
He used the first and second covariant derivatives of
K s in place of our L 4 and M_,,,, respectively, and he
derived an expression for vV, V.,V K , as a linear com-
bination of the components of V. K , and V,V,K_,. Col-
linson also briefly described the process of deriving the
integrability condition, but he chose to give its explicit
form only for a special type of Killing tensor, viz., one

which satisfies the equation v,V K ,=2R" K

8y (a "By

The difference between our forms of the structural
equations and those introduced by Collinson?® derives
from our employment of the tensors L, and M, ,.
These tensors were deliberately chosen to make the
equations amenable to the use of a null tetrad basis and
of the corresponding bivector basis whose members
are eigenvectors of the duality operator. What we are
proposing here is a null tetrad formalism for second
order Killing tensors in space—time similar to that
used by Kerr and Debney * in their study of the Killing
vectors of algebraically special space—times. Some
technical aspects of this null tetrad formalism ® for
Killing tensors are given in Appendix B.

In the discussion of Sec. 3, we poinf out that there is
a natural isomorphism between the linear space of all
second order Killing tensors K ,; and the linear space of
all ordered triples of the tensors K _;, L,;,, M, 4,5
With the aid of this fact and the integrability condition,
we prove the new theorem that the dimension of the set
of second order Killing tensors in space—time attains
its maximum value of 50 only if the space—time is of
constant curvature. Finally, we suggest how the struc-
tural equations and their integrability condition can be
used. In particular, current efforts on axially sym-
metric stationary space—times (vacuum and nonvacuum)
which admit Killing tensors having the same Segre
characteristic as the Carter Killing tensor for the Kerr
metric are described. Also, current efforts on some
algebraically special vacuums are described. Results
will be given in a sequel to this paper.

We now return to the structural equations and briefly
outline the derivation of their integrability condition.

2. THE INTEGRABILITY CONDITION

We start by expressing V,V,, M, as the usual linear
combination of components of M ., with Riemann tensor
coefficients; this linear combination is set equal to that
expression for Vv, V,, M . . which is obtained by ap-
plying the operator V, to the right side of Eq. (6) and
then replacing the covariant derivatives of K, and L ,,
with the right sides of Eqs. (4) and (5). After much use
of the tensor symmetries, the Bianchi identity, and
simple doggedness we obtain the following final result?:

{ox] (v wl IML][_‘%R M

T 1 T
{aBl [¥ 61 {p o) oxx Mowur +5wa My r

- 'l%(vﬂo Xd:w)LAuV— %(VMR0X$U+ VuRm xwu)LywA

J 3
(= EVVVARo xow T T%RoxxTwaw TERyxy Ry
+ :I{Ro»\wTRXva+_‘I§Ra>waRwa)Kvu]:0? (7)
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where
Aggg:3!5<gagsg> (8)

for any bivector scripts A, B, C, D, E, F. The above
result is applicable, as are Eqgs. (4), (5), and (8), to
an arbitrary Riemannian space.

It is easily verified and is important to note that, in
Egs. (5), (6), and (7), the Killing tensor K, may be
veplaced with its tvaceless part,

KQB:KO‘B—}gaBK, K=K, % (9)

i.e., the isotropic part of the Killing tensor drops out
of Egs. (5), {8), (7). However, it must be retained in
Eq. (4).

It is now time to assess our results. We start our
discussion with an aerial view of the structural equa-
tions and with some elementary observations on the
number of linearly independent solutions of these equa-
tions. Then, we will consider possible applications.

3. DISCUSSION

Consider the structural equations as an example of a
system of linear homogeneous partial differential equa-
tions of the first order. ® As such, they can be lumped
into a single matrix equation

dK = TK, (10)
where K is a column matrix with fifty elements con-
sisting of ten independent components of K ,, twenty in-
dependent components of L . , and twenty independent
components of M 4. As regards I', it is a square
matrix whose elements are 1-forms depending on the
metric tensor and its partial derivatives up to the
fourth order. The exact dependences can be read off
from Egs. (4), (5), and (6).

The second order Killing tensors in any given space—
time constitute a real linear space V(X, 2). We let
V(K, red, 2) denote that linear manifold which is
spanned by the set consisting of g, and of all Killing
tensors of the form A B, where A and B, are any
Killing vectors. The Killing tensors in V(K, red, 2)
will be called redundant.

The set of all ordered triples of the tensors Kz, L,
and M, is also a real linear space V(K, 2), which is
represented by the column matrix solution set of Eq.
(10). Any member of V(K, 2) will be called a Killing
tensor dala set.”

Theve is an obvious lineay isomovphism of V(K, 2)
onto V(K, 2); hence, the dimensions of V(K, 2) and
VK, 2) are equal. Furthermore, it is a standard
theorem concerning differential equations such as Eq.
(10) that, for any given point x,, and for any given
specification of the value of K at x,, there exists not
more than one solution of Eq. (10). Since the set of all
column matrices I_((xo) is a 50-dimensional real linear
space, it follows that the dimension of V(K, 2) is <50.
In other words, the general solution for K, will contain
not more than 50 essential real parameters.  This is a
special case of a theorem which was proven by Thomas®
and which applies to arbitrary n-dimensional affine
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spaces. An elegant alternative proof for n-dimensional
Riemannian spaces has been given by Sommers. 1°

Flat space is an example where the dimension?® of
V(K, 2)is 50. This was proven by Thomas. ® Katzin and
Levine ! have given another proof, which is more in
tune with the soul of a physicist and which uses the
natural linear isomorphism between V(K, 2) and the set
of all quadratic constants of geodesic motion K*¥(x)p_p,.
(p, is particle momentum). The proof proceeds by in-
troducing rectilinear coordinates x® and noting that
Minkowski space admits exactly 10 linearly independent
first order constants of geodesic motion, viz., p_  and
L g=x,bz—xs0,. Therefore, V(K, 2) is spanned by the
Killing tensors corresponding to the following 56
quadratic constants of geodesic motion:

gaepapﬂ’ pupB’ Laﬂpv’ LazBL'rb'
On account of the identities g%%p_p, = pip; + pob, + Pabs
— pabg, and

Liaghy1=0, LiysL,15=0,
we are left with a maximum of 50 linearly independent
quadratic constants of geodesic motion. A detailed and
fairly straightforward argument, ** which we do not re-
produce here, shows that the residual 50 quadratic con-
stants of geodesic motion are linearly independent.
Therefore, the dimension of V(K, red, 2) is 50. There-
fore, the dimension of V(K, 2) is 50.

More generally, the dimension of V(K, 2) is 50 for
any space—time of constant curvature. This is a special
case® of a theorem which was proven by Katzin and
Levine™ for n-dimensional Riemannian spaces. An
alternative proof was given by Collinson. 2 We will now
give still another proof which is in the same spirit as
the proof given above for flat spaces and which uses
that model of the de Sitter space in which it is rep-
resented as a hypersphere in a five-dimensional flat
space with rectilinear coordinates z,. The equation of
the hypersphere is ¢;;2,2;, = k=const, where ¢;,=0 if
i+j, ande;;=+1 if i=j. There are exactly 10 linearly
independent first order constants of geodesic motion,
viz.,

Ly=2p;=2,py b=,
Therefore, V(K, red, 2) is spanned by the Killing ten-

sors corresponding to the following 56 quadratic con-
stants of geodesic motion !?:

e,pib; LL

[ ¥t 71
However, if we use the constraint equations, ¢,z z;=k

K ijvi
and €,,z,z,=0, we obtain

€l il w = 2Rey pob;.
Also. there is the identity, L;.L,,,=0. Therefore,
there is a maximum of 50 linearly independent quadratic
constants of geodesic motion in V(K, red, 2). A de-
tailed argument, which we do not reproduce here, **
shows that the residual 50 quadratic constants of geo-
desic motion are linearly independent. Therefore, the
dimension of V(K, red, 2) is 50, and V(K, red, 2)
=V(K, 2).

Conversely, if the dimension of V(K, 2) is 50, then

the space—time is of constant curvature. As in the case
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of the analogous theorem for Killing vectors, the

proof ®'1* employs the integrability condition. If the
dimension of V(K, 2) is 50 (case of complete integra-
bility), then the coefficient of each independent com-
ponent of K in Eq. (7) must vanish identically. In parti-
cular, if this requirement is applied to the M, , terms
of Eq. (7), an explicit calculation of these terms re-
veals that the Weyl conform tensor and the traceless
part of the Ricci tensor vanish. So,

RaByEZ 'IJ’}'(gurgBG = 8ay gaﬁ)R’

whereupon the Bianchi identity yields R = const. There-
fore, the space—time is of constant curvature. In sum-
mary, we have established (ie new vesult that the
dimension of VK, 2)is equal to 50 only if the space—
time is of constant curvature.

When the dimension of V(K, 2) is less than 50, i.e.,
when the integrability condition is not satisfied identical-
ly, the classification of space—times according to the
number and types of Killing tensors which they admit is
an open field of investigation. We have in mind some-
thing analogous to what has been done on the classifica-
tion of space—~times by the groups of motions which they
admit. !®* However, the hierarchy of compatibility con-
ditions for the Killing tensor structural equations are so
complex compared with their Killing vector counter-
parts!® that we are uncertain about the practicality of
such a program at the present time.

We are more interested in definitive programs, which
can be handled in a reasonable time with tools presently
at our disposal. One feasible program would be a partial
return to the early treatment!” of Killing tensors,
wherein an orthonormal tetrad was chosen such that the
Killing tensor assumed its Jordan canonical form rela-
tive to that tetrad. We would like to see this approach
tried in terms of a null tetrad. In addition, the space—
time may be required to be axially symmetric, sta-
tionary, or both axially symmetric and stationary. For
example, as a first simple step, one of us is now
looking at those axially symmetric stationary space—
times (vacuum and nonvacuum) which admit a nonre-
dundant Killing tensor whose Lie derivatives with
respect to the given Killing vectors vanish and whose
Segre characteristic is [(11) (11)]. These are the same
conditions which are satisfied by the nonredundant
Killing tensor associated with the Kerr metric and
discovered by Carter. 8

Another feasible program is the systematic search
for algebraically special vacuums which admit nonre-
dundant Killing tensors. Anyone who is interested in
this program may find it helpful to refer to a paper of
Debney, Kerr, and Schild'® on algebraically special
electrovacs and to another closely related paper of Kerr
and Debney * on symmetry groups of algebrically special
vacuums. On the basis of simplicity, it is wise to con-
sider only one Petrov type at a time; types I, 1, and
I, (Ref. 20) are simplest. Each calculation should start
by substituting into the null tetrad form of Eq. {7) and
exploring those implications which derive from the de-
finition of the Petrov type and from the known depen-
dences of the affine connection and the conform tensor
on the complex divergence.
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APPENDIX A

We want to interpret the tensors defined by Eqgs. (1)
and (2) in terms which regard K, as a small perturba-
tion on the metric. Consider the alternative metric

s —
& aB*gaB*—e‘KaB’

where ¢ is a real parameter. The difference of the
Christoffel symbols corresponding to the two metrics is
a tensor, *

L= Tas=bgs, (A1)
where?!
8ubhy=3e(VK ,+V K, — VK, (A2)
The corresponding Riemann tensor increment is®
R’aﬁuu -R,5) = Vablt;u - Veb;u
+ b;x bgu - ng b?xu' (A3)

Let

(oL
5/‘(85 )e=o

for any function f of . Then, Egs. (Al) to (A3) yield the
usual first order equations

gruérZB:%(VBKa?+ vaKB'r— VYI{aB)’ (A4)

GRaau":VQ(GFB‘L)—Ve(érgu). (A5)

From Egs. (1), (2), (A4), and (A5), we obtain our re-
sults,

LaB?:—'ZgM(aGrgly’ (AG)
A/chﬁrﬁ == % AZ%‘%"(@RO pr)ng‘ (A7)
We have thus shown how L, and M ,,, can be defined in

terms of the first order changes in the affine connection
and the Riemann tensor, respectively. This result is
worth noting, but its importance for the subject of
Killing tensors is unknown and may be nonexistent.

APPENDIX B

We shall here sketch some of the relations required
for expressing Eqs. (4) to (7) in a null tetrad form.®
This appendix covers only the problem of the null tetrad
components of the tensors K5 and L, , since these
subjects cannot easily be found in the literature. Full
details on the null tetrad forms of Eqs. (4) to (7) are
available in the form of a seminar report® by the
authors.

Let k, m, t, t* denote any null tetrad which consists
of 1-forms such that k¥ and m are real, {* is the complex
conjugate of {, and k-m ={-{*=1, Various null tetrad
components of tensors are designated by using &, m, f,
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and /* as scripts. For example, K,,=k*k°K_, and K,,
=Fk*1°K ,,. There is no loss of generality in assuming
that K ; is real. Thereupon, the Killing tensor has four
real components XK,,, K, ., K, and K, x and three in-
dependent complex components K,,, K, ,, K,,, with the
remaining complex components equal to (K,,)*, (K, )*,
(K, )%,

As regards L ., the condition L ;=0 can be shown
to be equivalent to the set of four equations

Lymet Lyp*p=—2L,, x+ L,
Lkmk+ Ltt*m: 2Lmt*£" Lm)
Lyt L, x,=2L,,+L,,

Lkmt*+L”*t*:—2L - L%

mt¥e
where L,, L , L, L, are the null tetrad components of
L, =L /. With the aid of the above identities, each
component of L . can be reduced to a simple linear
combination of the two real fields L, and L, the nine
complex fields L, L,,, L,.,., L
L, s L+, and the complex conjugates of these
nine fields.

rEt? tht*v Lmt*lz’ Lmt*m’

As regards M, , it has the same symmetries as the
Riemann tensor. So, we can express any null tetrad
component of this tensor in terms of five complex fields
which are analogous to the Newman—Penrose ** com-
ponents §,, ¥, ¥, ¥;, @, of the Weyl conform tensor,
the null tetrad components of an analog of the traceless
part of the Ricci tensor, and an analog of the curvature
scalar. This is the same kind of decomposition which
is applied to the Riemann tensor in the Newman—
Penrose equations.

*A preliminary report of this paper was published in Bull, Am.
Phys. Soc. 19, 108 1974).
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A direct variational method is developed for studying the asymptotic behavior of a wide class of
nonlinear oscillation and wave problems. From some judiciously chosen trial solutions with adjustable
parameters, equations governing the change of amplitudes and phases are derived and solved. The
method is simple in concept and straightforward in application. Different aspects of the method are
illustrated by applications to various examples: the oscillation of a pendulum with changing length;
the motion of a charged particle in a strong magnetic field; the linear and nonlinear Klein-Gordon
equations; and the linear and nonlinear Korteweg-de Vries equations.

1. INTRODUCTION

An approximate, direct variational method has been
developed to deal with the forced oscillations of non-
linear systems.! The method starts with reformulating
the problem by an equivalent variational problem; then
some judiciously chosen asymptotic trial solutions with
adjustable parameters are substituted into the function-
al to be varied. The examples chosen to illustrate the
scheme in that previous study all had sinusoidal func-
tions as the forcing term., Therefore, it was natural
also to assume that the solutions to behave in a simi-
lar manner. In this paper, we shall extend the method
to treat other class of problems whose intrinsic oscil-
latory behavior is nof necessarily sinusoidal, and thus
it is a part of problem to determine the oscillatory be-
havior. The examples treated in the previous study are
all second order ordinary differential equations, In this
paper, we shall extend our method to partial differen~
tial equations, hence the study of wave propagations.

The basic idea underlying this method is to make use
of whatever prior information there is as much as
possible and incorporating it into the form of the trial
solution. Thus it is expected that the system of equa-
tions governing the adjustable unknown parameters
would be much simpler than the original problem, In
this paper as well as in the previous study, we are
mainly interested in the asymptotic oscillatory solu-
tions. Therefore, approximate solutions for the am-
plitude and phase can be obtained by singling out the
secular terms. In this sense the spirit of this method
is similar to the methods developed by others.?? Our
basic approach is very close to Whitham’s variational
method, ¢ especially to his application of the variational
method to the problem of water waves, ® However, the
details are different, Moreover, as demonstrated in
our treatment of the Korteweg—de Vries equations, the
existence of Lagrangian is not required.

In the following, we shall again employ various ex-
amples to illustrate the procedure of the scheme.

We begin with a linear ordinary differential equation
for the study of adiabatic invariants to illustrate how
the intrinsic oscillatory behavior can be determined.
Then we apply the same method to find the adiabatic
invariant for the nonlinear problem of the motion of a
charged particle in a magnetic field. Next we apply the
same idea to linear and nonlinear dispersive waves,
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using Klein—Gordon equations and Korteweg--de Vries
equations as examples,

2. ADIABATIC INVARIANT

Let us first consider the simple example of the linear
oscillation of a pendulum whose length is changed at a
very slow rate, Thus, the differential equation is

5c'+w2(t)x:0, 2.1)

where w is a slowly varying function of {. Equation (1)
is equivalent to the statement that the following function-
al J is stationary:

t .
I= [ B0 - wix?)dt. (2.2)
Let us now look for solutions such that
x=A)o(S()), 2.3)

where A and S are both slowly varying functions of f and
¢(S) is a periodic function such that

$(S+2m) = ¢(9), (2. 4)
1 2%

(¢ =5 (S)ds=0, 2.5)

(¢?) =1. (2. 6)

Since A and S are yet to be determined, conditions (2. 4)
and (2. 6) can be imposed without loss of any generality.
Condition (2. 5) is, however, dictated by our anticipa-
tion of the solution.
From (3), we obtain
X=A¢p +ASG . @.7)

Let us substitute (2. 3) and (2. 7) in (2. 2), making use of
the slowly varying nature of A, S, and w, then since
{(¢p¢y =0, we obtain for large {, as we have done in the

previous study, ! that
J=3 fot [A% + (a8 - wh)A% dt, (2.8)

where

a=(¢?).
By varying A and S in the approximate functional as
given by (2. 8), we obtain the Euler’s equation

A-(aS - whA=0 2.9)
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and

-;—t (284%) =0. (2.10)
Now the periodic function ¢ is yet not determined. As

a direct variational method, any ¢ satisfying (2. 4)—

(2. 6) will do to achieve various degrees of accuracy for

our approximate solution. To obtain best results, we

shall seek our guidance from the original equation (2. 1)

or (2. 2). Thus the natural choice is

#(S) = VZ sinS. (2.11)
Then
a=(¢?) =1, (2.12)

Now since A is a slowly varying function of {, we thus
obtain from (2. 9) the first approximation:

s=["w@)at. 2.13)
Equation {2, 10) then yields
wA? = const. (2. 14)

The last two equations are the familiar results for
adiabatic invariants. As we can see here, the proce-
dure is very straightforward once the trial solution of
the form (2. 3) is chosen, Corrections to the first ap-
proximation may also be carried out based on Egs. (2.9)
and (2. 10).

3. MOTION OF A CHARGED PARTICLE IN A
STRONG MAGNETIC FIELD

The equation of motion of a particle of charge g and
mass m acted on by an electric field E(r, ), a magnetic
field B(r, £} and a gravitational potential G(r, ¢) is (see,
for example, Bernstein®)

$=a- Qxx, (3.1)
where

a=qE(x,#)/m- VG(x, 1), 3.2)

Q = ¢B(x, 1)/mc. (3.3)

Now the magnetic field B and the electric field E can be
expressed in terms of the vector potential A and the
scalar potential ¢:

124

B=VXxA, EZ—V(p—E Y

Let us denote
V:qA/mc, F=q¢/m +G;

then Eq. (3.1) is equivalent to the statement that the fol-
lowing functional J is stationary subject to the variation
of x:

J= i GR+&-V- Fat. (3.4)
The physical problem we are concerned with has a
strong magnetic field in one direction, say the x5 direc-
tion. The electric and gravitational fields as well as the

magnetic field in other directions are assumed to be

weak. Thus we may take
V= (= Qx,, Vy, V), 3.5)

F=f1xq+foxg +f3%3, (3. 6)
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where Q, V,, V3, fi, f2, and f; are all slowly varying
functions of (x,¢{), and f;, f;, and f; are not large,

Now let us look for trial solution in the form
x;=R;(t) +p;(t) sin[276(t) + p,(1)], ©=1,2,8, @.7

where R;, p;, and ¢; are all slowly varying functions

of # and we can take ¢,(f) =0 without loss of any general-
ity. We have taken the sinusoidal function to represent
the periodic behavior directly to simplify the computa-
tion somewhat. They are indeed suggested by a crude
analysis taking external fields as constant. From (3.7)
we obtain

% =}.?i +p;8in(276 + ;) +(270 + qii) p; cos(2ml + ¢;),
i=1,2,3, 6.9

Now we substitute (3. 5)—(3. 8) into (3. 4) and evaluate
the integral. To evaluate the integral, let us consider
one term to illustrate the procedure. Take

t . ¢ ]
Jy %1Vidt= [ = Q[Ry(t) + (1) sin(278 + ¢,)]
X[Ry +p, sin276 + 27 8p, cos2m 6] dt.

Now Q is a slowly varying function of (x,{); thus we can
expand as follows:

Q(x, 1)
=QR(), t)+2 p; SIn@T6+ dy) - L (R, 1) +- -,
7 3R,
I we only take two terms of expansion of Q, then for

large ¢, since only the secular terms dominate, we ob-
tain approximately

t t
/ JE1V1I”“/ (— QR, )(RyRy + £ p3p; COSDy
0 0

. af
+ 7Py 6 singy) — 3 i (R, ¢
2H1 ¢‘Z 2%3 Pi aRi ( )
X[ p2R cos(¢; = dy) +p1Ry cOSH,

+278pR, sim{)i]) dt.

To make the phrase “slowly varying function” more
precise, let us take € as a small parameter, and con-
sider in general 8/9R, = O(e), d/dt=0(¢). Furthermore,
assume @, p;, ¢;, Ry, and R, are O(1); f;, V,, and V,
are O(e); and 6 and R, are O(1). Then after some
straightforward computations, we obtain up to Ofe):

J=J ' gat, (3.9)
where
G =a6%(pf+p + p3) + 1O piby + plhs) + SR2
- (R, 1) (RyRy + 5 pop; cOS Py + 11y singy)
- ”P1Rzé<02‘;;% sing, +P3%§‘§‘35in¢3)
+ VsRy— fiRy - foR, - f3R;. (3.10)

The variation of the functional J with respect to R,,
pi; ¢;, and 0 then leads to the following Euler equations:

o .. 2 d2
ops: 2m8%p, == 2784 5p, +7rp1R205F sing,, (3.11)
3
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d, s - 00
Sdy: —— (m8p%) — 7p105R, 98_R3 cos¢y =0. (3.12)

Since the right-hand side of (3.11) is O(e), we obtain
that, for the leading order,
ps=0. (3.13)

Thus the term associated with p; can be ignored from
further consideration. The variation with respect to ¢,
now leads to

. d . . A
— Qpypy6cosd, = T (m6p3) — 2Rp2p; Sing,

- 9
+TTp1R2 gpzs‘ﬁ' COS¢2. (3. 14)
2
Again the right-hand side is O(e), thus if we assume
p1, P2, and 0 to be nonzero, we obtain for the leading
order that

Gy =1/2. (3.15)
The variation with respect to p; and p, now gives
2 A2 f s 1d
8py: 2m°py6° — TP, 0 sing, =~ T (paftcosey)
. a0 .
+TR,0 (pza—Rz sing,
o83 .
+p35"R73 s1n¢3), (3.16)
Bpy: 22py 6 — mp RO sing, = — 2mp, 6B, + £ P, COSDy
- 082
+p Ry 0= sing,. 3.17)
P2 3R. o3} (

Again the right-hand sides are O(e). Thus the leading
order equations are

2n2p1(§2 = ﬂpgﬂé
and
2m%p, 0% = mp, R6,

which lead to

p1=ps=p (3.18)
and

b=q/27, or 6=(1/2n) [ Q®E),)at. (3.19)
The variation with respect to 6 now yields
d ° .
=;(27°6(pt +p}) - 72p1p; sing,]

d P o IV
== [TT( p3ba+ pidy) = TpiR, (Pza—Rz sing,
0 .
+P3 3R, sm¢>3)] . (3.20)
3

Setting the leadjng order left-hand side to zero and
using (3. 18) and (3. 19), we obtain
d

=i (©p*) =0, or §p’=const. (3.21)
Qp® is known as an adiabatic invariant.

The variations with respect to R;, Ry, and E3 now
yields, to the leading order,

1632 J. Math. Phys., Vol. 16, No. 8, August 1975

d . 082
ORy: = (QRy) - f1 - 77131029(-3_}31 sing, =0,

. . 39
6Ry: — QR —fp— 27pyp26— 5= sing, =0,
3R,

. - 082
Ryt Ry+fa+mppyf—-5 sing, =0.
oR,

These equations give the well-known motion of guiding
center as well as the first order correction of the mo-
tion. ® We can also find the next order correction for
Py, P, B, and ¢, by making use of the right-hand side
of Egqs. (3.14), (3.16), (3.17), and (3. 20). The details
will not be presented here.

4. NONLINEAR DISPERSIVE WAVES—THE
KLEIN-GORDON EQUATION

Let us now turn to partial differential equations and
consider the following nonlinear wave equation:

4.1)

When f(u) =u, we have the usual Klein—Gordon equation.
This equation has been investigated by Whitham® and
Moser. " Here we shall employ the variational method
to study the problem.

Let us define the function F(z) by

F' () = flu).

Then Eq. (4.1) is equivalent to the statement that the
following functional J is an extremum:

t 4
J= [, at [ at[- s+ s+ F)).

Ugp — Uyy +f(ll) =0.

4.2)

(4.3)

Our purpose is again to find asymptotic solution for
large f, which exhibits certain oscillatory behavior.
Thus let us look for trial solution of the following form:

u:A(x’ 1)95(5(% t))y (4-4)

where A and the derivatives of S are both slowly vary-
ing functions of (x,?) and ¢ is a periodic function of S
which satisfies the following conditions:

o (S+27) = ¢(S), (4. 5)
($)=(1/2m) |, $as=0, (4.6)
(¢%)=1. 4.7

The conditions (4. 5) and (4. 7) are made specific with-
out loss of generality since A and S are yet to be deter-
mined. It follows from (4. 5) that

(pod’) =0, (4.8)
and we shall denote

(¢ = o, {4.9)
From (4.4) we have

u,=A,p+AS P, (4.10)

u, =A, 0 +AS D', 4.11)

Substituting (4. 4), (4.10), and (4.11) into (4. 3), making
use of the periodic properties of ¢ and slowly varying
behavior of A and S, we obtain for large ¢

J= [ at |77 dxlb(- A= A’ AL+ ad?SD + G,
4.12)
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where

G(A)=(F(Ad)). (4.13)
The variation with respect to 4 and S then lead to
6A: Ay - Ay — cA(SE-S2)+G'(A)= (4.14)
8S: (aAS,), - (0A?S,),=0. (4.15)

Since A is supposed to be a slowly varying function of
(x,%), (4.14) can be approximated by

A(S2— )~ G'(A) = 0. (4.16)
In order to determine « and G(4), we need to find ¢
explicitly, In the spirit of the direct variational method,

we have a great deal of freedom for the determination
of ¢. Of course, the closer ¢ approaches the real solu-
tion, the better is our approximate solution as a whole.
We could artificially take ¢(S) = (1/V2)sinS, but it may
not be a very good trial solution for many cases. We
shall instead use the original equation as a guide to sug-
gest a better solution,

Let us write
u=p(s(x, 1), 4.17)

and substitute into (4.1) or (4. 3). If we use (4.1), we
obtain

(s3—sD" +f(P) = (Sax = Su)@". (4.18)
Assume s; and s, to be constants and write

si-si=w;
we thus obtain

w'o" +f(¢) = (4.19)

In (4.19), w? is a parameter still to be determined,
However, the conditions (4.5), (4.6), and (4.7) will
usually determine ¢ completely. When ¢ is found, «
and G(A) can be obtained. Then (4. 15) and (4. 16) can be
used to find 4 and S,

Let us consider a few examples to illustrate some of
the details.

(i) The Klein—Govdon equation: f(u)=u, The equation
we consider is

Upy = Uy +u =0, (4. 20)
For this case, it is evident from (4.19), (4.5), (4.6),
and (4. 7) that

#(S)=V2sin(S+¥), (4.21)

where ¢ is a constant. Then from (4. 9) and (4. 13), we
obtain

a=1, G'(4)=A,
Thus (4. 16) becomes
SE-si-1, (4.22)

Use the Charpit’s method (see, for example, Sneddon?);
a complete integral of the above equation is

S=V1+a’t+ax+b, (4. 23)

where a and b are two arbitrary constants. They rep-
resent the ordinary travelling wave solutions. A more
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interesting solution is the singular solution which is the
envelope of the family of solutions represented by (4. 23).
This gives

S= (2~ 22172, (4.24)
which is also that given by Moser, ’
Substituting (4. 24) into (4. 15), we obtain
t(AY), +x(AD), + A2 =0. (4. 25)

The general method fos solving linear partial differen-
tial equations of the first order (see, for example,
Sneddon®) then leads to the general solution

A=Q/VOPKE/Y, (4. 26)

where P is any arbitrary function, This solution is con-
sistent with the asymptotic expression for large ¢ of the
general solution of (4.20). In particular, if we assume
A is a function of S as Moser’ did, or equivalently take

P(2)=(A,/V2)(1 - 21t /4,

then we obtain

= (A/V2)(E* - )4, 4.27)
Hence
[Ay/ (£ = ¥/ sin[(£2 - x2)1 /% + ). (4. 28)
(i1} A nonlinear Klein—Gordon equation: flu) =u®. The
equation we consider now is
Upp = g + 10 =0, (4. 29)
The function ¢(S) is to be determined from
" + 2 =0, 4.30)
Thus

(wp")F=3(Ct - ¢,
where C is an integration constant, which will be taken

as real for ¢ to be periodic. Thus, ¢ is an elliptic func-
tion, or

/ a C4 TG - (4. 31)
The condition (4. 5) is now
- C__dy
2n_2wf_c TS (4.32)

and the condition (4. 7) now determines completely the
value of w and C. Then the value a as well as (¢*) can
also be explicitly determined.

From (4. 13) we obtain

G'(A) =(pHA%. (4.33)
Equations (4. 16) thus becomes
85— 82= (") /a)A%, 4. 34)

To solve the coupled equations (4. 34) and (4, 15), let us

first use the linear example as a guide and look for par-
ticular solutions such that S and A are both functions of

A, where

A= (82— X972 (4. 35)
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Then Eqgs. (4. 34) and (4. 15) become

dSY (oY o

&) - L, .
and

d {,dS\ A*dS

ax <A dx)+ xan (4
From (4. 37), we aobtain

das
2-—- =

M = const. (4.
Substituting (4. 36) into (4. 38), we obtain

S=ax*/%4+b (4.
and

A=3a((ep)/a) /It 3, @.

where a and b are integration constants. Thus

u :%a(<¢4>/a)1/2(t2 - x2)—1/6¢[a(t2 _x2)1 /34 b]. (4.

We can also try another approach. If we substitute
(4. 34) into (4. 15), we obtain

[(5} - 95,1, - [(8} = )8, ], =0, @

Let us now look for solutions of the following form:

S=t*nw), 4.

where w=x/t and u is some constant. After some
straightforward calculation, we obtain

(3% = 1)°h"% = 6 paw(w?® = 1)h'h + u2(3u? = 1)R* 0"
—6( - Dew(@? =D +5u(u - 1)Buw? - V)i’

=12p% (- Dwh'R? +3u%(u - 1)1 =0, (4.

If we take u =3, then (4. 44) becomes
(3w? - 1?02 — dpaw(w? - D'k + 3 3w’ ~ DA R”

2000t = D7 = 2 Bu - 10+ Zwh'n? - Er =0,

(4.

It may be verified that

h:a(l_w2)1/3 (4.

is a solution, which agrees with (4, 39).

If we take =1, (4.44) becomes

1" [3(w? = 120 = 60(w? = 1)’k + (3u? — 1)R*]=0. 4.

If 2" =0, then we obtain

h=aw+b,
or

S=at+bx, 4.
and

A¥=(a/(¢")(a® - b%). (4.
If »”+0, then

(® = 1212 = 2w (w® = D'k + (w? = B2 = 0. (4.
Thus

(@ = VW = (w+1/V3h,
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36)

.37

38)

39)

40)

41)

42)

43)

44)

45)

46)

47)

48)

49)

50)

which leads to
R=a(l - w®) 2| (1 +w)/(1 ~w)|*17/23,

(iil) The spherical Klein—Gordon equation: Let us
now consider the following equation:

(4. 51)

Ugy = Upy— (2/7)u, + flu) = 0, (4.52)
Then the functional to be varied will be

I=["at [ " ar v’ {5(- ub+ud) + F), (4.53)
where again

F' () = flu). (4.54)
Take the trial function in the form

u=A@, o (S, 1)), (4. 55)

where ¢ again satisfies the conditions (4. 5), (4.6), and
(4.'7). Then corresponding to Egs, (4.15) and (4. 16),
we have

(PA?S,), — (2AS,), =0 (4. 56)
and

aA(S: - $%) =G'(A),

where @ and G{A) are given again by (4. 9) and (4. 13).

(4.57)

Assume u = p(s(», 1)) and substitute into (4. 53); then
the function ¢ again is suggested to be derived from the
same equation as (4.19).

For the linear equation when f(u) =u, we obtain thus
u=(A,/ WP/t sin[(# = )12 1 y), (4.58)

For the nonlinear case, we can also try to look for
solutions of the form

S=th(r/t),

and obtain from (4. 56) and (4. 57) a second order
ordinary differential equation for k.

(4. 59)

5. THE KORTEWEG-DE VRIES EQUATION

We now extend the application of the variational meth-
od to another important nonlinear dispersive wave equa-
tion, i.e,, the Korteweg—de Vries equation:

(5.1)

Up U+ Uy, =0,

Before we deal directly with this equation, let us con-
sider first the linear dispersive wave equation:

(5.2)

Uy + Uy = O,
Contrary to the previous cases, a functional J cannot be
found for the equivalent variational formulation of the
problem, Therefore, we shall state the equivalent
variational problem in the following form:

Msfotdtjj: dx(ut+uxxx)Au:0- (5.3)

The form (5. 3), though unremarkable in appearance,
yet surprisingly serves the purposes very well.

Let us now take the trial solution again like (4. 4):

u=A(x, t)¢(S(x, 1)), (5. 4)
where ¢ again satisfies the conditions (4. 5)—{4. 9).
From (5. 4), we obtain
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up=Ab+AS9, (5. 5)

Uxx = Apxd + (SAerx +3A,S5,, +AS,.) ¢’

+3[A,(S)? + AS,S,,, 10" + A5 9™, (5.6)
and
Au=pAA + AP’ AS, (5.7)
To find ¢, let us again take
u=g(slx, ). (5. 8)
Substitute in (5. 1), and we obtain
S;0 + Sy’ +38,,8,0” + S5 =0. {5.9)

Assume s, and s, to be constants; then we see the sug-
gested ¢(S) is

¢ ="VZsin(S+).

Then we obtain immediately that
(™) =1, (9p¢")=(¢'9")=~1,
(po™)=(d"¢") =0,

Now substituting (5. 5), (5.6), and (5.7) into (5. 3) and
carrying out the approximate integration scheme, we
obtain

aT=fdt [T ax{AA[A,+ A~ 3AL(S,) - 34S.S,,]
+ AS[A%S, +3AA S, + 3AA,S, +AS, ..~ AXS)%T}
(5.11)

(5.10)

Now S;, S,, and A are assumed to be slowly varying
function of (x,?); thus, to the lowest order of approxi-
mation, the independent variation of AA as AS leads to

AA: A,-3A.(S)-3AS.S,,=0, (5.12)

S S,-(S,)%=0. {5.13)
A complete integral of (5. 13) is

S=a’ rax+b, (5.14)

where a and b are arbitrary constants. They represent
the travelling wave solutions or the Fourier components
of the general solution. The singular solution from

(5. 14) is easily found to be

S=3{-x/@B)*P2, (5.15)
Substituting (5. 15) into (5.12), we obtain
1A, +xA,+A/2=0, (5.16)

which is the same as (4. 15). Thus the general solution
is again

A=(1/VD)Pix/b).

This solution is again consistent with the asymptotic
expression for large ¢ of the general solution of (5. 2).
In particular, if we take P(Z)=(4,/V2)Z!/%, then we
obtain

A 2/ —x \372
U= (xt)oi/‘i sm[-é ((3t)1 /3) + z,/] ,

which represents the asymptotic oscillatory solution
from an initial 8-function disturbance,

Now we turn our attention to the nonlinear equation
(5.1). From considerations of the physical circum-

(5.17)

(5.18)
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stances in connection with the Korteweg—de Vries equa-
tion such as water waves, the trial solution we seek will
be in the form:

u=Ax, )o(Slx, 1)) + B,

where B is a given constant and ¢ again satisfies the
conditions (4.5)—(4.9). u,, u,,, and Ax are also given
by (5.5), (5.6), and (5.7), while

un, =AA,B* + A*S, ¢ ¢’ + BA,¢ + BAS, . (5. 20)
Now we substitute (5.5), (5.6), (5.7), and (5. 20) into
aT= [ dt [ axlu, g+t ) B =0. (5. 21)

(5.19)

Thus we obtain approximately
ar=ftat [T dx{AA[A, + A+ (34,5 +345,5,.(00")
+BA, +AA(¢%) ]+ ASA[a(AS, +3A,,S, +34,S,,
+AS, +ABS)+ASX¢'¢") +AAL S ")} (5.22)

For most cases, due to the antisymmetry of ¢ about its
nodal point, i, e.,

¢(8)=~ ¢ @5 - 5), (5.23)
where

#(Sy) =0,
we have

(9%) =(¢?¢") =0. (5. 24)

Since we also have (¢¢") == {¢'?), thus, to the lowest
order of approximation, we obtain from (5.21)

A, +BA,~3a(A,SE+AS,S,,)=0 (5. 25)
and

a(S,+BS,) - 8S2=0, (5. 26)
where

B=(d") ==(d'¢"). (5.27)

The function ¢{S) will again be suggested from the
original equation., Let us take

u=ep(sx, 1)) +B, (5. 28)

and assume that s, and s, are constants; then we obtain
¢’ +age’+bd" =0, (5.29)

where a and b are constant parameters. Thus ¢ is an
elliptic function. Even though ¢ has to satisfy the con-
ditions (4. 5)—(4.7), it still contains adjustable free
parameters. However, once the parameters are chosen
from whatever considerations, « and B can be readily
determined, and we can proceed to solve (5. 25) and

(5. 26).

By following the similar procedure we used for the
linear case, it is found that a complete integral of (5. 26)
is

S=C x+[(8/2)C}-BC,t+Cy, (5. 30)

where C; and C, are arbitrary constants. They again
represent the travelling wave solution, The singular
solution from (5. 30) is readily found to be

S=%[- (x - Bt)/3Bt/a) 33/2, (5.31)
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Substituting the last expression into (5. 25), we obtain
A,+BA,+(a?/B)[A,(x - Bf) + A/2]/t=0. (5.32)
Let us introduce the new independent variables
E=x—-Bt and T=1,
Then (5. 32) becomes
A+ (0Y/B)(EA, +A/2) =0,

By a similar procedure for the solution of (5.16), we
obtain the general solution

A=(1/VBP(E/799),
or
A=[1/(x - BO2|P((x - BL)/1*19),

where P is some arbitrary function,

6. DISCUSSION

The method presented above is simple in concept and
straightforward in application; yet it yields a great deal
of information. Since it is basically a direct variational
method, the more we know previously about the solution
of the problem, the better would be the result and simp-
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ler the analyses involved. On the other hand, one draw-
back of the method is the difficulty in estimating the
errors involved. So far we have only applied the method
to oscillatory solutions of the nonlinear waves. Whether
this approach can be adapted to find nonoscillatory solu-
tions of the nonlinear wave problems is still a subject
of continuing investigation.
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The irreducible representations of the three-dimensional rotation group are obtained directly from the
irreducible representations of its infinitesimal generators (the spin matrices), parametrized in terms of
the rotation angle and the direction of the rotation axis. Expressions are given for the rotation
operator exp(iyn - S) in terms of two different bases of 2j + 1 elements for spin j. The results are
related to the spectral decomposition of the rotation operator and expressions obtained for spin
projection operators along any spatial direction for arbitrary spin.

1. INTRODUCTION

A fundamental result of the theory of Lie groups is
that any continuous linear group can be generated from
its infinitesimal generators by exponentiation. Likewise,
every irreducible representation of the covering group
is obtained in this way from the irreducible representa-
tions of the corresponding Lie algebra. This is not,
however, the usual way of obtaining explicit expressions
for the representation coefficients of those continuous
groups of interest to physicists. In the case of O(3), to
which we restrict ourselves in what follows, the usual
method consists of considering the transformation
properties under rotations of homogeneous monomials
constructed from the components of a basic spinor, the
transformation properties of which are known
explicitly.?

The direct method of calculating the exponential of the
spin matrices, which are the irreducible representations
of the generators of the Lie algebra of O(3), is well
known only for the two-dimensional (spin ) and the
three-dimensional (spin 1) representations (c.f. Sec.

2, below). For any dimensionality, a derivation of the
rotation matrix for rotations about the y axis (the middle
rotation in the usual parametrization in terms of Euler
angles) by the direct method has been given by Lehrer-
Ilamed.? The derivation, however, is somewhat cumber-
some, requiring the solution of a linear differential
equation of order equal to the dimensionality of the
representation.

In this paper the representations of O(3) are obtained
by the direct method, the rotations being parametrized
in terms of the rotation angle and the direction of the
axis of rotation. That is, explicit expressions are given
for exp(iyn-$S), where n is a unit vector in the direction
of the rotation axis and S==(5,,S,, S,) are the angular
momentum spin matrices for spin j, for rotations about
the three Cartesian axes. In Sec. 3 the results of Ref.
2 are simplified (being obtained by purely algebraic
methods) and generalized to an arbitrary rotation axis.
The special case of a rotation about the y axis is dis-
cussed further, and the usual symmetries of the corre-
sponding rotation matrix are shown to follow directly
from the symmetries of S,.

In Sec. 4 a more suitable basis for expressing the
dependence on n, consisting of irreducible tensors con-
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structed from the spin matrices, is introduced. The
orthogonality properties of these operators lead in an
extremely direct way to the representation matrices,
the dependence on the angle of rotation being expressed
in terms of Gegenbauer polynomials. The resulting
expressions resemble the Rayleigh expansion of a plane
wave, and are formally equivalent in the limit j — .

In Sec. 5 the results of the two preceeding ones are
related to the spectral decomposition of the rotation
operator. This leads to expressions for spin projection
operators along an arbitrary spatial direction.

2. PRELIMINARIES

In this section we review the usual derivation of the
two-and three-dimensional representations of O(3) by
the direct method, pointing out the limitation inherent
in the procedure and the implications for the general
case.

The (2j + 1)-dimensional irreducible representation of
0(3), parametrized in terms of the angle of rotation
and a unit vector n in the direction of the axis of rotation

is given by the set of rotation matrices
DXy, n) = exp(iyn - 8) (2.1)

(the index j on S, will be understood). The matrix ele-
ments of S, are defined by

(S m=m" |d,|im), —j<m <j,
where

[Jk’ Jl] =€) m
and

Iy |im)=m|jm).

Equation (1) remains purely formal until a way of
determining explicitly its matrix elements is given.
The usual definition of the exponential
. = 1 .
exp(iyn+8)= 2. AN (iyn - 8)* (2.2)
k=0 !
is useful for this purpose only if the series can be
summed in some way. There are two well-known cases
in which this can be readily done, namely, the two-
dimensional (spin 3) and the three-dimensional (spin 1)
representations.
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In the first case, S,= 30, where 0, are the Pauli
matrices, which satisfy

(n-o¥=1 (2.3)

where 1 is the 2X2 unit matrix. Powers of n- S higher
than the first are thus reducible to 1 or n* S and (2)
leads to the well-known result

exp(izyn - 0) =1 coszy + i(n - 0) siniy. (2.4)
Similarly, the spin one matrices satisfy

(n-8P*=n-8 (2. 5)
giving, for the three-dimensional representation,

exp(ign- S)= 1+ i(n-8) siny +(n-8) (cosy~ 1). (2.6)

This procedure is not feasable for higher-dimensional
representations. The generalization of Eqs. (3) and (5)
for spin j is given by

(2.7

-7

i
Mn-S—mil)=0

where the 2j + 1 numbers m, the eigenvalues of n+S,
vary in unit increments from - j to j. It follows that
(n-8)?/*! is expressible as a linear combination
25

(n- 87" =2, d,(n-8)*  (spinj), (2.8)
where the d, are numerical coefficients. For integer j
only odd values of % contribute to the sum, while for
half-odd integer j even values of k& contribute. Thus for
j>1 the sum contains two or more nonzero terms, and
substitution from (8) into (2) leads to hopelessly com-
plicated expressions.

However, Eq. (8) implies that one can write

25

exp(iyn-8)= 2, ¢,¥) (n-S)* (2.9)
=0

where the expansion coefficients c (i) depend only on the

angle of rotation.

The last equation is a better starting point than (2) for
the explicit determination of the representations, since
it involves a finite sum of independent terms.

3. DETERMINATION OF THE EXPANSION
COEFFICIENTS

To solve for the ¢ () we invoke an invariance argu-
ment: As the ¢, (4) are independent of n, we may simplify
(2. 9) by setting n=(0, 0, 1} which diagonalizes both
sides, leading to

27
exp(imw):gom’ack(w), -jsms<j. (3.1)
This set of linear equations can be inverted for the ¢ ().
We first simplify further by noting that unitarity of the
representation, together with the Hermitian character
of (n-S)* implies that ¢ (y) is real for k even, imagi-
nary for # odd. Thus defining real coefficients a, (i) by

a(¥),

k even,

Ck(lp):: (3. 2)

ia(y),  kodd,
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one obtains, taking real and imaginary parts of (3. 1),
separate sets of equations for % even and % odd.

We consider the cases for j integer and j half-odd
integer separately.

j integer: In this case m =0 is an eigenvalue and
a,(¥)=1. Equation (3. 1) gives

J
cosmzp—lzglm“a“(z/)), (3. 3a)
j
msinmd):;:)l m**q,, _(¥). (3. 3p)
j half-odd integer:
j-1/2
cosmy = kz_% m3ra, (1), (3. 4a)
j-1/2
m™ sinmy = Eo m* ay, (). (3. 4b)
R=

Thus solution requires inversion of the jXj matrix
M whose elements are defined by

M, ,=m?* (3.5)
where for j integer m,2=1,2,...,j and for j half-odd
integer m =3%,...,j, and k=0,1,...,7— 3. The matrix

M can be inverted analytically (see Appendix A). De-
noting by w,,, the elements of the inverse of M, we have

- (_ l)k*mp(m ?j-k(lzv L ’]'2) s

W, = j integer, (3. 6a
m mznsm(sz —m?) ] g ( )
. 1)e2my(m) 1y2 -2
km:( 1) ?[ ;(-;;1_/27(’,522)),~-~»]) . j half-odd
$#m integer
(3. 6b)
where p"")J(a, b,...2) is a sum over permutations of

products of its arguments, J at a time, without repetition
and omitting m .3

Inverting Eqs. (3.3) and (3. 4) and returning to (2. 9),
we obtain for the representations:

j integer:

; ;
exp(iyn- S) =1+ 21 (cosmy — 1)P:, +i 2 m sinmy P;,.
m= m=1

(3.7
j half-odd integer:
j j
exp(iyn - 8) = i cosmyp P +i 2, mtsinmyp Py,
m=1/2 m=1/2
(3. 8)
where
P =7 w,,m 8P (allj), (3. 9a)
k
P =7, Wen(n+ 8P (j integer), (3. 9b)
k
P- =77 w,, (n+8%" (j half-odd integer). (3.9¢)
&
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The summation is from 2=1 to j for integer j, and from
k=0 to j - 3 for half-odd integer j.

These equations generalize, to arbitrary spins, Egs.
(2. 4) and (2. 6) above. The rotations are parametrized
in terms of the angle of rotation and the direction of the
axis of rotation. The dependence on the first is quite
simple; the dependence on the axis as defined by n, on
the other hand, is not in a very convenient form. In the
next section a more suitable basis for expressing this
dependence will be introduced.

A particular important case, however, in which the
expressions for the matrix elements simplify is that of
a rotation about the y axis, which appears as the middle
rotation in the usual parametrization in terms of Euler
angles. These are obtained by setting n=(0, 1, 0), that
isn-S=S_. In the basis in which S_is diagonal, the
nonvanishing elements of S, are

(S D mer,m == 3G =m)G +m + 1)]/2,
(S D metm =58l ~m)G +m+ 1)]H/2,

from which it follows that

S m=0 unless m’' —m =1, (3.10a)
S m == S mes (3. 10b)
S m =)o - (3.10¢)

The last symmetry corresponds to invariance under
“skew reflection, ” i. e., reflection on the skew diagonal.

It follows from these symmetries of S, that S is
symmetric, invariant under skew reflection, and has
nonvanishing matrix elements only for m - m’ even,
while S2*! is antisymmetric, invariant under skew re-
flection, and has nonvanishing elements only for m — m’
odd.

Thus in Egs. (3.7) and (3. 8), in the case of rotations
about the y axis, P;, will contribute to matrix elements
with m’ —m"” even, P; to matrix elements with m’ -m”
odd, and the angular dependence of the corresponding
elements will be linear combinations of cosmy in the
first case, of sinmy in the second. The resulting ex-
pressions are quite practical for determining the rep-
resentation coefficients (P,, and P;, can be readily pro-
grammed for computer calculation). As mentioned by
Wigner, * the dependence on the angle of rotation ap-
pearing in (3. 7) and (3. 8) lends itself more readily to
visualizing the general behavior of the coefficients than
the usual representation in terms of powers of cos;y
and sinjy.

The symmetry properties of d Y X(y)= exp(iyS,) follow
readily from those of S2* and 52*** and the discussion of
the last paragraph. In particular, one has

di (@) =(= 1" a > (y),
Al () =d3) ().

These relations are usually derived by considering
succesive rotations through +7 and ¢+ 7 and making use
of the group property. ©

(3.11a)
(3.11Db)

4. EXPANSION IN SPHERICAL BASIS

The basis (n-8)* 0 <k <2j, in terms of which the
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representations have been obtained is not the most con-
venient for exhibiting explicitly the dependence of the
matrix elements on the direction of the rotation axis,
which is specified by

n=(sinf cosy, sinfsing, cosé). 4.1)

The obvious choice of functions in which to express
this dependence are the spherical harmonics Y, (9, ®)
=Y,,(n), with / running from 0 to 2j for the (2j + 1)-di-
mensional representation. We complement these with
operator spherical harmonics generated by “polariza-
tion” from the ordinary solid harmonics’ Y m(r). For
spin j they are defined by®

21 i IV 1/2
Y’”'(S):ﬁGf(iZTfl)l_')!—) (S-grad)’g,m(r). (4.2)

These operators, which are irreducible tensors, appear
in the formulation of interactions of spin systems, as
well as in the theory of angular correlations. °

The matrix elements of these operators are given in
terms of Wigner’s 3-j symbols by ®

2+ 1N G
s an M s I\
<.7m lYlm(s)’]m >—"6m,m"-m' (477 ) <m/ —-m"” m>
X(_ l)j-m' . (4. 3)

It follows from the orthogonality properties of the 3 - j
symbols that

trYy. (S)Y,(S)=(47)"5,,6, .- (4.4)

Forming the product, invariant under a simultaneous
rotation of n and a corresponding similarity trans-
formation of the S,, defined by

Y,(n)- Y,(S):mé_;lY,m(n)*Y,m(S), (4.5)
we write, for spin j, instead of (2.9)
exp(z'z/)n~S):lZ:3a,(;b)Y,(n)-Y,(S). (4. 6)

To evaluate the expansion coefficients we first simplify
by setting n=(0, 0, 1). The product (4. 5) then reduces to
the single term

[(21 + 1)/4n]r72Y (S,)
and Eq. (4.6) to

. 2 20+1) 172
exp(iyS;) = Z)a,(zp)(——477 > Y;0(Ss). (4.7)
=0
The orthogonality relations then give at once
a7 \'/?
ay)=4n (2l n 1) tr (Y ,,(S;) exp(iyS,)). (4.8)

Since both Y ,,(S,) and exp(iy)S,) are diagonal in the basis
|jm), we have

tr(Y,,(S,) exp(iysS,))
=2 (jm ¥ 5(S,) |im) explima)

1/2 . .
= (214: 1) ,,,E (J ! f)) (= 1™ exp(imy), (4.9)

m -—-m
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giving
a,($) =47H ; (v/2),

where

(4.10)

m —m

H,,(%) -z (j j é) (= 1)/ exp(imy).  (4.11)

The functions H, (y/2) have been studied by Bander and
Ytzykson'® and by Talman'' in connection with the rep-
resentations of O(4). They are related to the Gegenbauer
polynomials CJ5!, by

H =11 (2]"l)! 12 .. 1 11
o) =11 Gi+i+ D1, (2i sing)? CJi1, (coso),

(4.12)
and are given explicitly by

(2D N, d'__ sin(2j+ )¢
H =0 7 .
@) Z((2]+l+1)!) (sing) d{cosg)’  sing

(4.13)

The matrix elements of the representation are obtained
using

(jm” IY,(H) ‘ Y;(S) I]m,>

= ;Z Y, (n)* Gm” Y, (8)|im")

1/2 .
_ 20+ 1 7 7 l -
- ( 47 ) (m’ -m” m"—m’>(— 1 Yy e (1),

(4.14)
giving
25
Gm" |exp(iyn - 8) | jm’) = 2. VAW +1)
X J ] ! ( 1 J=m’ w
m! —m” m"-m') " ) xH“ E Yhm,_m,,(n).

(4.15)

This expression for the representation matrix ele-
ments has been given by Talman!® by considering the
representations of 0(3) subduced by representations of
0(4), the latter being obtained as the direct product of
two representations of SU(2). This (perhaps) circuitous
procedure yields, as above, the representations of
O(3) parametrized in terms of the rotation angle y and
the rotation axis n. We remark that if the rotation
matrix d9)(8) for rotations about the y axis, and its
properties, are considered known (as in Talman’s ap-
proach), then Eq. (4. 15) follows rather more simply by
factoring the rotation operator exp{iyn-S) into a product
of several rotations about the y and z axes. The details
are given in Appendix B.

The present derivation, of course, requires no
previous knowledge of the rotation matrices d'/?, being
based directly on the representations of the angular
momentum operators and the properties of the 3-j
symbols.

A different expression for the representations of
0O(3), parametrized in terms of y and n has been given
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by Harry E. Moses!? in terms of Jacobi polynomials
(see also Ref. 13).

Equation (4. 6) resembles the Rayleigh expansion for
a plane wave in the direction of a vector k
exp(ik - 1) =47 > i) (k7) Y ()Y (7) (4.16)

where k£ and 7 are unit vectors in the directions of k and
r, respectively. In fact, as j— » we have'4

iooboqy (=1 m
(— m 0 m> T P'<j—>’ (4.17)
and in this limit
N1 [
H,, (§> = 3 J’ P (%) exp(ijyx) dx
-1
= j,(). (4.18)

Hence in the limit j — = we have, in complete analogy
with the Rayleigh expansion,

exp(iyn - 8) ~ 412 i'7,(jd) ¥ (n) - ¥ (8). (4.19)

In particular, we have using (4. 14)
(i |expliyn - S) |jj) = exp(iyn - §)
where j=je,, a relation with a clear interpretation.

The limit j — « of the representations of O(3) para-
metrized in terms of ;) and n is useful in the study of
the spherical Bessel functions. !® This asymptotic
relationship can be given an intuitive geometrical
grounding (c.{. remarks by Biedenharn and van Dam,
Ref. 5, pp.3—~5).

5. SPECTRAL DECOMPOSITION OF THE ROTATION
OPERATOR

Expansions (2. 9) and (4. 6) are closely related to the
spectral decomposition of the rotation operator
exp(iyn- S) in the 2j + 1 space spanned by the vectors
jjm). Since the eigenvalues of n-S are the same as
those of S,, that is, the numbers m, —j <m <j, the
spectral decomposition of the rotation operator is

i
exp(iyn-8)= 2. exp(imy) P,(n) (5.1)
m=-j

where P, (n) is the projection operator on the eigen-
vector of n+ S with eigenvalue m. Defining |jm n) by

n-S|jmn)=m |jmn), (5.2)
then, in Dirac notation,

P (n)= ‘jmn}(njml. (5.3)
The spectral decomposition of (n- S)% for £k =0,1,...,2j

i
(n-S)= )3 mkP_(n) (5.4)

ma-j
yields, upon inversion, formulas for the P, (n) in terms
of the basis (n-8)*. The results of section 3 give, for
integer j
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g
P, (n)= % 3 w,,l(n+S)+m 1] (n- SPF, (5. 5a)
1l
and for half-odd integer j
1 j=1/2
P,m)=5 2 w,[I+ m™(n-8)] (n-8)%~ (5. 5b)
k=0

In terms of the spherical basis, comparison of (5.1)
with Egs. (4.6), (4.18), and (4.11) gives

2j .
_ Jod W e .
pm=tn (17 0) (=17 Y ()Y (S).  (5.6)
These projections operators can be of use in a variety
of problems involving interacting spin systems.

6. CONCLUDING REMARKS

The expressions obtained for the representations of
the rotation operator exp(iyn-J) have, perhaps, a cer-
tain intuitive appeal. They may be seen as the gen-
eralization to the multidimensional representations of
0(3) of Euler’s formula

exp(im@)=cosme + i sinme,

which gives the irreducible representations, for integer
m, of the group of rotations in the plane; exp(i¢) is,
of course, the rotation operator in the complex plane.

The ease with which the representations can be ob-
tained from the spin matrices leads one to expect that
a similar procedure will work for O(4) and, in general,
for O(n). The spectral decomposition of the rotation
operators would seem to provide an appropriate
starting point.
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APPENDIX A

Inversion of the matrices M with elements M, ,=m?"
We refer to Muir (Ref. 3, Chap. XI).

j integer: The values taken by m and % are m, &

=1,2,...,j. The matrix M can be factored as
M=AB, (A1)

where
1 x o xq
1 x, x2 e x3

B= (A2)
1 x, « Xyt
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and A is diagonal with elements

Atm :xmélm‘ (A3)
%,, is defined by
X, =m?, (A4)

The determinant of B is a Vandermonde determinant
and is given by the difference product of the x_,
detB=11" (x,-x,) (A5)
Ryl
where the prime denotes %2> only in the product.

The unsigned minor of the element B, , is the deter-
minant of a matrix similar to B except that x,, and the
{k <1)th power is missing. It is given by (Muir, p. 333)

/}7”:31;[ (%= %, )P M %y, .0, %)), (AB)

where p{™(x,, ...,x;) is a sum of products of the x,,
j=k at a time, without repetition and omitting «,,.
Hence
(B = (A1) (B

(=1 (. %))
T (% = %) (A7)

which is the expression given in the text.

j half -odd ineger: In this case, since k=0,1,...,7 -3,
M is already in Vandermonde form, i.e., in the form
of (A2), the only difference being in the indexing of the
elements, % running as above and m=13,...j. The
same procedure (except A =1) gives

- (= )mempimy % oy h ey X))
M 1 — =1/2-p N\ (20 Ll X
( )km Hs#m(xs - xm)

(A8)
APPENDIX B

To obtain Eq. (4.15) from the matrices d4/(9) for
rotations about the y axis, we write

exp(iyn - S) = exp(i¢S,) exp(i¥S ) exp(iyS ) exp(~ i6S,)

X exp(~ ¢S ). (B1)

In the basis |jm)

(exp(i¢S )y ,m = €XP(IMP) B, .
and

(exp(i6S,)),r, = @),
Using

A¥(= 6), o = (6,00
Eq. (Bl) gives

(B2)

me

(m' | exp(ign -+ 8)|jm ")

= expli(m’ -~m")p] i exp(imy) df(e)@ a(0),.

m=-}
(B3)
Further,

F(6) 0 @(0)
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= (= 1" " d(6)_ ., d(6)

m’,m

:(—1)’""""2(2l+1)x<], ;oo )
1 m -m m= —-m
x(; j

i -m

Substitution in (B2) together with use of

1/2
O pexp(idio)=(- 1" (FH) " ¥ ut6,0)

5) ) X A8, o (B4)

gives Eq. (4.15).
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With reference to a paper by Goedecke in this journal attention is drawn to the fact that already in his
original paper on the subject Rosenfeld proved the equality of the results of the two general procedures of
symmetrizing energy-momentum tensors, i.e., the procedure of Belinfante (1939), utilizing the angular
momentum tensor, and the procedure of Rosenfeld (1940), taking the Lorentz metric limit of the manifestly
symmetrical energy-momentum tensor of Riemannian space. Since Rosenfeld’s presentation of his procedure
may give the misleading impression that it has something to do with curved spaces, general relativity, or
gravitational theory, we show in the present paper how his scheme can be recast in a form, where one
merely takes resort to an infinitesimal transformation of the ordinary Lorentz coordinates to arbitrary
curvilinear coordinates, describing the same original Lorentz space of zero curvature. This transformation,

of course, means a parametrization of the variational principle, and the analysis can thus be performed by
means of a generalization of the theory of parameter-invariant variational principles. An expression for the
symmetrized energy—momentum tensor is given, which is equivalent to that given by Rosenfeld, and in which
the transformation functions are seen to vanish identically. The procedure is thus seen to be not so much a
limiting process as a transformation to curvilinear coordinates, construction of a symmetrical energy-momentum

tensor, and a transformation back again.

In a recent paper on stress-energy tensors Goedecke!
has mentioned that, apart from educated guesswork for
special cases, there are the following two systematic
schemes for symmetrizing the tensors in question:
First, we have the formal procedure given by Belinfante
in 1939, utilizing the law of conservation of angular
momentum. Second, we can calculate the Lorentz met-
ric limit of the symmetric, canonical stress-energy
tensor, derived from the actual Lagrangian, generalized
to Riemannian metric.

2

Before applying these two schemes to various physical
fields, showing in each case that the results are indeed
equal, Goedecke remarks that to his knowledge the pre-
sumed equality of the results of the two procedures has
never been proven in general. This remark makes it
appropriate to recall the fact that such a proof was
given at an early stage, namely by Rosenfeld® in the
paper of 1940, where the method of utilizing Riemannian
metric for symmetrizing the energy— momentum tensor
was presented for the first time,

Now, from Rosenfeld’s presentation the reader may
very easily get the impression that the symmetrization
of the stress-energy tensor by means of Riemannian
metric has something to do with curved spaces, general
relativity or gravitational theory. Since, however, this
is not in the least the case, it may be of some interest
to demonstrate that Rosenfeld’s procedure can be readily
cast in a form, where one merely takes resort to an
infinitesimal transformation of the ordinary Lorentz
coordinates to arbitrary curvilinear coordinates, de-
scribing the same Loreniz space of zero curvature. For
such a recast, of which a brief account is given in the
following, use is only made of the theory of parameter-
invariant variational principles, presented, e.g., by
Rund, * and generalized by Linder® as to include also a
simultaneous transformation of the field components.

We start out with ordinary Lorentz coordinates x*
=(x, v, z, t) with the pseudo-Cartesian metric 1, = 7
= 8,; — 20,48;4. Consider a field theory, where the
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Lagrangian L(Q 4, @4,,) is a function of certain field com-
ponents @, and their first order derivatives @,,,=3Q,/
3x*, The variational principle for the field thus reads

64/ L(Qa, Qa ) d*x =0 (d =dx" dx®dx®dx?), (1)

where 6, denotes variation with respect to the field
components ¢, We obtain

oL oL > ]
o L= o {2 5Q, =0, 2)
=[5, <aQA,k N (
giving the extremal equations
oL aL
=——_.(——) =0. 3)
47 0Qq <3QA,;¢> " (

We now make the following infinitesimal transforma-
tion of the integration parameters x* in the variational

principle:
KR =xku*), u® =u*(xH), (4)

and a simultaneous transformation of the field compo-~
nents, being a special case of a generalization of the
theory of Rund, * studied by Linder®:

Q4=0Q4(Qr, x’fa), Qr =Qr(Q4, u?k)' (5)
With J = [x%, | and d*u=du' du? du® du* we obtain

6fAdu=0, A=LJ, (6)

where the field components now are @r(«*) and x*(u*).
Thus, by means of (4) and (5), the new Lagrangian A is
considered as a function of @, Qr 4, ¥%, and also,
necessarily, of x%,;. '

The variation & with respect to @r is seen to be

=| gL L o -
GPA—[JBQA— (JBQA'kuﬁ)'a] 5Q,=0 )
with

504 =504 6r . ®
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As is seen from (5) any assigned variation of @, can be
obtained from a suitable variation of @r. The param-
etrized variational principle gives thus

oL oL )
Je o | J——u”, =0,
2Q, ( 0Qan ") 4 (9)

writing () , for () ,u%, after using the first of the Piola
identities

(Ju%) o =0, (Jx%,) =0, (10)
the Eqs, (9) are seen to reduce to (3), showing that the
Qr-extremals of (6) are identical with the @ ,-extremals
of (1), only, of course, expressed in the new indepen-
dent coordinates and new field components.

Since the Lagrangian A is independent of x*, the x*-
extremals of (68) are “cyclic, ” having the form of con-
servation theorems, viz.

&, oA oA
o=l o —ee | =
-_6? [ ax?a (axl,zaﬂ> ,Bl,a 0’ (11)

where 8,A is the variation with respect to »*. Since the
variational principle (6) is parameter-invariant, the
x*-extremals (11) are not independent of the @r-
extremals (9), but are satisfied in virtue of the latter
and can thus be deduced from them.

By choosing different forms of the transformation
(4), (5) the extremals (11) can take different forms,
e.g., different with respect to additive divergence-free
quantities within the bracket [ ]. If, e.g., we choose
@r =Q,4 and observe that

Qa, :QA,suéz, (12)
ad

EE:JH?W (13}
0P A

‘é‘;}f‘z = URU,1, (14)

we obtain by virtue of (10)

8
agAJ_lz_(L oJ ;L QMau,) g
0

B axky 094, oxk,
aL
__(Lékl_mQA.k >,1_0’ (15)

i.e., the energy—momentum conservation law, ex-
pressed by means of the canonical, nonsymmetrized
tensor.

Another choice of the transformation, which leads to
an equivalent of Rosenfeld’s procedure, is to let the
transformation (5) be the transformation of the field
components under a general coordinate transformation
(4), according to their transformation properties as
tensors or spinors. If the original theory is Lorentz-
invariant, we know that under such a transformation
the Lagrangian A takes the form of a scalar density un-
der Riemannian transformations, the x%, and x%,,, in-
troduced by the transformation (4), (5), occurring only
in the combinations given by

— vk 4l — e B
Bap=XaX gMery Mu=u U 18ap (16)
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and by g,s,, entering in the Christoffel symbols of the
covariant derivatives. This is an evident fact in the case
of the @, : s being tensor components, and by the way,

in this case also valid for finite transformations. It is
also seen to be true for the spinors, in any case for
infinitesimal transformations, the only ones necessary
for our purpose. In fact, it follows immediately, e.g.,
from the representations of the matrices of the Dirac
equation in Riemannian metric, utilized by Goedecke.

This structure of the transformed equations being
guaranteed, the variation 5,A can be written

SA
O N =——b 5,4, 17
Ggug Sas ( )
where
A oA ( A )
=l s 18
0fys O8ws \08ugy/ (18)

and where, from (16), we have
By8ap= 'r),z,xffx By + 1 %%, ox' . (19)

We thus obtain

OA
GxAE< + oA >x)fa77h15xl,85" nmz[('bA + oA )x:’;] 56xl‘

08us 0% 0gus  Ofpa
(20)
The x-extremals are thus, after multiplication with 77},
OA OA
=+ 22 Ve | =0, 21
[(Q&xﬂ 5g5a> ' ] 8 (21)

Since [ | g=[],%'s, we obtain by means of the second
Piola identity (10)

%, =0 (22)

with the manifestly symmetrical energy— momentum
tensor

+
6gotB égﬂat

which contains Rosenfeld’s result.

(23)

SA . BA\ .
T = T :x’fax’,5< )J 1

Evidently the 7% of (23) is the same, independently
of the choice of the coordinate system »®. In fact, T#
can according to (23) be interpreted as the tensor

s _ ( géJI;) N %(;D) i, (24)

transformed to the original, pseudo-Cartesian Lorentz
coordinate system, the result of such a transformation
being the same irrespective of the coordinate system
u*, from which the transformation is made. The inde-
pendence of the expression (23) of #* can also be proven
by a direct, although rather lengthy calculation, as has
been made in the tensor case for a finite transformation
by Sandin. ¢

The equivalence of the result (24) with that of
Belinfante? is now proved in much the same way as
made by Rosenfeld, * and the reader will find it easy to
translate Rosenfeld’s proof to the present scheme.

The actual calculation of T, according to (23) in spe-
cial cases is of course conveniently performed by the
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scheme, presented by Goedecke.! It may be pointed out,
however, that it is not necessary to go to the limit of
unity transformation, when the result is written in the
form (23), since the transformation functions then vanish
indentically in the result. The procedure is thus not so
much a limiting process as a transformation to curvi-
linear coordinates, construction of a symmetrical
energy— momentum tensor, and a transformation back
again to the original coordinates.
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The restriction of a unitary representation of a semisimple Lie group to a Heisenberg subgroup H, is shown
to be quasiequivalent to the regular representation of H,. Spectral properties of elements of the Heisenberg
subgroup are described. Conditions under which an element of a semisimple Lie algebra may be embedded

in a Heisenberg algebra are found.

INTRODUCTION

Suppose an element x in the Lie algebra ¢ of a Lie
group G can be embedded in a three-dimensional
Heisenberg subalgebra {x,y,z} of ¢ with [x,v]=z,
[x,z]=[y,2z]=0. Thus x will, together with y, satisfy
the CCR. It is known that such an embedding controls
to a large extent the spectrum of x in the differential of
any unitary representation of G. In this paper we
examine the above situation when G is a simple Lie
group. More generally, we first examine the restriction
of a unitary irreducible representation 7 of G to an ar-
bitrary Heisenberg subgroup of G with Lie algebra
{x;,9,,2}, [¥;,9;]=6,,2. In particular, upon restricting
dm, the differential of =, to the generators x,, y, we
obtain a complete analysis of their spectral properties.
Their spectral invariants are independent of the rep-
resentation 7 and the semisimple group G. For a class
of simple Lie groups we obtain sufficient algebraic con-
ditions that an element of the Lie algebra be embedded in
a Heisenberg algebra. We finally apply these results to
Poincaré subgroups of G.

Let G be a Lie group with Lie algebra ¢. Let 7 be a
continuous irreducible unitary representation of G. If
x e G, mexp(lx)) is a continuous one parameter group of
unitary operators, and by Stone’s theorem has a skew-
adjoint infinitesimal generator dn(x) such that #(exp(/x))
=exp(tdu(x)), ¥V tcR. The dn{x), x ¢, have a common
dense domain and x — dn(x) defines a representation of
G by essentially skew-adjoint operators.

Now let G be a simple Lie group. Suppose H,C G is a
2n + 1 parameter Heisenberg subgroup, that is H is a
nilpotent Lie group whose Lie algebra // has generators
{xl, ey Xy Miseees Vs z} with commutation relations
(9, 1=6,,2, [x,,2]=[y,,2]=0. We shall examine the
restriction of 7 to H, and dr to the generators x,, v,.
First, recall the dual object of H,. The irreducible
unitary representations U of H, fall into two distinct
classes, according to the scalar value of dU on the
center (z). Those for which dn(z)=0 are one-dimen-
sional, being just lifts to H, of characters of the vector
group E?" of 2n-dimensional Euclidean space. On the
other hand, for each A #0 there exists an infinite-di-
mensional irreducible unitary representation 7, for
which dn,(z) =ix. The classification of these representa-
tions is given by the celebrated Stone-—von Neuman
theorem.?!

The Hilbert space of these representations may be
taken to be L,(E®") and (-idm,(x;), —idm(y,)) are
realized as the usual operators of differentiation and
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multiplication in coordinate directions. Thus

dTT,L(.v ,') =iy i

(iﬂ')‘(Z) E W

The representations {r,|x=R -{0}} are mutually in-
equivalent. Thus R - {0 } parameterizes the infinite-
dimensional representations and the Plancherel formula
for H,, which gives the decomposition of the regular
representation of H , is obtained as described below.

Fix an infinite-dimensional representation =,. If f is
a C* function on H, with compact support, define the
operator

T(f)= £{ f(g)m(g)dg, dg Haar measure.

Then 7,(f) is of trace class and X, (f)="Tr(m(f)) is
a distribution on H, called the global character of 7,. We
then have

fe)=c [L X, (f) \["an, feCaR),

where e is the identity of H and dx the Lebesque mea-
sure, which is the Plancherel formula for H,.* The
Plancherel measure c¢|x|"dx, where ¢ is a normalization
constant, is thus concentrated on the infinite-dimen-
sional representations of H .

We return now to the situation outlined above. Thus
H, C G, G a simple Lie group, and 7 is a continuous
irreducible unitary representation of G. Denoting the
direct sum of countably infinitely many copies of a
representation 7 by «- 7, we have:

Theovem 1: 7|, is contained in <R, where R, is
the regular representation of H. If G is not a group of
automorphisms of a bounded symmetric domain, nl,
is unitarly equivalent to © R, .

Proof: The decomposition of 7| H, is determined by the
spectrum of —id,(z). The relations [x;,v,]=6,,2z imply
that adz is nilpotent.® Thus z generates a noncompact
one-parameter subgroup [exp(/z)], ¥ {=R. Since 7 is
irreducible, there is no nonzero vector ) in the Hilbert
space of 7 such that 7(g)y =19, ¥ g =G. The results of
Moore* now imply that there is no nonzero vector
P € H such that 7(exp(tz))y =1, ¥ {=R. In particular,
{0} is not an isolated eigenvalue of —idn(z). Moreover,
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it is shown in Ref. 4 that the self-adjoint operator
—1idn(2) is unitarily equivalent to the multiplication
operator acting on the space of square integrable func-
tions from an interval I to an infinite-dimensional
Hilbert space, where I is either (0, »), (= =,0), or
(==, ). Thus —idn(z)==- [, AdP,, where dP has
spectral multiplicity one and is absolutely continuous
with respect to Lebesgue measure.

Moreover, if G is not a group of automorphisms of a
bounded symmetric domain, then I =(- =, «),% We thus
have the direct integral decomposition

ﬂl”":oo-_/;ndel

and the theorem follows from the absolute continuity of
dP with respect to the Plancherel measure |\ |"dA.
QED

Upon further restricting drm to one of the generators
x, of the Lie algebra of H,, we obtain:

Covollary 1:
—idn(x)~o- [ AE,

where [Z )\ dE, is the spectral resolution of the operator
—id/dx on L3(R). Thus, in particular, —idn(x) has
spectral measure absolutely continuous with respect to
Lebesgue measure, and infinite multiplicity.

We next discuss when an element x= ¢ can be em-
bedded in a Heisenberg algebra {x, v, z2}cG[x, v]=2z,
[x,z]=[y,2]=0. We shall assume ¢ is either complex,
of type A,, I1>1, D,, 1>2, E,, E,, E;, or a split real
form of one of these algebras. Listed below are the
classical linear groups whose Lie algebras have the
indicated type:

Type Complex group Real group Dynkin diagram
A, l>1 SL(I1+1,C) SL(I+1,R) 0-0-0--:--0
D, 1>2 50(21,C) So(L, 1) 0-0- ---—0-3—0

We can show the following theorem.

Theorem 2: Let ¢ be as above. Then if x = ¢ with adx
nilpotent, x can be embedded in a three-dimensional
Heisenberg algebra {x,y, z}c‘g where [x, y] =2z,

[x, z]=[y, z]=0.

This theorem has appeared elsewhere, ¢ but for com-
pleteness we sketch a proof. Let us review the root
theory of ¢ .

Let # be a Cartan subalgebra of 9 . Then /4 is a maxi-
mal Abelian subalgebra of ¢ and by assumption the
characteristic roots of ad Gk are in the base field of §
for all he /. We have

§:H+§ga

where @ runs over the nonzero linear functionals (roots)
on # such that there exists an e, #0 (root vector) in g,
with adk(eq) = a(k)e, V¥ h e /. The spaces g, are one-
dimensional. A total order can be put on the set of
roots, and we denote the positive roots with respect to
this order by ¢-.
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A positive root is called simple with respect to this
order if it is not the sum of two other positive roots.
Any root is of the form } k,a; where o, are simple roots
and k, are integers. If a=73 k;, 7 Ik;| is called the
level of o, set

N= 2 &

aE o*

then // is a maximal nilpotent subalgebra of ¢'. Any ad-
nilpotent element of § can be mapped into &/ by an
automorphism of . If e, e; are root vectors in/V, we
have

le  e]= N,s€qs if a+8isa root,
@’ "8I 0 otherwise.
k4

Moreover, since the Dynkin diagram of § has no double
bonds, for any roots a, 8= ¢, 2« + 8 is never a root,
so [e,, e,.,]=0.

o’

Proof of Theorem 2: Suppose x =, adx nilpotent. By
the above remarks we may assume without loss of
generality that x ¢ /. Thus

= 2, c.e,.
a€Co*

Suppose first there exists a ¢ ,#0, where « is not the
highest root of &*. Then there exists a positive root 8
such that o + 8 is a root, and for this 8 we have [x, eB]
#0. Now let 8 be the positive root of highest level such
that [x, e,] #0. Then [x, ¢,] =0 if level(s) > level(B). We
assert that {x, e,, [x, ¢,]} is a three-dimensional
Heisenberg algebra.

For the remainder of the proof, all sums run over
all positive roots o such that o + 8 is a root. Now
[x’ eﬂ] = Z da+B €qp SO[[X, eB]’ eB] :E de [ea*B’ eB] = 0’
since [e,,4, €,]=0 for all a. Also

[[X, es]y x]: [Z dm.g em,gyx]
=7, 2 [ems’ x]:O’

since level (a +8) > level 8. Finally, if x=c_ e, « can
be mapped onto a simple root by an element of the
Weyl group, which induces an automorphism of x onto
the root vector corresponding to a simple root. The
above argument can now be applied. QED
We conclude with a brief discussion of simple Lie
groups containing the Poincaré group P. First, suppose
G is one of the simple Lie groups whose Lie algebra was
discussed above. Let p, denote the energy operator in p.
O’ Raifeartaigh” has shown that adp, is nilpotent. Hence
we conclude from Theorem 2 and the Corollary to Theo-
rem 1 that the spectrum of - du(p,) is (— =, ) and the
spectral measure is absolutely continuous with respect
to the Lebesque measure. In fact,® shows that this can
happen in any simple Lie group which is not the group
of automorphisms of a bounded symmetric domain. On
the other hand, for certain diserete series representa-
tions of a group of bounded symmetric domain, ad-
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The spatially cut-off Hamiltonians for the models (yfi$), and (Y™ + ¢*), with M > N are
bounded below uniformly in a momentum cutoff, by using the semi-Euclidean formulation.

1. INTRODUCTION

Two interactions are considered: the generalized
Yukawa (GY,) and the Yukawa (¥,). These are (\Jpp”
+ ¢, and (\JYe)y,; respectively. The corresponding
spatially cut-off Hamiltonians are shown to be bounded
below provided M > N, For Y,, this problem was first
solved by Glimm in Ref. 1. GY, was bounded below by
Federbush in Ref. 2. The methods used in this paper
constitute a considerable improvement over those in
Ref. 2. In particular they can be extended to prove that
the lower bound is linear in the volume. This will be
given in another paper. Also Y, and GY, can be treated
in a uniform manner, This being so, the proof is given
for ¥,, and details for GY, are given only in the one
place where the proofs diverge appreciably.

The lower bound is obtained by estimating, uniformly

in a momentum cutoff and the expectation state,
E,=-lim 1 In{e=TH%, (1.1)
Tow 4

where H is given by (1.3). For simplicity, E,; is first
estimated for the Fock vacuum, The details for estab-
lishing a bound uniform in the expectation state are
provided in an appendix. E; is bounded below, uniform-
ly in the expectation and momentum cutoff, provided

("™ <C(CF, (1.2)
where C, is independent of the state and the cutoff,

In Sec, 2 {e~T# is expanded by a partly renormalized
type of perturbation expansion similar to those used by
Glimm and Jaffe in Refs. 3, 4. The expansion is gen-
erated by applying two identities referred to as P
(perturbation) and C (contraction). As in Ref. 4, the
P identity is applied in unit intervals in the time axis so
that the eventual bound for {e-T#) will have the form of
a product of bounds over unit intervals making up [0, 7]
as required by (1. 2). The expansion achieves two objec-
tives: First the divergent quantities are exhibited and
cancelled, and secondly the kernels of the remaining
nondivergent quantities are rather well behaved. To in-
crease this good behavior, one further operation is
performed after the expansion is complete: The uncon-
tracted fermion legs are given an effective momentum
cutoff by moving them a short distance across neighbor-
ing exponents, This is so arranged that no further con-
tractions occur,

In Sec. 3, by methods outlined in Ref. 5, all fermion
operators are removed by an estimate that has been
called “defermiation. ” The total Fock space is regarded
as being fibered over Nelson space, and operators are
estimated by taking the norm over fermion Fock space

1649 Journal of Mathematical Physics, Vol. 16, No. 8, August 1975

at each point in @ space [Nelson space is L?(Q)]. The
result is an expression which involves only commuting
boson operators, and this can be estimated in a conven-
tional manner. The antisymmetry of fermion wavefunc-
tions enters into this “defermiation” in an essential
way. Some of the operators are bounded pointwise in
space because of the one particle per mode property.
The boundedness of the exponential operators depends
on the anticommutation relations. This estimate is
postponed to Sec. 7.

In Sec. 4, the convergence of the expansion and thence
(1. 2) is proved with the help of an estimate on boson ex-
pectations, whose proof is postponed until Secs. 5 and 6.
The proof of convergence involves estimating sums over
fermion graphs. These estimates closely follow proce-
dures used by Dimock and Glimm in Ref, 6.

Section 5 contains an estimate on boson expectations.
The methods are very similar to those in Ref, 6, The
only modifications made are necessary to handle the
more singular kernels resulting from the expansion, as
compared with the kernels assumed in Ref. 4. Section 6
is devoted to the proof of some estimates on kernels
which are used in Secs. 4 and 5. Finally, in Sec. 7, the
estimate on exponential operators, referred to in Sec.
3, is proved. This estimate substitutes for the Wick
ordering bound used in P(¢),. A simple form of Glimm’s
dressing transformation, in which only the fermions are
dressed, is used to bound from below the pair creation
and annihilation part of the interaction (cf. Ref. 2), In a
similar way, a corresponding bound for GY, can be
proved, with the aid of the ¢*¥ term in the GY, interac-
tion. Dressing only the fermions has the merit of giving
a pointwise bound on @ space. To complete the proof, a
bound on the scattering part of the interaction is re-
quired. At this point Y, and GY, seem to be different,

In particular it is here that M > N is needed, whereas
Y, can be considered as a special case of M =N, This is
in fact the only significant difference between the proofs
for Y, and GY,. Details have been given for both. The
Hamiltonian # is given by

H=Hyp+Hyp+ ) [ 1 9(6)0x(x) : ¢ (¥)g(x) dx
- éémif g2x): ¥ (x) :dx — Ey, 1.3)

where Hyz and H,, are the free boson and fermion
Hamiltonians:

Hyp= [ p)a*®)ak)dr,
Hyp= [ w(p)[0*(p)b(p) + b (p)0(p)]dp.
The subscript K represents a sharp momentum cutoff.

g(x) is a nonnegative spatial cutoff satisfying
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gEI? Wpilsp<w,
3e>0: [ [30) |21+ || dk <,
S 1@+ k19 dr <o,

These assumptions are quite mild: g can be a charac-
teristic function, for example, The counterterms are
given by perturbation theory:

A2 wlipt- M1
ot =—{ — =
Mk (n)[,,,s,{ w? 20 @

E :_<L>2f Wy =pipy= M 1 1
¥ 47 lpllsK w1(l.’2 Wy + Wy ‘i[J.(k) u(k)

(1.4)

(1. 5a)

lp2|<K
X |§(py+pqy +k)|? dpy dp, dk. (1. 5b)
Let
Var S Dpe) 1 d)ge) dx - 3omk
X [ g (x): ¢%(x) 1dx = Ey. 1.6)

The interaction is broken up in the following way:
Kf : ax(x)d)x(x) 1 o)gx) dx
= Jip1ax [DF(DOB* (52) + (= pb" (= )] W, (b1, 1o, R)

Ipgl<K
X ¢ (k) dpydp,dk + lpy1<K (0% ()b (= by) + b"* (p1)b" (= bo)
lpzléK
XW(py, Po, kYD (R) dpy dpy dke, 1.7
where
1

o (k) = ) [a* (k) + a(= k)],

A s — pupa— M2\ 172
Wp(ﬁui’z,k):-Wg(p1+pz+k)<ﬂ92_f?_1p_z_~>

W, W,
Xsgn(p, —p,), (1.8)
R + + MP\1/?
Wbk = - s 1o, +p2+k>(yl_%_$_> :

The cutoffs in momentum that are used in the proof will
all be selected from a sequence (K,) where » is a posi-
tive integer. Cutoffs apply only to fermion momenta
until Sec. 7, in which bosons are cut off:

K,=n* (1.9)

« will be chosen large. The term “lower momentum
cutoff” is used to indicate a momentum cutoff of the
form

J(py,P;) = characteristic function of the set {either

lPit;’L or lp2l/> L} for some L. (1.10)

2. THE EXPANSION

Firstly, {¢-7% is rewritten in Nelson space N. In
Sec. 7 it is shown that a quadratic boson monomial,
c(¢p), depending on K and an e:> 0, can be chosen so that

Hyp+V+c(d)z - 0K, Hyg-clp)z-0(1). (2.1)
By the Trotter product formula,
(e = Lim{(exp{= T/NHop - c(@)]}
xexp{— T/N[Hyp+ V+c() D", 2.2)
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Define Hyp(s), V(s), and c{¢, s) by substituting in H;,
V, and c(¢)

o)~ ok, s), bT(p)—b(p,s), @.3)

where ¢(k, s) is the partial Fourier transform of a sharp
time Euclidean boson field on Nelson space. b* denotes
b*, b, b’*, or b’ and the time dependence in b#(p, s) is
dummy, i.e,, b#(p, §)= b#(p). It will be used to define a
time ordering.

By the Feynman—Kac—Nelson formula, as given in
Ref, 7,

exp{~ t[Hyg - c(¢)]} = EU () expl+ fot c(¢, N dT]E,
(2. 4)

[where E, projects onto the time zero slice of Nelson
space, and U(t) is the unitary operator induced by
translation in time by {], and the Markov property:

(o™ =tim 7(( 11 expl 7/MHG T/ + VGT/N)

re(@ /M) exls e, 7)), @9

T is a time ordering operator applying to the noncom-
muting fermion operators. The subscript N means that
the expectation for the boson fields is taken in Nelson
space with respect to the Nelson space vacuum. (2. 5) is
rewritten in the following symbolic manner:

(™) = T exp{~ [ [Hop (T) + VD] ar}y.

In order to obtain an estimate with the correct depen-
dence on T, (2.6) is rewritten as

(e =T(1] expl= [, [Hop(7) + V(D] T,

(2.6)

2.7

where [; denotes integration over the time interval
[I,1+1] and the product runs over integers I such th~’
[0, T)=U,[1, 1+1].
Define
A(T) =Hyez(T)+ V(7), An(7) = Hyp (1) + Vo(7), (2.8)

where V,(7) is given by replacing K by K, in (1, 6). The
two identities (P) and (C) which generate the expansion
are now given. The Duhamel formula

exp(— A) =exp(~ A,) —~ f01 ds exp(—sA)(A-A,)
xexp[— (1 - $)4,]

can be applied to factors in finite time-ordered Trotter
approximants and a strong limit taken to show that

2.9)

%
TE,, exp[- f°1 A(‘r)d’r]Ecri
oy
=TE,, exp[~- 101 A,,('r)d'r]E‘71

- TE,, o‘:z dsfA(s) = A,(s)]

x exp[— fﬁ‘: A,,('r)d‘r—-f:’2A('r)d'r]E,,1 r)
(it is hoped that 7, the time-ordering operator will not
be confused with the time 7T), where Eqy, E°1 project
onto time slices at 0, and o, in Nelson space and 6, <0,.

This formula remains valid if there are other operators
present at times in the interval {0, 0,].

By integrating the derivative of exp{~ (1 - s)[A +w(p)]}
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Xb(p) exp(~ sA), where b(p) is to be smeared by an L?
function, it can be shown that
b(p) exp(~ A) = exp{- [A + w(p)]}b(p)
+f0I ds exp{— (1~ )[4 +w(p)]}
x[V, b(p)] exp(~ sA). (2.10)

Since iterated applications of (P) will result in stepwise
time dependent momentum cutoffs, (2.10) is extended by
allowing such cutoffs. Let

AK(S) =Hyp(s)+ VK(S)’

where K =K (s) is a stepwise time dependent momentum
cutoff and V. (s) is defined by replacing K by X(s) in the
definition ot/g/'(s). Then it follows that for g, 0= 0,

TEazb(p, o) exp[- fa:Z AK(T) d'r]Eur1

(2.11a)

= TE,, exp[- w(p)(o - 01)]b(p, 01) exp[- fcjz Ay (D dTIE,,
+TE,, fo:ds exp[- w(p)(o = 8)][Vi(s), b(p, s)]

xexp|~ f‘,:zA/((T)dT]Ecl. (2. 11b)

A monomial R :R(b#(sl), b#(sz), cees b#(sn)) can be in~
cluded so that

TE,,b(p, )R exp[- fUZZAK(T) d'r]E‘,1
=TE,, exp[- w(p)(o - 0,)]b(p, 01)R
x exp[~ fajz Ap(7)dTIE,
+TE,R [} ds expl- w(p)o = 5)|[Vk (), b(p, 5)]

x exp[- fUZZAK(T)dT]Eal+T > E,

;<
s‘ 4

XR(...,exp[- w(p)(o - s))[b(p), b¥(s)],...)

X exp[- fq:zAK(‘T)dT]EuI. ©)

There is a similar formula for d’, and the adjoints are
used to move b*, b’* to the left.

The expansion for (¢~7% is obtained as follows: An
interval ] is selected and (P) is applied to the corre-
sponding factor exp(~ [;AdT) so as to interpolate be-
tween A and A, i.e., choose n=0 in (P). The inter-
polating term has a new “P” vertex. (C) is now used
to move the corresponding b#'s over to the vacuum
where they annihilate. In the course of this, new “C”
vertices are formed; these are not further contracted.
After renormalization, the description of which is
postponed for the moment, (P) is applied again in the
same interval to interpolate between A and A,. (C) is
then applied as before, followed by renormalization,
and so on. If (P) has been applied in a given interval
n times, then the (z+1)th application in 7 is used to
interpolate between A and A,. Eventually, the expansion
will terminate for I, because, if n is large enough,
K,= K. Then a new interval is selected.

It is possible for a P vertex to contract twicetoa C
vertex, The corresponding factor is represented by a
subgraph. See Fig. 1. The lines represent fermion con-
tractions. s,,; and s, are the times of the vertices which
are to be integrated over. s,,; is to be integrated over
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[0, T]. This will give a result that diverges as K —«,
Split the range of integration by

T
~[0 ds,,,i :flds‘”l + chS‘M

The complement is with respect to {0, T3, Iis the in-
terval containing the P vertex. The integration over I
is not divergent. Observe from (C) that the exponent
does not depend on s,,;. Furthermore, the counterterms
associated with v occur in a term with the same ex-
ponent as that in the term containing the factor R,
represented by Fig. 1. Hence both terms may be com-
bined to give a new one with a factor (2.12), given be-
low, assigned to v. For later use note that, when v is
renormalized, the cutoff in the exponent is constant in
the interval (s,,I+1); also R, vanishes unless s,,;

€ (s,,I+1), because otherwise the momentum cutoffs on
v and v+1 are disjoint:

{fIR,,dsM +56m? j L) ¢i(x,s,) 1 dx+ E )

If the P vertex was introduced during the rth application
of (P) in I, then

(2.12)

(2.13)

The expression in the curly brackets will be referred to
as a “cancelled renormalization subgraph,” The C ver-
tex will be referred to as having been “integrated out,”

Introduce the Euclidean momentum % = (k°, k!) and write

(2.12) as

smk = dm’ - Gm%(n o E,=Ex—Eg, .-

I Ry, ko) : 9 Ry) (= ky) : dly dy + OE,, (2.14)
where
R, (ky, %y)

= fs:ﬂ ds,.q f,,i vex WolD1, P2, RYW, (D1, b2, kDol by, P2)

Ip2|sK

X exp[— (W +wy = ik})(s,,; — s,)] exp[i (%] - kJ)s, | dp, dp,

+ (30my/4m)g* gk} - k}) expli (k] - )s, ], (2.15)
8E, = fs:H dsyu [ | Wy(p1, 02,7 |

xexp{- [wy+wy+ L &)](S,.4 — $,)}

X p(py, o)~ (B) dpy dpy + E,, (2.16)

where p(py, po) = characteristic function of the set:
either |p,| = K, or |p,| =2 K,. For a given term in the
expansion, let

p{I) = largest fermion cutoff in the exponent in I,
(2.17a)

Suppose, for this term, there are np(I) P vertices in I;
then by the way in which the expansion is defined and
(1. 9) it follows that

pll) =np(h*. (2.17b)

When the expansion is complete, one last operation,
referred to as “smoothing the uncontracted legs,” is
performed. Each uncontracted fermion annihilation
operator in I with momentum above p(7) is moved to the

FIG. 1. A divergent subgraph.
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right, or backwards in time, halfway toward the next
vertex, excluding those C vertices which have been in-
tegrated out because they are part of a cancelled re-
normalization subgraph [see (2.12)]. Similarly, uncen-
tracted creation operators with momentum above p(J)
move to the left., Suppose such an operator associated
with vertex v is moved halfway toward vertex v’; then
the corresponding momentum acquires an effective
momentum cut-off given by

exp[—a(p)lsv'—su‘ /2]1 (2-18)
where
w(p)=0 it [p| <p 2.19)

=w(p) if [p|>pW)

and s, S,», are the times of the vertices v and v/, No
contractions can occur in the course of smoothing the
uncontracted legs, because the momenta of the opera-
tors that are moved are too high to contract with the ex-
ponent, and they are not moved far enough to contract
with any vertex. The expansion is written in the form

(@™ =2 [ ds, T(E, 1] expl= [, B(r, s AT, 20)

where g is a label that uniquely specifies the possible
vertices and their contractions. g comprises:

(1) a function I —~n(J) specifying the num-
ber of vertices in I.

(2) for each I, a function from
{1,2,3,...,n()} into {P,C}. This labels
the vertices and specifies whether they are
P or C vertices.

(3) a graph F on 3 ,n(I) labelled vertices (2, 21a)
with two lines leaving each vertex. Each

C vertex may have at most one open line,

that is, a line which does not connect to

another vertex. P vertices have no open

lines. Open lines are labelled “low mo-

mentum” or “high momentum” to specify

whether they have been moved in smooth-

ing the uncontracted legs.

An open line pointing right represents an annihilation
operator; an open line pointing left represents a crea-
tion operator, Lines which are not open represent con-
tractions resulting from using (C).

To describe K,, introduce the following notation:

V,{P1, b2, k) represents either W, or W, (2. 21b)

[see (1. 8)]; J,(py, ps) is a cutoff on the fermion momen-
ta associated with the vertex v. In general J, will de-
pend on g and the times of the vertices. For P vertices
J, contains a low momentum cutoff depending on g and
v [see (P)]. Let

S = (su)y  {vertices}>

where v runs over the vertices that have not been in-
tegrated out [see (2.12)]. Let denote a line in F and
let 7, be the time difference associated with this line.
For ! connecting vertices v and v'

(2.22)

4= Isu'_su[-
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If I is an open line, then {; is the quantity [s, - s,.| given
in (2.18).

With each vertex v which is not part of a cancelled
renormalization subgraph (note that v can be a vertex
in a renormalization subgraph with P and C vertices
in different intervals) associate the kernel

I Qulbos, bi ) 0k, 5,) dR,
where, if both lines /; and [/, leaving v are not open,
Qu(Puts uas B) = Vo (D1, Pu2, B) (Do, P12)
xexp[- w(p,1) ty,/2] exp[— w(p,9) 1,,/2].
(2. 23b)

(2. 23a)

If one line, say Iy, is open, then
Qu{Pu1; Du2s R) = Vo (Dot Pyas B) I (Poy, Pu2)
xexp[- w(py1) 1;,/2] exp[= w(p,3) I,Z/Z]ﬂ
(2. 23c)

If v and v’ belong to a cancelled renormalization sub-
graph, and v is the P vertex, then associate with (v, v')
the kernel

f RV(Ei,kz) 2 p(Ry) d(—ky) :dRy, diy + 6E,, (2. 23d)
which is given by (2, 15) and (2, 26). f{g, the boson val-
ued kernel of K, is formed by contracting the kernels
(2.23a) according to the lines in the fermion graph F
which g specifies. To coniract two legs with momenta
b1, and p,.q, say, a factor 6(p,4 +p,.;) is inserted, and
the arguments are integrated over,

The quantity B(7, s,) in (2. 20) is defined as follows.
For a given interval I, suppose that the P vertices are
times s;*c°s, with I=sy <5 <syseres5,<58,,,=1+1;
then for Tl let

B(7,s,)=A(7) for 5; < 7<s;,, wherei=1,2,...,n.
(2. 24)

The range of integration in (2. 20) is such that each C
vertex in the interval I is to be integrated over I. With
the same definitions as in the paragraph above, the P
vertices in I are to be integrated over the time ordered
region

I=sySs Sevos8, S8, =I+1, (2.25)

3. DEFERMIATION

In (2.20), the operator K, has the form of a kernel
7{5,, which is a function on the uncontracted fermion mo-
menta and @ space, smeared against a product of bts
at different times. Consider the special case wherein
K, is smeared by only two b*s and only depends on
fermion modes in a finite-dimensional subspace, S, of
the one particle fermion space. Furthermore, suppose
that the operator E(7, s,) in (2. 20) likewise depends only
on modes in S. Then the fermion Fock space factors,
and one need only consider the Fock space on S, which
is a finite~-dimensional Fock space. In this case, opera-
tors can be regarded as finite matrix-valued functions
on ¢ space:

T(K, 1] exp(~ [;B(7,5.)d My
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- (K, expl- J,” B(r,s)d™)x

<(|| &, exp(= J,” B(z,5)dD)|| pa, 3.1)

where || ||  denotes the norm over fermion Fock space
at a single point in @ space. It follows from the defini-
tion of the time ordered exponential that as an inequality
almost everywhere on € space

- [ngxp (_ fOT B(7, sg)dr)]p
T <Kg }i exp[" I_T\I B(%”‘)])’L

To estimate the right hand side, write

K, EE(K)H”! b: and “b =1

(3.2)

< lim
Nw o

The sum over # is over possible ways of assigning the
# - <o . .

b™s to the open lines specified by g, ¢ and j refer to two

orthonormal bases for S, and (K,);, is the matrix of K,

with respect to these bases. Then (3.2) implies

7| o (- [z, soar)]|

w2, [l o[- (572 ]I,
(3.3)
Suppose that as an operator estimate
B(7,s.)2 - d(, 7, 5,), (3.4)

where d(¢, 7, s,) is a real-valued measurable function
on @ space. Then from (3. 3):

| T, exp[- fOTB(T, st | ¢

= T
< {’2;,# ](Kg)“, exp[f0 d(o, 7, s,)dTl. (3.5)
This holds for any choice of bases in S. Taking the
infimum over bases implies
T
I T(K&,exp[—f0 B(r,s,)d1)) || ¢
$2 Tr K, | exp[+f0Td(q5, 7, $d 7], (3. 6)

where |K,| = (R*K,)!/?, identifying the kernel K, with
the corresponding operator on LZ(R), (3.1) and (3 6)
imply

XK, I exp[- fl B(7,8)dT ) x

s§ (Tr|&,| [T exp[+ [, d(¢, 7, s)dT]) . (3.7)
When K, is smeared by more than two b#’s, itis a
tensor product of two-fermion kernels as in (3. 7). This
is because any fermion graph is a collection of sub-
graphs which are either lines with two open ends or
closed loops., The open lines correspond to two-fermion
kernels, and the loops are functions on @ space, which
only contribute numerical factors at a given point in @
space. Define the trace of a tensor product to be the
product of the individual traces. The restriction to a
finite number of modes is removed by a limiting argu-
ment, Therefore, the following lemma holds:
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Lemma: Suppose d(¢, T, S,) is a real-valued mea-
surable function on @ space and that, as operators,

B(1,8.)2z = d(9, T, 5,).
Then
XK, 11 exp[- [, B(7,s)d7])x

<(Tr|&,] i exp[fI d(e,7,s,) d'r])N(I;l 2n(N), (3.8)

Recall from (2. 21a) that #(I') is the number of vertices
in interval I. The factor 2"/ overcounts sums over #,

4. CONVERGENCE OF THE EXPANSION

In Sec. 7, it is shown that, given e>0, 3d(¢, 7, s,) as
in Lemma (3. 8)

B(1,s.)2 ~d($, T, Sg), (4. 1a)
(I exp[+2 f, d(e, 7, spdy<P[OMPP" (@.1b)
[p(1) is defined by (2.17a)]. (2.20), (4.1), Lemma (3.8),

and the Cauchy—Schwartz inequality imply
(™ <% [ds((Tr |K, DY M [o@)] 0D (4.2)
£

Let I be a line in a graph. Define
d; =max{l, number of complete unit intervals that

crosses). 4.3)

Let {g:n(I)} denote the set of all g with a given n(J)
specified for each I, The following estimate is used to
count fermion graphs:

2 (@) <0 omrPam

{g:m(n} !

4. 4)

The product is over all lines in the fermion graph, F,
specified by g [see (2.21a)]. A factor, 2™, for each
interval, I, overcounts the number of possible functions
in (2.21a), part (2). A factor 0(1)"? for each I over-
counts the number of ways in which C vertices can have
open lines. Therefore, the proof of (4. 4) is reduced to
showing that

2 O.d® <omI 2.0, 4.5)
where the sum runs over all graphs with no open lines,
which can be drawn on 3;n(l) vertices, where the ver-
tices are fixed in advance to have either one leg or two
legs. This is proved by Dimock and Glimm, Lemma
(2.6) in Ref, 6. (4.2), {4.4), and (2. 17b) imply, for
€>0,

<e-TH> < 5(_'/‘1 (l—I[O(l)][n(l)-m(l)e“][zn(l)]!)

X sup {(Hd‘r’)fds ((Tr,K f)z)“2 X

{g:ntD)

4. 6)

Define d, to be the sum of the contraction distances 4,
over lines / that leave vertex v. Let L, be the lower
momentum cutoff in J,(p,, p,) [see (2. 21b)]. In Secs. 5
and 6 the following lemma is proved.

Lemma: an>0: ym =0,
J s ((xr|[E )3

<1 ([0(1)1og2n(1)]"‘”[n(1) o1 +L,]"’d;"‘>.
! et @.7
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The product over v< I means the product over all
vertices in the interval I. (4.6) and (4.7) imply, for
e€> 0 and for all m= 0,

y\ (ﬂ[ 1)10g n(l )][n(1>+nm5°‘1[n(1)!]4)

{n(r)}
X sup <ﬂ I1 (1+Lu)'"d;”‘>.

() <

le:n(n\ I ver 4.8)
The w has been relabelled to include the d} in (4. 6).
Recall from the description of the expansion in Sec. 2
that if v is a P vertex formed during the (xz + 1)th appli-
cation of (P) in a given interval I, then L,=K,. ¥ vis a
C vertex, L,=0. By replacing 5 by 5/3, if necessary,
the factor (1 +L,) in (4. 8) can be replaced by (1+L}),
where L)=L, if v is a P vertex, but if v is a C vertex,
L} is the lower momentum cutoff of a P vertex con-
tracted to v. If there are two such P vertices, then the
largest lower momentum cutoff is chosen. The expan-
sion is such that every C vertex is contracted to a P
vertex, and, of course, no P vertex can contract to
more than 2 C vertices.

For a fixed I and n(l), define ¢ (n(])) to be the set of
all g which have n(I) vertices in I, (4. 8) implies, for
€>0andall m>0,

(e"THy < fII':E (o) LogZr (D] DD 3 (1) 18
n(Iy
X sup (n [1+L;]'"d;'")}-

eeg(n(m vel

4.9)

In order to prove (1. 2) and thereby bound (1. 1) for the
Fock vacuum, it suffices to show that, for sufficiently
large m and «,

sup (n A +L)"d:\< o) [n(! 5.

£E( 0y vel

For, given m and a such that (4. 10) holds, choose ¢
small so that ea <1, Then (4. 9) and (4. 10) imply (1. 2)
for the Fock vacuum.,

(4.10)

For the proof of (4.10) the following notation is in-
troduced. For a fixed interval I, n{Z), and geg(n(I))
define, fori=2,3,4,---, C; to be the set of all C
vertices in I which contract to a P vertex via a line [
with d; =i. [d; is defined by (4. 3). | Define C; to be the
union of the set of P vertices in I with the set of all C
vertices in I which contract to a P vertex via a line !
with d; =1. The fact that a C vertex can contract to at
most 2 P vertices implies that

sup n {1 +L)ra;™
Keg(n(l)) verl

s

u

172
H L, =7ll-m
1ueC,-(1+ y)(,,)

< sup (

fcg(n(m i
. 1/2
l-mIC'-l I ,
1 vEC;

s

1 +L,ﬁ)'”) (4.11)

]

gEg(n(I)) i

where |C;| = number of elements in C;. Define 5,- to be
the set of all P vertices that are either in C; or contract
to C vertices in C;. The definition of L; and the fact
that at most two P vertices can contract to a given C
vertex imply that
I A+L))"< < I
ve Cy veﬁt
The definition of C implies that there exists an in-
terval, I’, that contams at least |C; | /12 of the P

i/2

(1 +L,,)"'> 4.12)
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vertices in CN,-. Since these P vertices are in the same
interval, as a consequence of the way in which the ex-
pansion is generated, they must all have different

cutoffs, L,, selected from the set {K,K,,K4,***}. Re-
call from (1. 9) that K;=j%; therefore,

I @+L)m<(|c;|/121)™ (4.13)

VEC{
(4.11), (4.12), and (4.13) imply that

sup I @ +L)"am
€€( (n(n) vel
sup H [l-mIC /4 IC |/12' -na/4‘| (4.14)

<
ecg(n(m i=1

where g € (n(J)) implies that ), IC;1 > n(l); therefore,
the right-hand side of (4. 14) can be majorized by taking
the supremum over |C;| such that

‘;E |C;| =n). (4.15)

This is done by first taking the log and using Lagrange
multipliers, i.e., maximize

DY T gg(lC;l)( ICil _ )}
& m n logi + 4 \ 19 log 12 1

+A(-2]C,) (4.16)

By Sterling’s formula, the right-hand side of (4.15) is
majorized by the supremum of ¢?, On differentiating,

(m/4) logi + (no/48) log(|C;|/12) + 1 =0 fori=1,2,3,---,

2 1l =n. (4.17)
When (4. 17) hold,
:Zz [C; | (A +na/48) =n(D(x +na/48). (4.18)

I m/a> 2n/12, X can be eliminated from (4.18), b
using (4.17), to show that
(na/48) logn(l) — O(na)].
(4.19) and (4. 14) imply (4.10).

This completes the proof of boundedness below for
the Hamiltonian except for the estimates (4. 1), which

are proved in Sec. 7, and Lemma (4. 7), which is
proved in Secs. 5 and 6.

J<—n)] (4.19)

5. ESTIMATE ON BOSON EXPECTATIONS

In this section the left-hand side of (4. 7) is estimated
in terms of norms on kernels. The estimates on these
norms, needed to complete the proof of Lemma 4.7,
are given in Sec. 6. The method is based on techniques
from Ref. 6. A more elegant, but less elementary,
method relying on L, estimates and hypercontractivity
is also outlined. This is taken from Ref. 7. The author
is grateful to Ira Herbst for drawing his attention to the
L, method.

Let A denote a vertex at time s,. Let k; = (k), k1) be
Euclidean momenta. Define

H,(ky, B3) = | @x(b1, P2, kD@, (D1, P, kE) dby dpy

X exp(ik}s,) exp(— ikys,), (5.1)
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where @, was defined by (2. 33). Consider the special
case in which K, is the kernel of a two-particle
fermion operator, as in (3. 7); then the fact that the
trace norm of a product of operators is majorized by
the product of the Hilbert—Schmidt norms of the in-
dividual operators implies that

(Tr (B )2 <11 f Byley, ko) o (er) (= By dly dy. (5.2)

A runs over the vertices specified by g. (5. 2) continues
to hold when I?g is a tensor product of two-particle
fermion operator kernels. Equivalently, one can say
that (5. 2) holds for any g with a fermion graph F [see
(2. 212)] consisting of lines with open ends. In fact F
may also include nondivergent closed fermion loops,
because these are traces of products of operators of
the form implied by the right-hand side of (5. 2). There-
fore, a general K, can be estimated by

(Tr |K,])? s[} [ Hy(oy, oy ()b (= By) dley dky

11 ([ R,(ky, ko) : ¢ (k1) (= Ey) 1 dky, dRey + O, )?,
(5.3)
where X runs over all vertices which are not part of
cancelled renormalization subgraphs and u runs over
P vertices which are part of cancelled renormalization
subgraphs. R, and 6E, are given by (2. 15) and (2. 16).
(5. 3) can be rewritten as
(Tr|E, <2 1
S

e Srlu2€ sc
X[f Ry (s, ko) : () d (= o) :dRy AR, )[OF ),
(5.4)

where S runs over subsets of the set, containing twice,
P vertices which are part of cancelled renormalization
subgraphs. The complement of S is with respect to this
set,

[ Hy(y, ko) 0 (k1) d (= Ry) dRey dky)

Define

Clk)=1/(m? + | |%). (5. 5)
This is the Fourier transform of the covariance opera-
tor of the free boson measure, The vacuum expectation,
or alternatively the integral with respect to the free
measure of the right-hand side of (5.4), can be per-
formed exactly so that
((Tr |Kg|)2>,v<_78) %} J iplse BRuOE,, T CRy)dky,
=0
2 (5. 6)
where G is a graph on the vertices labelled by ., 1y,
and A, Vertices labelled by A have two legs which are
allowed to contract to each other, Vertices labelled by
tq have two legs which are restricted to contract to
legs on other vertices. Vertices labelled by u, have no
legs. I runs over the lines in G and k; denotes the cor-
responding momenta. (More details are given in Ref.
6.) Let x(¢) be function in C*(R) such that x()=1, if
£l > 2; =0, if |£] <}. d, is defined as in (4.3). Define,
for each I,

=1,  itd,-1

=x(t/dy) itd;>1. (5.7
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Regard y, as being a function of two variables, with ¢
being dual to k,. Then, in the right-hand side of (5. 6),
C(E,) can be replaced by (§; x C)(k,;) without changing its
value, because vertices connected by lines with d; > 1
are localized in separated intervals in time. (There is
no momentum cutoff on 2° components, ) With this re-
placement made, regard the right-hand side of (5.6) as
a product of operators. For example, for a given vertex
A, the corresponding operator would have the kernel

(Ra, % OV 261 Hy (g, Teg) Ry, + O 12 (Ry). (5. 8)

(It does not matter which square root is chosen. ) De-
pending on how the lines /; and I, leave x, this kernel is
to be thought of as an operator either from L2(R?) to
L¥*R?) or from L*(RY) to €. [If /; and I, are the same
line because X is contracted to itself, then it is not
treated this way. In this case A gives rise to a con-
stant. ] The right-hand side of (5. 6) is now majorized
by taking Hilbert—Schmidt norms of operators and ab-
solute values of constants. (This is a simple version of
techniques used by Glimm and Jaffe in Ref, 4.) The
Hilbert—Schmidt norms are simplified by the estimate,
for nz= 0,

| &1+ O)R)| < 0Q)d5"C ). (5. 9)

The proof of (5.9) is postponed. The Hilbert—Schmidt
norm corresponding to a vertex A, is thereby less than
O()dyjd; i Ct *H,C /%||,, which is majorized by o()d;d;;
xtr(Ct ”%{ACI /%) because C'/?H,C!/? is a positive opera-

tor on L*(R?), These remarks prove that, for n> 0,

((Tr]]?gl)zh,é? ul—i . HQ).“%:,ZHRuil c2|0E |

1
(5.10)

x2; 1T o()d;",
G 1cG

where iy runs over S and p, over $° and, by definition,

”Qxl 22=J 1@y, 09,k) ’2C(E)dE dp, dp,,

(5.11)

7,

Note that ||@,ll¢,, =tr(C1/2H,C1/?) by (5.1). From Ref. 6,
Lemma (2. 6),

ta=J Ry (s, ) PCE)C Ry ey ey,

2 1T o()ds® < T o)™ 2n(D]!; (5.12)
G I1c6 I
therefore, (5.10) implies
CHLAIDNE N N N L P
xI1 o)y P2n(n]!. (5.13)

The proof of Lemma (4. 7) will now follow from esti-
mates on the norms in (5. 13), These are given in the
next section.

(5.9) is proved by
It @ 0]l < v - Ay < 0y,
where the last inequality follows from the exponential
decay of C away from the origin,

The L, method is now given. Suppose f; are two parti-
cle polynomials on Nelson space, whose time supports
are localized in unit intervals denoted by I in the usual
way. Suppose #(l)f;’s are localized in I in this manner:
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I fox=(11 1

i iCl

%vﬁm@gwﬂpm

where E; denotes the projection onto the time slice ¢=71
in Nelson space, This is not to be confused with the
projection onto the interval I. This notation is described
in Ref. 7:

< [Eea( L, )]

The bars denote the operator norm on L*(@), i.e.,

(5.14)

(5.15)

Nelson space. By hypercontractivity (see Chap, III, Ref,

7), (5. 15) is overestimated by
n oAl

1CI

(5.16)

provided p sufficiently large. Applying the Hélder in-
equality to (5. 16) implies

<0t I 17:l pmerre (5.17)
Since f; is a two-particle operator for each 7, Nelson’s
best estimate applied to the operator exp(~ ¢N) for
sufficiently large ¢ shows that

Ifilln, < (on@ = D) [I£: ]2 (5.18)

Nelson’s best estimate is also described in Ref. 7,
Chap. HIL (5,17) and (5.18) imply that

A sn(om"“’n(m A 2); (5.19)
4 I icr
(5. 19) applied to (5. 4) implies (5. 13).
6. ESTIMATES ON KERNELS
In this section the five estimates (6, 1)—(6. 5) given

below, are proved. For (6.1), suppose X is a complete-
ly contracted vertex, i.e., in the fermion graph F,
neither of the lines /; and I, which leave A are open.
Then, for n> 0 and some 7> 0 independent of =,

[Qullc,2 = O + Ly mdifdiytsh /1542745,

where L, is the low momentum cutoff associated with
A (L,#0 only for P vertices). ¢; is defined by (2. 22).
For (6.2), suppose X is not completely contracted so
that /; is an open line in F. Then, for n= 0,

@yl 6,2 < 0 + L,) " loghu(l) *d;™ t;‘“ﬁt-‘/?,

The factor (1+L,)” is put in merely to make the nota-
tion uniform, In fact, since A has an open line, r is a

C vertex and therefore L, =0, For (6.3) and (6. 4) sup-
pose 4y and U, are P vertices in cancelled renormaliza-
tion subgraphs; then

B0, llc, < OW@+L, ) U1 -
<0(1)(1 +Lu2)"’(1+ 1- (6. 4)

where s, and s, are the times of the P vertices and J,
as usual, is the integer that labels the unit interval con~
taining pq (¢y). For (6.5) the notation /(u) is used to in-
dicate the interval containing a vertex u and p runs
over all P vertices which are part of cancelled renor-
malization subgraphs:

fds n t;°zn (w)+1-s )-”32<n oy unt,
(6. 5)

(6. 1)

(6.2)

)-1/32 (6. 3)

IGELLZ, u2)-1/32’
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where if I is open, o, = 16 , if  connects two completely
contracted vertices, 0, = 16 ; if I connects to a vertex
which is not completely contracted, o; = :—g The case
in which ! connects two vertices which are both not com-
pletely contracted cannot occur by the way the expansion

is defined.

Lemma (4.7) is proved by combining (6. 1)— (6. 5) with
(5. 13) and noting that the number of subsets S summed
over in (5,13) is less than I1,2™D,

Proof of (6.1): from (2. 23b), (1.8), and (5.11), for

nz0,

[@:l1%,2<0Q) [ 12(by+b,+E) [*3(By, o) exp(- wity))
X exp(= wat;,)C(k) dpy dpy dk (6. 6)
<o)/ ,g(l’ﬁpz*'ki”ZJ (b1, D)t/ 1510 /18
Xt (! dpy dpy dk diftdiy" MG (6.7)

J, contains a lower cutoff at L,; therefore,

@], <0() flm';h |5(Dy +po +F1) | 2wl0 /18510 /16

or
Ipglz Ly
Xkt dpydpy die* didil e, o0 10 (6.8)
< O + Ly) ™ty /164570716, (6.9)

(1. 4) is used to obtain the last inequality. 5 is some
small number > 0,

Proof of (6. 2): from (2. 23c), (1.8), (5.11), and the
fact that p() sn(D® [see (2. 17) for the definition of

p(D]
l@ullE <OM) [, | cninre [8(B1 +02+BD (04, 22)
X exp(~ wyt;,)C(R) dp, dp,dk
+O(1)f|ﬁ Jzn(D ¥ o |Z(py+Dy + B |0 (p1, o)
1)exp(— Wty )C (k)dplalp2 dk

X exp(— wyt (6.10)

<OM) Jip, encrye 801 +D2 + 8 [P0 u
XAt £ O1) fipy mneny® (D1 402+ 1Y) Pwilor! /?
(6.11)

Y-Yap, dp, ar’

X (k1) dpy dp, de d;z"t'lt'1 /8,

The proof of (6. 2) is completed by the elementary
estimates:

Siorancna |81 +p2 + ") [Pwi ()™ dpy dpy ak!
<0(1) log*n(D*,

Sipgroncre [E(py 0y 1Y) [Pogiof P (1) dpy dpy dk!
<0(1).

Proof of (6. 3): By (2.15) and the triangle inequality it
is sufficient to prove (6. 3) with Ru1 replaced in turn by
the following three kernels:

f dpydpy W, (D1, Py, kD)W, (D1, b2, B)P(D1, )
p1|sK

IpzliK

o €xp[= () +wp — k)T +1 - suy)]

A

.10
Wi+ Wy = lk1 exp[l (kl

B)s.,]

(6.12)
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f dpydpW,(by, bay ), (b1, oy By, o)
)911$K

lpzlsK

1 1 L0 10
x(wi +w2_-@ - w1+w2> exp[z(kl—kZ)sul]

f dpyapy (W, (b1, by, B W, (b4, o, BB (D1, )
|pi|<K

Ipzls!{

(6.13)

X

Lom
R 0_ 2 2 l__
o150, expli (k] kz)sui)]> ———1477 gxgk] ki)

xexpli () - KY)s,, ], 6. 14)

where p(py,03) is a lower cutoft at L, [see (1.10)].
These corresponding inequalities are respectively im-
plied by (6.15)—(6.17) below. For €>0, 3 > 0 such that
for all K

/ o(pep )exp[— (w1+w2—ikg)(l+1—su1)l$
Jo— 1,72 ;

Wy +wy — 1k
Iptl. I92|<X
SOMWA+L, ) "(I+1=5,)1%, (6.15)
1 1
f pb1,02) Wy +wy— R T wy +w,
py+poat
Ip1ls Ipgl= X
oma+L, )-"]/e(;le (6.16)
Wiwy — Pipa —
e D(P »D )
j};*ﬁz# wiwy L
Ipgls 1pgl <K
wiwy = PPy~ M b2
—[wz-o ANEN pbiby wy +w2
Ipgls 1pg 1<K
<O +L,)7E]" (6.17)

For example, by (6. 17) the absolute value of (6. 14) is
majorized by

O +L,)7" [ dglglel- )] | &]*|2(5~RD)|
<0(1)( +Lu1)"’u”2(k})p‘/2(k§) J de (6.18)
X w2k} - 0)F (kY = £)| {2 (e - RDE(s - k)|, (6.19)
Therefore, the (C, 2) norm of (6. 14) is majorized by
O+ L, )™ J diydhyut? 12| % u®?| 2| (k] - DT
X (B)C oy 2 (e3)C (o)} 2. (6. 20)

By doing the integrals over %) and % and changing the
integration variables (6. 20) is less than

O + L, ) | dnlu“ (2] 1723 ] P
x-/;i.w:n “-he /Z(k{)“-he /Z(kzr)}l /2 (6.21)
<OMY@+L, )" w gl xnt?|2] | (6. 22)
=0+ L, )" [ [ [E[)] 2. (6.23)

In the last equality “v” denotes the inverse Fourier
transform. By the Tichmarsh theorem (6. 23) is
majorized by

oW +L, )" [ut 2|z s < o)A +L,)”
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by (1.4). This completes the proof that, given (6.17),
(6. 3) holds with R, uy replaced by (6.14). In a similar
way (6.15) and (6. 16) imply that (6. 3) holds with R,
replaced by (6.12) and (6. 13) respectively. Therefore
the proof of (6. 3) reduces to proving (6.15)— (6. 17).

(6. 15) and (6. 16) are elementary. (6.17) is implied by
the following three elementary inequalities. For ¢> 0,
A7 > 0 such that

ap | LDIE=p) = plE=p) = M 2(p)+p"— M
f/ w(P)a(E~P) ()
Xp(p,&-p)w—(-m <o) +L,)"[el", (6.24)
1
fdpl P)+w(§ =h T Be(p PP P
sO(l)(1+Lu1)"’]§]€, (6.25)
f/ a7 )= xl0) <om+L,)7NEl,  6.26)

where xe(p) is the characteristic function of the set
{Ip| <K, 1£-p| <K}n{either Ip1>L, orlg=pl> }
and y, is given by putting £=0. This completes the
proof of (6.3).

Proof of (6.4): From (2.18), (2,13), and (1. 8}
e 2 ~ gw]wz—-pigz—MQ
GE“?—(‘I") '/;1'<K |g(p1+p2+k)‘ W1wWy
|p2|(K

expl— [w; +wo + u(B) ]I +1 = suy)}
s+ + (8]

xp(py, Py~ ()

xdp, dp, dk 6.217)
<ow faelzwl®
pi.fp2+k={
exp{ [wi+wy+p(B)]I+1~sup)} 1
le +wy + (k) wik) p. (6.28)
(6. 4) now follows from (1.4) and
f exp{— [wy+wa+u(B)]I+1=5su)} p
oy pgehet Wy +wy + (k) u(k)
sO(I)(l+Lu2)"’(1+1—sa2)‘“32. (6.29)

Proof of (6.5): From (2. 25) P vertices are time
ordered, but C vertices are not. First assume that all
vertices are time ordered and labelled in that order by
v=1,2,3,---, By (2.25) each vertex is also restricted
to lie in a certain interval. Suppose, for example, that
a vertex v in [I-1,1] is contracted by a line 7 to v” in
(,L1+1], Let s, <s,, <:++§,<SISS§,, < <s,. be the
times of the intervening vertices. Then, for 0,,0,,. "
0O,».q positive numbers with ¢, +0,,y++ - +0,4 =0,
™1 = (sv"" Sv)"al < (Swi = sv)-oy(svd - Suﬂ)-o'"l

SR ET 0 I CHEE § had D

(Syrr=S,m )1, (6. 30)

By use of estimates similar to (6. 30) it follows that

/ ds, T & H (I(p)+1-s,)1/%
time ordered ler
i=n(I)+1 dt n(ry+i
s“[/ n *'377525<Z) f-1>]
I i=1 £ i=1
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1—-(1/32)rz(1)

- < n()
TG0 < oW

where the g, are chosen as in (6. 5). There are less than
I;n(I)! ways of time ordering the region of integration
on the right-hand side of (6. 5); therefore, (6. 5) follows
from (6. 32).

(6.32)

7. ESTIMATES ON THE EXPONENT

In this section it is proved that, given K and ¢>0
there exists a function ¢(¢) such that
Hyp+ V()2 - OK®), (7.1a)
Hyp - 2c(¢) = = O(1). (7.1Db)

A corresponding estimate is also proved for GY,. This
proves the claim made in (2.1). By replacing K with

K, and referring to (2. 24), (2.8), and (2.17a), the proof
of (4.1) also follows.

Define the quantities
Nop= | @ (D)0*(P)B(p) +b'*(p)b"(p)]dp on

=1 on Q, (7. 2a)
N,g=J p'(k)a*(k)a(k)dk on Q*
=1 on Q. (7.2Db)
Q is the Fock vacuum.
7(py, Py) = characteristic function of the set
{Ip1] = Lor [py|> L} (7.3)

L will be chosen later.
Vir= f|p1 Iy Ipg 1 <K [D* (P} (py) + b(= p)b (= p) W (P, P2)
XW,(py, by, R)P (k) dpy dpy dk — 5(dmk — 8m?)

x| g4x) 1 ¢*(x) rdx ~ (Ex~ Ep), (7.4)
Ver= flpil, Ipy | <K [B*(p1)b(= py) + b"*(D1)b' (= p) 7 (P4, P2)
XWs(piyp'bk)¢(k)dp1dp2dk, (7. 5)

rvp,=f [0 (p1)6*(p3) = bl= py)b’(~ b)) =
Ipgls Ipg 1<k

X7 (p1, b)) W, (P, D3, R) (k) dpy dp, dk, (7.6)

where @(p)=w(p) - w'(p), 7<1. In order that &> 0,
assume the fermion mass is larger than unity. This is
not an essential restriction. Note that I'V,, is an anti-
symmetric operator designed so that

[FVpn

xfg2(x):¢>2(x):dx+(EK—EL)=0. 7.7

(7.1a,b) are obtained by adding the inequalities (7. 8)
given below,

HOF - N‘TF] + Vpr+ é(om%( - szL)

Given 7€ (0,1), for sufficiently large L, there exists
c1(¢) such that

Hyp = Nip+ Vp,+cl(¢)> - O(logkK), (7. 8a)
$Hyp— 204(¢) = 0. (7. 8b)
Given € >0, for L sufficiently large and 7 close
enough to 1 (7<1), there exists cy(¢) such that
EN g+ Ve +05(0) > = O(K), (7.8c)
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3Hyg— 2c5(¢)= 0. (7. 8d)
Given L there exists c;(¢) such that

2Np+ Vy+e3(0) = - 0(1), (7. 8e)

$Hyp—2c3(¢) = = O(1), (7. 8f)

where V; is defined by replacing K by L in the defini-
tion of Vin (1. 6).

A proof for (7. 8e,{} may easily be constructed using
the following remarks. (1) The mass counterterm in
V. is formally positive. (2) Each kernel of V, can be
written as the sum of products of Hermite functions
plus remainder in such a way that the term correspond-
ing to the remainder can be estimated by an N, esti-
mate as will be demonstrated for (7. 8c,d). The other
term can be majorized by a suitable boson function by

Wbt b o) | <X Wl |60 ],

where /; are Hermite functions with unit L; norm,

(7. 8a,b) will now be proved by Glimm’s dressing
transformation (Ref. 1).

Define
B(p)=b(p) = [TV,,, b(p)], B'(p)=b"(p)=[TV,,,0'(p)]
(7. 9)

and calculate, using (7.7), the operator [ (p)[b*(p)b(p)
+b"*(p) b’ (p)]dp. Then, since this operator is positive,

0< Hyp= Npp+ Vppr 5(0m = m}) [ & (x) : 6°(x) 1 dx
+(Ex=Ep)+ [ @(p){[TV,,, 0*(p)TV,,, 5(p)]
+[TV,,, b (DT V,,, b (p)]}dp.

The result of normal ordering the fermion operators in
the second order term in (7.10) can be represented
graphically as

s

The first term on the right-hand side of (7. 11) is the
negative of a positive operator; therefore, (7.10)
implies
Hyp= Nopp+ Vyp + 5(8m% - Gn'zzL)fgz(x) 1 pP(x) rdx
+ J'dkidkz T plly)g Ry, k) (= Ry):
> = (Ex=EL) - [ dkq(k, R)p'(k),

(7.10)

(7.11)

(7.12)

where ¢ denotes the kernel of the last term on the
right-hand side of (7, 11). The boson fields in this term
have also been normal ordered in obtaining (7.12). The
right-hand side of (7.12) is equal to [see (1. 5b)]

X 2f WiWy = Pipg— M*
A 1’(? 7p )
(47T> lpgls Ipg 1<K WiW, b

1 1 =1 - 2
oo ® B IR B (019

Xdp, dp, dk.

It can readily be checked that this behaves as — O(logK).
For large L, ¢(¢) can be chosen to be the last two
terms on the left-hand side of (7.12), i.e.,
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» \ . Wy = pyPy = M°
_— dt: ok Ry -
(4,7) f E:d(k)g(ky - &) - @
Ipll, Ipg I<K
Wywy = pipg = M
Xy(p1,p2)~ G) sl T(p17p2
J— wyWy
I;‘I Ip21<K (7 14)

w +w2 B(E= ko) (= Ry) : dley dk,.

(7.8b) is a consequence of an N,y estimate (Ref. 8).
Let ¢’ (%4, #;) denote the kernel of (7. 14) so that (7. 14)
equals

[ dkydry: ¢ (ky)q (e, ko) d(=ky)i. (7.15)

Then (7. 8b) holds if the L? norm of p='(k,)q’ (ky, ky)p 1 (ky)
can be made arbitrarily small, uniformly in K, by
choosing L large. The estimates for this are omitted.
See (6.17).

Next it is shown that, in (7. 8c, d),
to be

Cz(¢)=§fb

X:olky)d(-

¢,(¢) can be chosen

(b1, D2, R2)
(7.16)

1 -~
'V(piy p2)Ws(p1:p2yk1)$§ W,

11. lpzléK

kz) :Cipl Cﬁbztik.

For, by an N estimate to V,, regarding the ¢’s as
numerical quantities,

VN3 2 1l < {2[ca(¢) + O /2.
The O(K*) arises when the bosons are normal ordered
to comply with (7.16). (7.17) implies

< 2[ey () + OV,

and since operator inequalities are preserved in the
taking of square roots,

+ Vsr < ‘/_2—[02(‘1)) + O( E)]l /zNi'ré‘z s CZ(¢) + O(Ke) + %NTF’
(7.18)

The expression under the square root is equal to (7. 16)
with the ¢’s not normal ordered. This is a positive
operator so the square root is well-defined, (7.18) is
equivalent to (7. 8c).

(r.17)

(7. 8d) is proved by an N, p estimate. From (7.16), it
suffices to show that the L? norm of (7.19) can be made
arbitrarily small, uniformly in K, by choosing L large:

pe)tf W1, Doy Ry)w (D)Wl Py, oy k)7 (D1, o)

Xdpy dpyp (kg)™.

Since this is the kernel of a positive operator on L%(R),
the L? norm is less than its trace which is less than

o(1) /dﬁlé(ﬁ)'z Wiy +pyPy + M-

wiWe

Ip iy gl <K

(7.19)

pl#p2+k={
(7.20)

XV(P1,P2)w'T(P2)M-2(k)=

The following estimate applied to (7. 20) completes the
proof of (7.8d). For 0<e<1

(Wywg + 1P o+ M%)/ wiwy < O()w (py +po)**w(py = py)~*. (7. 21)
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Generalized Yukawa

The estimates that substitute for (7. 1a,b) are: Given
K and > 0 there exists ¢(¢) such that

Hyp+V+c(9)= [gx): p*(x) :dx - O(K"),
Hyp+ [ g(x): 6™ (x):dx - 2c(9) > - O(K"),
where M > N and

V=S 1 P (0)de(x): :

(7. 22a)
(7. 22b)

¢¥(x) :g(x) dx

= 30omby,o [ &%) 1 6V (x) 1dx

- 36mY, ([ £ x): o>V x): dx
—cvo —30mk vy f £%): ¢P(x):dx

~Ep+ [ gx): ™ (x) 1 dx. (7.23)

Eg is not the same as that in (1. 5b). The extra counter-
terms are added to cancel diagrams like

: qSN- ¢N:-2

Glimm’s dressing transformation is used to bound the
pair creation and annihilation part of V by a function
cy(¢) without using a lower momentum cutoff 7(py, p,).
To bound the scattering part, a function c¢,(¢) is found
so that for 7 close enough to 1

(7.24)

%NTF+VS+CZ((D)207 (7.25)

where
Ve=J 21y ngisx[ *(p1)b(= p2) + 0" (p)b’ (= D) |W( Dy, P2, )
(7. 26)

2 (k) 1 dpy dp, dk.

¢"(%): denotes the kth Fourier component of : ¢*(x):.
To obtain c,(¢), begin by estimating, for a>1/2,

NPV N2 o (7.217)
Let
y(D1,09) = [ Wby, o, B): 0™ (R) 1 dk. (7. 28)
Then
N[ pispy ¥(P1, b2)0*(D)b(= py) dpy dpyN7E/?
Ipil. Ipzlq{
(7.29)
nJ, Tattt e R exp(— i) [ ,ap
Ipgly ipgl <k
(7. 30)
X3 ( Py, b2)* (P1)0(= py) dpy dpy N5/
=0Q) [Tatete [ L, w(py,00)
1841y 1991 <k
X exp[- (2w] - w})t/2]6*(p,) (7.31)

xexp[- t/2)N. F] b(=p,) exp[(- #/2)N. F] dp, dp, N £/2.
Therefore, the !l Iz norm of (7. 29) is bounded by
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o) fo“’dt sy f v(p1, 02)

P1>py
Ipghy Ippl=<k

Xexpl= (2] - wDt/2]0% () (7.32)
X exp[ (= £/2)IN1p 16 (= po)NzL /Y| | N 1122/
xexp((= /2)N ]l

Despite the fact that exp[(-#/2)N,r] is sandwiched be-
tween the b¥s in (7.32), a glance at the proof given in
Ref. 8 shows that an N, estimate can still be applied so
that (7, 32) is bounded by

0(1 )fo""dt t"1+o¢/2 exp[— O(l)t] t-1/2+a /2

x f 5(>py |y(p1,p2)lzexp[— (2w] = wg)tlw;"dps dp, |/
lpll, Ip2[sK

(7.33)

<O S [y(by, 02) |* w303 dpy dpy]* (7.34)

provided o — % —e<1. It is also necessary that e+ 7>1
so that the boson fields in (7. 34) can be normal ordered.
Clearly the same estimate can be derived for a term
with p; < p,; also antifermions can be included so that

IN2 2V N < O [ |9(py, pa) |2
(7.35)
X (Wi w;" + W w5 ) dpy dpy)t 2.

(7. 35) implies
£ Vo< O [ |9(by, bo) |2 (01 w3 + 0] w5 ") dpy dpy]' AN

{7.36)
and therefore
= Vo< i+ O [ |30y, 0) |
X (@7 w3 + Wi Tw) dp, dp, 2, (7.37a)
where
a-3-e<l, eT+T>1, (7.37D)

Consequently, (7.25) holds with c,(¢) chosen to be the
last term on the right-hand side of (7.37). Since the
dressing transformation only works for <1, (7.37b)
requires o> 3,

To prove (7.22b), one needs, for suitable a,

Hyp+ [ g(x): 6™ (x): dx — 24(9) = 2c4(9) = = O(K"),

(7. 38)
where c¢(¢) is the term arising from the dressing
transformation. Instead, it is now proved that a can be
chosen so that

$Hyp+ 3 [ g(x): o™ (x): dx = 2¢4(¢) > = O(K®)

because the estimate with ¢, replaced by ¢, in (7. 39)
can be proved in a similar way to (7. 39). c¢,(¢) has the

(7.39)

form
[ Yy, k) ¢V iz N (= Ry): dRydRyJH2 (),
where

- 11 1 1
Y(kh kz)-o(l)fdﬁg(ki‘ E) " w;-r CU; +CU; w:'r

Py*py

M (7. 40)
xﬂxﬁ’z_;%ﬂzi_ St = k).
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By using the hypothesis M > N, « is picked so that
a>3%, 1/2(1~a)<M/N,
Let y=1/2(1 — @). Note that 1 <y <M/N.

(7.41)

By hypercontractivity and the F. K. N, formula (Ref.
7), it is sufficient to prove

exp(- [ [U() - 0T ()] L? (7. 42)
for 1 € p<«, where

Ut) = [ gx): ¢ (x, £): dx, (1. 43)

T(t) = [ Yiky, ky): ¢¥(ky, 8): 0™ (= Ry, 1)1 dlydly. (7. 44)

[6(x, 1), ¢k, ) refer to Euclidean fields, | Define U, (f)
and T,(¢) by introducing a sharp momentum cutoff at L
into each field in the spatial momentum. Let

BUL)=U@) = U,(t), BT (6)=T()~TL(). (7.45)
The following estimate is easy to show, for each L:

[l au® - o1 ®]= [ atv @) - oW TL0)]
(7. 46)
+f0‘ At[sU (1) = o) | T, (1)]7)

Suppose the estimates

J a0 - ot
> 0(1) log"L|| foi AU, (t) -
< O()(gy)"L™

hold for some >0 and all L; then Nelson’s method (Ref.
9) can be applied to prove (7.42). Therefore, it suffices
to prove (7.47a,b).

Proof of (7.47a): In (7.40), €T+ 7> 1; therefore,

o |87, lg (7.47a)

(7.470)

L-l— L 1 < 0Q1). (7.48)
ppy=t Wi wg Wi W]

This implies that, considered as operators on L%(R),

Y<0(1)F+g; (7.49)
therefore,

T, <00) [ &G o1lx, 1):)a (7. 50)
(7.50) implies
(U= 0TI 2 UL - O] [ g*(x)(: o7 (x, ):)P ax] ™.

(7.51)

Since y > 1 and by hypothesis (1.4) ge L? for all p
(1 < p <), the “Holder” inequality can be applied to
(7.51) so that

ULty = OQ)T(t)= U (t) - O1) [ g(x) | : 6¥(x, £): | aw

(7.52)
= [ g@): p M (x, 1): =~ OQ) |2 pF(x, )2 ¥ dlx. (7.53)
Therefore, (7.47a) is proved if it is shown that
(¥ (x, )= Oz oY (x, 1): 1 o1 (x, 1):]7 = O(1) log¥L
(7. 54)
This follows from Wick’s theorem since y < M/N.

Proof of (1.47b): This is a conseguence of hyper-
contractivity, e.g.,

David Brydges 1660



| [ tateu, ) - o) [sT ) [,
0 1 . (7.55)
< [, atlsuL Ol + o) [ atlsT LB,

Now apply Nelson’s best estimate to each term separate-
ly on the right-hand side. (For Nelson’s best estimate,
see Ref. 10).

APPENDIX: UNIFORMITY IN THE EXPECTATION
STATE

It is sufficient to find a uniform lower bound for

- lm{1/T)Ins’e~T¥s),

T

(A1)

where s and s’ have the form of a product of a Wick
monomial in Fermi fields with an L~ function on @ space
depending on time zero fields. Finite sums of quanti-
ties of this type are dense, and, by virtue of the T
limit, (1.1) evaluated for such a sum is bounded below
by the infimum over cross product contributions. The
L~ functions can be majorized by their sup norms
during “defermiation. ” The resulting constant gives no
contribution in the T limit. The fermion parts of s and
s’ can be introduced in the calculation by allowing the
“P” vertices to contract with the “external” fields in s
and s’. Suppose the latter have been labelled
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1,2,...,p, then the inclusion of a factor (IA4™")(p!) in
(4. 4) is sufficient to count the extra fermion graphs. A
“P” vertex has two legs, each of which can be external
or internal, hence the [14™P. In the set of external
legs, the first has p choices of external fields with which
to contract, the second has p—1, etc. ; hence the p!.

The I1,4"" can be absorbed into the O(1)™? in (4. 4).

The T limit annihilates the p!; hence a uniform bound
holds for (1.1), and the Hamiltonian is bounded below.
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Decay of correlations for infinite-range interactions
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Strong cluster properties are proved at low activity and in various other situations for classical systems
with infinite-range interactions. The decay of the correlations is exponential, resp. like an inverse power of
the distance, if the potential decreases itself exponentially, resp. like an inverse power of the distance. The
results allow us to extend to the case of exponentially decreasing potentials the equivalence theorem
between strong cluster properties and analyticity with respect to the activity, previously proved for finite-

range interactions.

. INTRODUCTION

There has been a recent interest in the rigorous study
of the decay properties of correlations in classical
statistical mechanics.

The main results have been obtained, up to now, for
finite-range interactions. An exponential decay has then
been proved in various situations, either in the frame-
work of the transfer-matrix method,® or by making use
of series expansions of the connected correlations p}
with respect to the activity z,%* In this latter case, the
results have been obtained at low activity and in a num-
ber of other situations where analyticity is known (or
assumed),

In Ref. 4 “strong cluster properties” have been proved
in the form

,Pi(xu o . ost)l$CNNll°°°NP!exp[— uL(x)], )

where L(X) is the minimal length of all connected trees
7 joining x,, . . .,x; and possibly arbitrary other
vertices, and where C and p are independent of N, of
X= (%, . ..,%y) and of the box A, (They depend on the
activity z, the reciprocal temperature 3 and the poten-
tial ). The factor N,!--+N,! arises if the points

X1y « - « 4%y OCCupy only p different positions y,, .. .,¥,
occurring respectively Ny, . . .,N, times.

For infinite-range potentials, the connected correla-
tions are known to tend to zero when some points are
separated from each other? and to satisfy various in-
tegrability properties®™”, The decay has been proved in
8 to be exponential for one-dimensional systems with ex-
ponentially decreasing potentials, through the use of a
generalization of the transfer-matrix method, On the
other hand, a decay of the same type as that of the
potential (exponential, resp, like an inverse power of the
the distance, according to the potential) has been proved
at low activity for the 2-point function p” (x,,x,} in® 1
through the use of a series expansion method, Finally,
it has been proved in Ref. 11 that the decay cannot in
general be exponential if the potential does not decrease
exponentially.

In the present paper, strong cluster properties of the
N-point functions are again proved in the form (1) for
exponentially decreasing potentials. When the potential

1662 Journal of Mathematical Physics, Vol. 16, No. 8, August 1975

decreases like »™° (s >v), analogous results are
obtained:

Ry, o ooyl <C¥NLooo N lexpl= 'L (X)]  (2)

where L, (X) is now the minimal length of all connected
trees joining x,, . . . ,x, and possibly other arbitrary
vertices, with respect to the new “distance” log(1
+alll); @>0 and s’ >0 are again independent of X, N,
A (and may depend on z, 8, ¢).

The bound (2) also yields

R, oo yxy) <CY 20 1w, W (I (3)
T renarny) 1e7

where the sum J, runs over all connected trees joining

Xy . . «,%y (without supplementary vertices), and where

Uy o (121)=(1+ al11)™ /% (3) is a strong cluster prop-

erty in the sense of Ref. 5 if erzuua's. (Ixl)<wo (i,e.

if '/2 > »). (This last condition ensures the integrability

of 1p3l.)

In Sec. II, the results are first proved at low activity.
They are derived in Sec. III by an extension of the con-
formal mapping method of Refs., 2—4 when the correla-
tions remain analytic in a connected domain /) of the
complex z-space containing z=0, and satisfy in /) the
additional boundedness condition

L2 o000y, o o 2y xy)| <CYN 1ooo NI (4)

where C is independent of X, N, A and of zin/J.

The analyticity of p% and the bound (4) hold in partic-
ular in the following situations, as already proved in
Ref. 4 by using, in cases (ii) and (iii), results on the
zeroes of Z,(z,, . . ., 2y, 2) {more generally, they seem
to be linked with the analyticity with respect to
Zyy o o o9y ):

(i) for positive potentials, in the region of convergence
of the Mayer z-expansion;

(ii) for lattice systems at arbitrary activity and high
temperature;

(iii) for lattice ferromagnets when Re H#0, 8 arbi-
trary, or at H=0, as soon as the partition function
Z (B, H)#0 in some complex neighborhood of H =0.

The results allow the extension to exponentially de-
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caying interactions of the equivalence theorem of Ref. 4
between (i) strong cluster properties (at real values of
z) and (ii) analyticity with respect to z and the bounds
).

For simplicity, only lattice gases are considered in
Secs. II and ITI. However, the results can be adapted
without difficulty to continuous systems, with slight
modifications. This adaptation is briefly outlined in Sec.
1v.

Il. STRONG CLUSTER PROPERTIES AT LOW
ACTIVITY

Let K(x —y) =exp[—B®(x -y)] = 1. The Ursell function
@(x,, . . .,%y), which is the connected part of the

Boltzmann factor exp[— BU(X)] { and is the value of 2%
ph at z=0), has the well-known explicit form

Ol - yxy) =2 I K@), )

where the sum }, runs over all connected graphs I'¢

joining the vertices x,, . . .,%y.

The following result which holds for continuous sys-
tems is proved in Refs, 9 and 10 for positive and hard-
core potentials, and in Appendix B for general stable
potentials [the stability constant B which appears in
(6) is replaced in Ref. 10 by 4/2, where A is defined
below Eq. (T)]:

Theorem 1:
[@(xy, o v yxy)| < (exp(zeB))”'ZZT?lEnT i) ©6)

where B is the stability constant and where the sum ZT

runs over all (connected) trees joining x,, . . .,xy.

Remark: A somewhat different bound which is slightly
better in some situations can also be derived for hard-
core potentials (see Appendix B):

@xy, . - ., %) < (exp(BB)¥22 1 K() 7)
wherle ' | ’ ; =T (
K(x ~y)=sup(1 - exp[~ B(x-)],
exp[BA](1 — exp(Bd(x - y))},
A‘—‘yEZ;V‘I’-(x—y), &_=sup(0, ~ o).

The following series expansion of the connected cor-
relations is known!?;

Vo (8, )= 242°C (), ©

where
1
Cy (X, B)=;Ty§m (X, Y;B),

X=(c,.0oyy)y Y=0,...,9,).

A direct derivation of this formula is given in
Appendix A.

When the potential ¢ decreases like exp(- xr), resp.
like »~ (s > v), it is useful to introduce the class of func-
tions u,(r)=exp(- axr), resp. u,(r)= 1+ ar)ys»,
where 0 < a <1 and €>0 is a given arbitrarily small
number. We note that —logu,(») is always a distance,
i.e.,

(1) —logu,(r)>0, -logu,(r)=0=>,=0,
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).

Below we shall generally denote by L (X) the minimal
length of all (connected) trees joining x,, . . .,%y and
possibly other arbitrary vertices, with respect to the
distance —logu (r). [L ,(X)=axL(X), resp. L, (X)
=s'L (X), s’"=s -V —¢, where L(X), resp. L,(X) is the
minimal length given in the Introduction with respect to
the usual distance », resp. with respect to the distance
log(1 + ar)].

(i1) —logu,(|x—y|)=1logu,(|y - z|)= ~logu,(|x ~ 2

The following bound is then derived from (6):
Lemma 1:

N
WDt !

x[C (B =t exp|- / (X)]. 9)
where C,(8)=7,czv| K ()], and K (x)=K(x)-u,(Ix])?,
Proof:

|Cy,, (X;8)| < (exp(28B))¥*

1
‘CA,H(X;ﬁ)[ gﬁ%l(p(xu DRI PN AT IR ‘?yn)l
s—lT(exp(ZBB))N*"""max 0 uy(|Z])
n: L7 1eT

X2 b i}

K, (@).
Y ] GreeeriNeIaesns ) IE] o)

The term maxy, 7 Il 7,171 ) is clearly bounded by
exp[- L ,(X)]. On the other hand,

Yeyeserdy
The bound (9) then follows from the fact that the num-
ber of trees joining N +#x points is (N+7)*"2,1*  QED

Theorem 2: Let R (B)=exp(-28B - 1)(C(8)). For
|zl <R ,(B), the following strong cluster property holds
for A finite or infinite:

T L €°C,(8) 1
IZ pA(x]$"'5xN)P\ N-1 l_n‘zi/Ra(B)

N =
x(J_x _1_) ?
n-1 R (8)
XN,I oo N,,! exp[—LQ(X)]
where 77 is an arbitrary real number such that 1 <n
R (B)/1z1.

Proof: The bound (10) is readily derived from Lemma
1 together with the inequalities

(N+ny*"2< (N+n-2)! exp(N +7),
n(k‘*‘n)! 1 1 n &
D AR i (n-1>'

Remavrks: R, (B) tends to the usual Kirkwood—Salzburg
radius of convergence R(g8)=exp(-28B -1) (3,1 K(x
-3)1)*, when a0,

(10)

(11)

(12)

Therefore, Theorem 2 exhibits a strong cluster prop-
erty for each point z in the region 1z| <R(B).

A similar result with slightly different coefficients in
front of exp{—/ ,(X)] is derived in the same way from

(7.
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111. STRONG CLUSTER PROPERTIES IN MORE
GENERAL SITUATIONS

In a number of situations, it can be proved that the
connected correlations pl(X;B8,z) remain analytic with
respect to z not only at low activity but in larger
domains in complex z-space where, moreover, they
satisfy the bounds (4). Results of this type have been
proved in Ref. 4 and recalled in the Introduction. The
following theorem, which is an extension to infinite
range potentials of Theorem 3 of Ref, 4, is then of
interest,

Theorem 3: Suppose that the connected correlations
ph(X;B,z) are analytic in a connected domain /) in com-
plex z-space, containing z=0, and satisfy there the
bound (4)

| 2% T (X8, 2)| < CVN, ! cee NI
where C is independent of X, N, A, and of z in/.

Then the following decay properties hold for
1Hz)1 > (1,)°:

| r , Ny ' loglt(z)1

pa(X;2, B)| <EYN,l+-+N,lexp -L (X)) =

5logt,, >(13)

where z - t{z) is a conformal mapping of /) onto the in-
terior of the unit cirele (#(z)| <1, such that #{0)=0, ¢,
is the largest value for which |#(2)! <{, implies 2|
<R_(B), L ,(X)and R ,(B) are those of formula (10) in
Sec, IT (0 < a<1), & is an arbitrary real number such
that 6 > 1, and E; is independent of X, N, and A.

Remayrks: The bounds (13) are strong cluster proper-
ties in the sense of Refs. 4, 5 whenever they ensure the
integrability of |p}(X;2z,8)). (This is, in particular, al-
ways true for exponentially decreasing potentials. )

The proof below makes use of the conformal mapping
method of Refs., 2—4. Alternatively, a method using
results on subharmonic functions, which is introduced
in Ref. 9, would also allow one to extend the strong
cluster properties from the low activity region to the
domain /), However, this last method does not seem, so
far, to provide any information on the rates of fall-off.

Pyoof: The following series expansion holds and is
convergent for |1 <1, in view of the analyticity of
PR (X:8,2) inD:

(2 )X 8, 1) = E "y, (X;8). (14)

By using a Cauchy formula and the bound (4), resp. the
bound (10), one gets

[7,(X;8)] <C¥Nj1e-+N,!, (15)
resp.

lyn(X;ﬁ)| <EyN;l-+-N,! exp[—La(X)]ﬁ—,; (16)

where

= _i 7 N=-1 1 N 1

¥TN (n~1> (RJB)) 1-1R, /R (B’
1<n<R(B)/R,, (1

and R/, ; is the largest value of |z| such that 1#(z)!

<{t.)°.

Let n,(X)= / ,(X)x 1log(t,)°1*. In view of (15), resp.
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of (16), the following bounds are obtained

2

nzng(X)

ngX)

n o < ce ._____.__1
£ RS CYN Lo N o [12) |, (18)

resp.
my, (X38)< B4 N1« (t4)° )'1 mo &)
n(nOE(X)t y"(X’B)\ENNll NPl (1_ ,f‘(Z)’ ’t(Z)[ (19)

from which (13) is readily derived with a suitable choice
of E,.

The same methods also provide the following theorem:

Theorem 3': Let { — (B(1), 2(t)) be an analytic mapping
of the unit circle 1¢] <1 with values in @2, such that the
correlations (i) are analytic w.r.t ¢ and satisfy the
bounds (4) for 1¢1 <1, (ii) satisfy strong cluster proper-
ties in a neighborhood of {=0.

Then strong decay properties, which are always
strong cluster properties for exponentially decreasing
potentials, hold in the whole region || <1,

When z(0)=0, (ii) can be proved; when B(t)=8,, (ii) is
ensured by the strong cluster property at (8,, 2(0)) (see
the proof of Theorem 6 in Ref. 4).

Equivalence theorem: Theorems 2, 3 allow the exten-
sion to exponentially decreasing potentials of the
equivalence Theorem 6 of Ref. 4 between

(i) analyticity with respect to z of the correlations and
the bounds (4) in a complex neighborhood of the real
segment [0, z,], and

(ii) the strong cluster properties at veal points z of
[0, z,).

For potentials which decrease like »™°, the analogous
result is not completely proved so far in view of the fact
that the bounds (13) do not always ensure the integrability
of ipyl.

IV. STRONG CLUSTER PROPERTIES FOR
CONTINUOUS SYSTEMS

In this section, we briefly mention the extensions of
the previous results to the case of continuous gases.

A. Ursefl functions

Theorem 1 applies directly to continuous systems
with stable potentials such that C(8)= fmvl expl- Bd () dx
< «; it has been proved in Ref. 10 for hard-core
potentials and is proved in Appendix B for general
stable potentials,

The bound (7) is proved in Appendix II for hard-core
or positive potentials such that

C=[ 1B dr<=
where

K (x) = sup{1 — exp[— p&(x)], exp[BA] (1 ~ exp(5& (x))}
and

sup 2 &_(x,), for hard-core potentials
bihem ieW with diameter § and
lxl-xIIBG <I>_:sup(0, —‘I’)

A=

0 , for positive potentials.
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B. Strong cluster properties atz + 0

The results of Secs. II and III apply to smeared out
connected correlations of the form
PRl ...

1
= Wj_—)f dx’lo . dx"NXxl(x'l)- .e xxN(x?V)pﬁ(xll. o oxJN)

y %y)

where x,, . . ., %y = Z¥ and where Y, is the characteristic
function of the cubic cell of side a, centered at ax (@ is
an arbitrary positive number); in the same way we
define

1

v(N+1)

A B)—,

XI dx’l...dx‘}'vdyil...dynxxl(x,l)'.uXxN(x’N)

x @(X*,Y),
so that the method of Lemma 1 applies with
[ (X)= inf 1o LalX
b PR AL

The results are then obtained without further
restrictions.

We finally note that more general smearing functions
X can also be used.

V. DISCUSSION

As a conclusion, we would like to mention the fol-
lowing remarks:

(1) For reasons which are discussed in Ref, 5, it is
also useful to consider strong cluster properties for
partially connected correlations, i.e., correlations
which are connected only with respect to clusters of
points. (These functions and their cluster properties
are involved in the problems of analyticity with respect
to Bor other parameters of the interaction. ) The results
of the present paper are correspondingly extended in a
coming work, '

(2) The results obtained for potentials which decrease
like »™ are not completely satisfactory: They indicate
a decrease like ™' of the correlations, where s’ =s — v
—¢€ at low activity and s’ — 0 near the boundary of the
analyticity domain, outside the Kirkwood—Salzburg re-
gion, This type of decay does not always ensure the
integrability of the connected correlations |p%1, which
has been proved directly in Refs. 6 and 7 at least at low
activity,

For the 2-point function, a decrease like ™ has in-
deed been proved at low activity in Refs. 9 and 10,
Work is in progress to obtain corresponding results for
the N-point functions, at low activity and more general-
ly in the analyticity domain,

(3) In P(®), field theories, strong decay properties of
the connected Schwinger functions can also be obtained
for small [x! and Re x>0, (with C" N,!---N,! being
replaced by a different constant 4,),

Theorem 3’ of Sec. I allows extension of these strong
decay properties in the connected domain in complex -
space, containing the above region, where the Schwinger

1665 J. Math. Phys., Vol. 16, No. 8, August 1975

functions remain analytic and satisfy bounds of the form
ISq1 < A,
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APPENDIX A

The Mayer expansion of the connected correlations
are proved in Ref, 6 by an algebraic method. In this
appendix, we give an alternative method which is based
on graph expansions and takes explicitly into account the
connected character of pf(X), This method is an adapta-
tion of analogous method of Ref. 15.

The nonconnected correlations are given by

pa (X2, B)= 23 (z;B)2" @0 %,,T j dy exp[BU(X, Y)]

An
where the Boltzmann factor has the graph expansion

exp[- BU(X, Y)]=.§ (x,9) £(T).

Here the sum }; runs over all graphs constructed on
(X,Y) and

=1, (expl- 8o (|7)]-1).
The consideration of the connected parts of the graphs
leads to

xpl- FUX, V)= 2 expl- 6UY\Y")]

x Z ) E(Y') H (p(X“Y)
{X qoee Xk) {YyesaYp} del

Yy runs over all partitions of X into
XyseaXp}

nonempty subsets and

where the sum

(x)

runs over all partitions of
{Yyeee¥p)

Y into % subsets (with possibly empty ones),

Then using the symmetry of exp[- SU(X, )] with
respect to Y, we get the following equality between for-
mal expressions:

mn, J’ dYexp[- BU(X, Y)]

kR
E(X) 11

(Xqeee Xy} i=1

(2.4 S"dYexp[—BU(Y)])

nzon!

X(anz_' Lde(X,, Y)>-’

and, consequently, we obtain
paX)= Lo i z”f(E f aYy(X, Y)).
{x I.WXk) =1

Since

palX)= XE(X) H PA(X)

170X

we have the formal equation

n
pL(0)=2" Z)if AY (X, Y).
nzon! '
The proof is achieved if this last formal expansion has
a nonvanishing radius of convergence; this follows for
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instance from bounds on the integrals of the Ursell
functions.

APPENDIX B

The methods presented below are adaptations of
methods previously used to prove bounds (without decay
properties) on the Ursell functions or their integrals:
See Chap. IV, in Ref. 6 and also Ref, 11,

They are extended to Ursell functions ¢(X;X,, ...,X))
which are connected only with respect to clusters
Xy « « +»X, in Ref, 14,

Proof of Theorem 1 in Sec. |1

It is useful to introduce the Ursell functions
@(Xy3%yy « » « ,%4 ) Which is connected with respect to a
set X, of N, points x,,, . . .,%, and to the points
X1y - - » %y (but not with respect to the points of X,) and
has the following explicit form:

DXy, ooy x) =LKy, oo y) T KD, (B1)

where the sum }, runs over all graphs I on the points
Xy oo o9XNyXg1y « « 9 Xqyy, Which are such that the points
x,+++xy and the cluster X, are linked in a connected way.

The following recurrence relations of the Kirkwood—
Salzburg type (see for instance Ref. 6) are easily
checked from the above definition:

P(XgiX1s o « o 9%y )=e€Xp[— ,BW(xO,)-{O)]

XIC(I,Z...,N} lgl K(xo‘xi)qa({Xo’xI};xCI)!

(B2)

where x,€ X;, X;=X\x,, W(xO’)?o):Eyeiocb(xo -9), %
={x,,i€ I}, and CI is the complement of / in {1+ N},

It is always possible® to choose a point x,< X, such
that

expl~ BW(x,, X,)] < exp(26B).

Then, the following inequality is easily derived from
(B2) by induction on the total number N+ N, of points:

(B3)

j(p(XD;x,, .. .,XN)\

< (exp(26B))"*"™" b

(Xo;xl""'xN

ko),

(B4)

where the sum ¥, runs over all graphs on the points
Xiy o o 3 XnyXors o « o Xgy, SUCh that
(i) there are no internal lines inside X,

(ii) the graph I induced by contraction of X, (i.e., by
identifying all its vertices) is a connected tree,

The bound (6) of Theorem 1 is the particular case of
(B4) obtained when N =1, [The bound derived from (B4)
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includes a further factor exp(28B). This factor is how-
ever easy to remove. ]

Proof of the bound (7) in Sec. i

The bound (7) is proved similarly by using the fol-
lowing recurrence relations of the Mayer —Montroll
type, which are also easily checked from the definition
(B1):

PX %y, oo 0, Xy )=
=expl- BUX,)] 2 (®5)
T {leesN}
Ity

where K(X,,x)=exp[- 8W(x,X,) - 1].

11611 K(Xo,x,)w({x,};xc,)

The following inequality, proved in Ref, 11, is to be
used:

Np
|K(X,, )| < gk(xo-y) (BS6)

{(when all points of X, are different from each other).
(Note that ¢ =0 otherwise. )
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The existence of the configurational microcanonical conditional entropy in classical statistical mechanics is
proved in the thermodynamic limit for a class of long-range multiparticle observables. This result generalizes

a theorem of Lanford for finite range observables.

Although a considerable amount of research has been
directed in recent years toward proving the existence of
the thermodynamic limit for the classical ensembles,
the microcanonical ensemble for long-range interactions
has presented certain difficulties. In this article we
provide a proof of the existence of the configurational
conditional entropy for a class of systems including
long-range interactions falling off in v dimensions faster
than 1/7*.

Griffiths, using arguments of Fisher, !'? has outlined
proofs of the existence of the microcanonical entropy
for variously tempered two-body interactions. There the
microcanonical energy is studied as a function of the
entropy, and the entropy is recovered implicitly after
the infinite volume limit has been taken. Similar results
for two-body interactions were obtained by Minlos and
Povzner.?®

Lanford* has pointed out that methods of Ruelle® can
be employed to obtain the entropy directly, and has used
this approach to prove the existence of the configura-
tional conditional entropy for strictly finite-range ob-
servables.

We use the Lanford approach to extend the existence
theorem to observables with long-range behavior.

1. LIMIT ALONG A SPECIAL SEQUENCE OF CUBES

Let 7% designate either the v-dimensional lattice Z¥
or v~-dimensional real Euclidean space IR* with counting
or Lebesgue measure u, and denote the corresponding
phase space by ¢, ¢ =Ur, (T")". The extension of u to
(T*)" and G will also be wrltten p. Q=g N (T,

(qu,...,q,,,), i=1,2, write N(@,)= 75 0:,= Q) and

d(Q,, @,) =inf{d( (q1, qz)lql - Q } where d: T"XTV— R is
the Euclidean metric. Let ¢ be the set of bounded, mea-
surable subsets of T%, and (’,, the set of bounded open
convex subsets of RY, tcZ,. If J =, and ¢ >0, then J°*
={xedillx =y >¢, Vyf]R‘/J} is the e-contraction of J,
and J ™ = {x =IR![!lx — v|]| <¢ for some y=J}.

Definition 1.1: The real linear space 4} of {-valued
observables, (= Z_ and A = IR, is the set of L-mea-
surable functions f: ¢ —IRf satisfying the following:

(i)f(Q+q) =£(Q)
={peT’ip-q= Q},

(ii) £(@)

, =G, q=T% and Q@ +¢
= f(Q') if @' is a permutation of Q;
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(iii) there exist A >0 and R, > 0 such that, for all
meZ and @,...,Q,<(G, dQ,Q,)>r>R,foralli+j

implies
m 2
7 (5 ved)

ForA=S§,J=(C, ncZ,, and fe 4%, the conditional
phase space volume |/, is

VA n,)=(1/2)p{Q = A"[(1/n)f(Q) e J}.

The vector-valued observable f is to be viewed as a
set of f translation-invariant symmetric scalar-valued
observables, with a decrease condition (tempering) for
each at large distances. For example, tempering would
require a pair potential interaction generating a Hamil-
tonian to fall off at least as fast as »~*, Since the ob-
servable f will be fixed, the subscript on |/ will be
dropped. Also, throughout it will be necessary to as-
sume that x > v.

Proposition 1.2: (a) fJ = ,and ACA’, A, A= §,
then |[/(A’,n,dJ) = V(A,n,J).

() I {A L, < S, dA, A) =7 =R, for i #j, n=37T,n,
n,=Z,, and J}i ICCt’ then

V(.G Ap B, > (%) J,.) >

i=l $=1 i=1

TR R ED ) B

m Y
I (A, n,d4m™).

§=1

Proof The first part is obv1ous Q= A’i", then for

I =3, (0, /M, (1/n) (@) cd4™" implies (1/n) £(Q,,
e, Qm)eJ by 1.1 (iii), since

i ( ) JArrr _JAnr")‘
=1
Hence

{(Ql, ceer Q) ,’ Q= A} and - £(@)) cJ@""‘}

C{Q = (:Gl A;)" ' %f(Q)E 2'_"“,1 (':l—‘> J,}.

Define the density p =n/u(A), the specific volume v
=1/p, and I, =v*"". Fore=2~-v>0as in 1.1(ii), «
€(0,1), and mcZ,, let 6, =2¥*)/* ¢ =[1-(2v/6M]?
R,=R,(2-6)" R R, =0 RO, and A, qu;xz(m*”"/R;,m.
Denote the cube AK m v)_{q (qy,- .- ,q )eT"10< gq,<2™,
-0yR,, k=1,
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The reasons for choosing A, . (v) and R, in this
manner will be apparent from Proposition 1.3, In
particular, ¢, is chosen to make valid the last equality
in the proof of that proposition. Note that as m —~«

A, n goes to zero as 27 and J% ™ g The parameter
k is specified, since later some control will be needed
over the rate of convergence of A, _ to zero.

Proposition 1.3: 1 J = C » then
V(D (V), 201w Jakamety = Ly /(A - (v), 2™, Jaxemyp’,

Proof: Since R, =(2™'] - 67*'R ) - 2(2" l,—- 67R,), 2*
disjoint translates of A, . (v) with mutual separation
equal to or greater than R,  can be placed inside
Ay (V). Further,

(m+2 W

(JAx,m+1)Az /Rz,m:JA“'m

The proof is completed using 1. 2.

Covrollary 1. 4:

1 +1 Kym+
STt 108/ (A (v), 2002, goeome)

1
va

=

108 |/ (A, m(v), 2™, J%%m)
and the limit as m — « is equal to the supremum over
mcZz,.

Definition 1.5: For J = (; and x e RY, let

1
== 102 [/(Ag,m(v), 2™, J2km)

SK(U’ J) :"];i'ni 2ﬂlV

and
sdv,x)=inf {S (v,d)}.
x < CC!

—J=

Proposition 1.8: 1) U JcJ’, J,J'= (,, then S (v, )
<8 (v,J") <1+ logv.

() ¥ {J} 2, cCp Jo=U%J,;=(C, and for A>0 suf-
ficiently small, U%,J$=Jg, then S, (v, U% J)
=SUDPy «; < SV, ).
(iii) If J = C,, then S (v,J)=sup{S (v, NI C,,d I}
(iv) S (v,J)=sup, - , S, (v,x).
Pyoof: Routine, using 1.2 and properties of u.
Corollary 1.77: (i) x—~ s (v, x) is upper semicontinuous
and concave on RY.

(ii) v — s (v, x) is nondecreasing and concave on R,,
and continuous on (v, <), where v =inf{vis (v, x) >~ =}
When the tempering condition in the definition of /]}
is replaced by a finite range condition (additivity: A =0),
then the interior of T, is nonempty if the components of
f are linearly independent. More generally, a sort of

asymptotic openness is required.

Proposition 1. 8: Let Q (v) be the convex set
QK(U) = {x = R! WSK(U, x) > - oo}’

and, for m<Z_, let E_(v)=ess range ((1/2"‘:};*,,,{),
where £, is the restriction of fto [AK'M(L‘)]2 . Write
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lim s. E_{v)

={xeR*| 0N E,(v)+& for infinitely many m, for
each open 0 R?, x c0}.

Then
Q (v)y =1lim s. E_(v).

M w
Proof: If x, & 2,(v)", then there exists J = (', such that

xXo<=d and S (v,J) ==, hence JAkem E_(v)=¢ and

Xy & J *™ for m sufficiently large. Therefore,

X, im s. .. E_(v).

On the other hand, x,¢ lim s. , ., E,{v) implies
Jn E,(v)=¢ for some J = (,, x,&J, and all sufficiently
large m. Passing to the contraction Jhem gives the
desired result.

Definition 1.9: We say that f is asymptotically open if
there exists v >0 and k= X such that (lim s. . E_(v))°
+@. We denote by vo(x) the infimum over all such v for
any « < K. In the remainder we will always assume that
k<K,

If f is asymptotically open and v > v,(«), then 2 (v)°
#@. Let I' =T (f) be the set {(v,x) = R, XIR*|s (v, x) >

— ],
Covollary 1.10: (i) I is convex.

(ii) If f is asymptotically open, then I') is nonempty
and dense in T,.

(iii) (v, x)—~ s (v, %) is continuous and concave on IY.

Corollary 1.11: If f is asymptotically open and
0<wv<uy,(k), then Q. (v)=¢@. Hence v,{k)=inf, v .

2. INDEPENDENCE OF THE PARAMETER

We shall show in this section that the contraction
parameter k¥ can be removed, and that the result co-
incides with the conditional entropy defined without con-
tractions, at least for the limit taken along a special
sequence of cubes.

Lemma 2.1: Let f: IRt —TRU { - o, «} be upper semi-
continuous and concave, J,,J,< C, with J,Nd,# @,
fU.nd,)nR+g, and {d,} 7, a sequence of positive real
numbers with d,— 0. Then

inf sup f{x)= sup f(x).
i €I Ny, x=J1NJ g
Proof: Since J ¥,
inf sup  f(x)=  sup flx).
¢ = TN, xEa NIy

So assume (J:d"/Jl)mJ2 #@ for alli, sup,=,n,, flx)< o,
and suppose

inf sup

f(x)> sup f(x)+3%e, €>0.
i redding, Jo

x = Jy
Then, for each i,

flx)> Flx)+ e

sup

sup
r= @8N,

x= N Jg
Let v} = (97%/J,)n J, be such that
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f(x)—e/2

fvY>  sup
xE(Ji AN T,

and {yi} ;1 a subsequence convergent to yc 3{J;nJ,). If

z,~ vy, by upper semicontinuity,

sup f(x)+e

() =1im sup f(z,) > lim sup f(y,)) =
f== Lt & I[N,

and by concavity

sup f(xy= _ sup
xEW N I ¥=I N J3

f(x),

which yields a contradiction.

Definition 2.2: For v>0 and k (0, X), let Et(v, k)
={Je(,I{vIxd)n T #¢ or d({v}xdJ, T,)> 0} For
Je C (v,x) and x e R?, define

1
SK’O(U,J):};‘i'I.Il Er;rv. IOg V(Ax.m(v)’ 2mv’J),

S0ty x)= inf S,

EJGC}
and for k,, k,= (0, X), a>0,

ol d),

(1, J)= lim 23“, log I/(Akl'm(v), 2m, JE kg om
e

Ky vk 0

Theorem 2.3: 1 0<v# v,(k,), @>0, K,k (0, K),
and J e C (v, 4,)n C (v, k;), then

(1) Sgl ,o(vy J) :Sgl(v’ J),
(i) S, (v, ) =S, (v, 1),
(iii) S

el D=5, (0,).

Proof: For each d> 0 there exists a positive integer
m(d) satisfying

(1/2™)1logl/ (A m(v), 2™,d) <(1/2™) log |/ (A, {v),

X 2mu, J d'AK.M)
for m >m(d). Hence, if {d,}7, is a sequence of positive
numbers with d,— 0,
lim sup (1/2™)log |/ (A,,,(v), 2™,J) < inf S, (v, J"%).
me i

Now, by Proposition 1. 6(iv) and the concavity of
x—=s(v,x),

S (v, J" ) =sup{s (v, %) [x TN Q (v)°}.
Therefore, for ({U}XJ)Q T2#¢, by 1.7 and 2.1,
inf;S (v, J"’t) =5(v,dJ), and so

lim sup (1/2™)log /A, ,(v), 2™,d) <S (v,J).

In the case d({v}XJ, ) >0, if 6 satisfies ({v}xJ-%)
NT,=¢, then S (v,J°%)=~ =, so that S (v,d)=~ .

Assummg k, >k, and noting AK ,m(v)c A, ,m{v), obtain

,o(v J) < SK o{t,d). On the other band, lettmg O<yp’'<v
i< v,(&,), or VoK) < v’ < v otherwise, compute
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Zmdlv_ 9m+1RK lv
i = — > 1
Mm e b

so that 2¥ disjoint translates of the cube with sides

(0,2™,,) can be placed inside Aw,,m.1(v) for all suf-

ficiently large m, and hence 2" disjoint translates of

A, n(v') with mutual separations equal to or greater than

R"v"“ Since
JAxl,nul c J AI<2,m+1

for sufficiently large m, therefore

V (B (@), 2082, T80 = [ (4 (0), 270, T )

Ayl

and so
S.,(v,J) = Sup S,‘l(v’,J):le(z},J).
Thus (ii) follows from (i).

Finally, for x,>«,, d>0, and m sufficiently large,
l/ (sz,,,(v), zmv’ JAszm) = l/ (AKZ .m(v)y zmu’ JaAKl'm)

and

Al ,m

V(g ), 27,05 2 ) (A 0), 27, %2

so that
(y J) = lim Sup 1/2mv) Log [/(sz,m(v) zmv Jamxl.m)

m =
and

lim inf (1/2™)log/(A, . (v),2™,J
e

@Ak om

> sup S, (v,J7
)= sup S, (v, J9)

> sup{SKz(v,:I) ]fe C,and f'CJ}:SKZ(v, J).
If k,<«k,, then, for m large,

V (B (@), 27, 050 = )/ (A, (0), 27, T %)

so that

lim inf (1/2™)1og|/(A,,4(v), 2™, JEAkLmy S, (v, ).

On the other hand,
S, (0, )
=S, ,0(v,J) > 1im sup (1/2™)log |/(A, () gmv g ¥Akpmy
Corollary 2.4: For all v>0, v#v,(k,), Ky, Ky, Kg
(0, K), and x = R?,
le(v’ x) :sz(v, x) :sz.o(”» x).

Corollary 2.5: T(f)=T,(f), C

{v)= (~3t(u, k), and v,
=1v,(k) are independent of .

3. LIMIT ALONG GENERAL SEQUENCES

We wish to extend the results of the previous sections
derived for limits taken along the standard sequences of
cubes {A, .} .., to limits along a more general se-
quence of domains.

2

For A< § with boundary 3A, let V,(»; A)
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=p{xeT"d(x,3A) <7}. A sequence {A,}.,C §is said
to tend to infinity in the sense of Fisher, A,— « (Fisher)
if ® V(A;)— ~ and there exists an iy & Z, such that

lim sup V,(aV(A 2/ A,)/V(A)=0.
a~0 i=2ig

Lemma 3.1': If Ac § is filled with cubes of edge-
length d lying entirely within A, the volume remaining
after maximal filling is less than V,(1*/*d; A).

Suppose {Ai}f_lc §, A;— (Fisher), and {n,},.,c Z,
satisfy lim,., V (A)/n,=v=(0, ). Then we will say that
{(A,, n )},_1 is a Fisher system tending to dens1ty 1/v. In
this case, let k, k', k” < (0, ) be such that k"> k’ >« and
K" — k' >k, forn €Z+; let m(n) = N ((logn)[v + k'(x = )Y,
where A/ (x) is the greatest integer in x, and define n ;
=m 2™ 4y with 0 <7, <2704 and

ming)=1

Y= Z

C,2"

i if

For 0<v’<w, let > 1 satisfy v’ < v’ <v, and write

A, (Yo", me Z,, for the cube in T” with edges (0, 2™zl,.).
Finally, let 7, be the number of cubes in a maximal
filling of A, with translates of cubes A, ,(£"2").

Lemma 3.2: For i sufficiently large, m‘.+233"=(0"i)'1 C
disjoint translates of Am(ni)(g"v’) may be placed inside
A,

1

Proof: Observe

ij

mn; W
720 v

o } iV(A,,,(,,,)(gvv’))
7, ooy

lim V(Ai)

[addd

lim

i

Therefore if lim } V(Am(n 5 (£°0))/V(A) =1, then

m,. 7;/m;zv/g"v’, and 50 there exists EcIR '/
v<E<l1 such that 7,>m,;+ (£v/E%’ - )m, for all large
enough i. Hence m+ A/(m £ v/t*v’ —m ) disjoint tran-
slates of A, (¢” u') may be placed 1n51de A;, and the
lemma follows from obvious estimates.

Using 3.1 for ¢ =i, and

H(a)= sup V,(aV(A)"7, A)/V(A)),

7.V (Aminp(gvv"))

Vl/uzm(m Cly s i)
via) =

V(A

1~

pLivomin ‘el ) .
SHGWEWV—

Choose w ¢ R, ¢l,/l <w<1, so that, for ¢ large,
V(A, )”">wlvn”". Then £, /V(A; )1/"<n'1"‘, and

H(Vl/vz"“"l ¢l /V(A Yy < H(Vl/unllluw Qw11 /vy,

But
lim . nt /v’ =wdi=1/v ()

Theorem 3. 3: Suppose {(A;, 7, )}H is a Fisher system
tending to density 1/v, v+v,. Let {d } be a sequence
of nonnegative real numbers, d;—0, k=(0, ), and
J e 5,(1}). Then

1670 J. Math. Phys., Vol. 16, No. 8, August 1975

11m1nf—l-logVA J‘) S,.olvsd).

Proof: From 1.6 and 2. 3, it is sufficient to show that
there exists k" (0, K) such that for all v,<»’<yp and
Je C, with J d,

lim inf (1/n,) log [/(4,, yz‘.,Jd") ESK,,('y’,:I).
oo

Suppose &, k', k” = (0, ) as before, Lemma 3.2. By that
lemma, for sufficiently large ¢, m,+ 570> C, ., disjoint
translates of A Jmng ,{£¥v") with mutual separation at
1east 9 R may be placed inside A;. Therefore, for
any Je C ¢ and i sufficiently large,

)

ming )l
om (ny v “211:

1
g i o Cy;
i e J+ z (____
"y 30 7

=1/ (e iy (70, 2747, TEOT7

Vi= (8

A Ci
[V (A im0, 2,0 5174,

where A,=An,/600 "R},

A short computation gives A, <CA . , for C

2x ()L-v)cp and A \A(P 2v+k(h-u)/Rh 2x(k-y)m(n )
-k Ked

for0<j< m(n ). Hence, for large enough i, a <A, .

so that JA""r‘J i Slmllarly, it is seen that AK EOY)

A, £&"v’) and A,. N¢? )(‘A,< Jmn, {gv’). Writing
Nlﬂmf{;nc‘Z | A, ’)#Q‘? {o,1, m(n)—l} we
obtain R N
Viz /(A a0y 2T JO minp) |7
M-l o
XTI [V(AK'NI(UI)’ZJV’J K.J)] i
=0
mingil by ;
xon [y, o0, 2w, T
=Ny

Next J < (, will be fixed to guarantee that each of the
factors above will be nonzero. Choose x, = R’ such that
s (v',%,)> - and let J_, = (, be a rectangular solid with

edges {( (a_yp b_lk)},ﬁ:l containing x,. Then, for all j= N,,
V(A {(07), 2,549 ) >0, where N,=inf{j ¢ Z, 1/(A, ("),
2% JAK:J)>0} and, for i large, 0 <N,<m(n;). Let

J;& (, be a rectangular solid with edges {(“m bt ha

such that |/ (A,, ot (v, 2%,J, "J)>0 for 0 <j<N,, and

[/ (A, (07, 2 J P }>0 for N, €j<N,. Then define J to
be a rectangle with sides {la, b et where

a,=( inf a,)~4A,., b,=( inf b,)+4,
-1=j<N3 -1€j<N,
N, = supiN,,N,}.
Since
m(ngd=l Ci: 2 '2m(n w
lim >, =~ =0 and lim —“—— =1,
e 500 n i~o n

for i large enough,
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m zm(n‘w o mingel
Zie g+ Z} (

n; =0

CuBNFeah

i
Using this and 2. 3 (iii),

lim 1nf — log V(A,n ,,Jd Y28, v, J)+11m mf g,

Fa

for
1 | Fheod
Icr'.[:——— Z} C, 2" 2 log [/ (A, y, (v'), 2w J )
i
ming)-1 1 ~a
+ o Cy 24“'57;-10g{/(Aw(v’),2"‘,J «edy
J=Ny

mingW
< %—— sup{ sup ] 23,, log [/(A,, 5, (v), 2%, Jhenyl,
i
1= m

But the first term in the supremum is finite by con-
struction of J and nondependence of N, oni, and the
second term is equal to

wy(01), 271, T o)

sup{z,}lv { log |/ (A,

—2(’"({",)_1)‘, ’l ].Og V(An.m(ni)-l(vl), 9lmn, )-llv,jAn.m(n‘)-l) {}‘

Here again the first term is finite by choice of j , and
the second term is bounded by 2 + logv’, hence
lim,lo,l=0.

Lemma 3.4 It {A,},.,C §, each A, is connected, and
A;—~ = (Fisher), then inf V(A,)/V(A‘)>0 where A, is
any minimal cube contammg Ay

Theorem 3.5: Suppose {(A;,n,)};., is a Fisher system
tending to density 1/v, each A, is connected, k (0, X),
Je(,w), and S (v,d) > =0, Then there exists a de-
creasing sequence {d,} ., of strictly positive real num-
bers converging to zero, such that

Seolv, ) = linil sup nL log [/(Ay 1y, J).
e ;

Proof: Foric Z,, let p(i)=1+inf{m € Z 1A, ,(v) con-
tains a translate A of A;}, so that A, ,;,,(v) is the
minimal sfandard cube containing A,. Writing d,
=A@ 200/ (DR if X, is any minimal cube con-
taining A;, then

2V < V(A i) (0)/V(
for i sufficiently large, so

1 vy 1
2v V(A Kp“)(v)) 2*+1

‘) <(2¥+1)2

V(AY)

V&)

¥ mf

Now pass to a subsequence { A ",};1 such that

)
li ————‘1—_
e V(Ax.p(.j (v)) g
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and

1 .
lim -~ log |/( A;,,m,,J"J)=§i_rg sup ni logl/(A,n,,d%).
,I i

PR

Let A ={ge A, ,v)/A}ld(g, A})> 62“R,} and n?
—2"'1"‘—n It can be shown, as in Ref 1, that A7~ =
(Fisher) ané it is easy to see that lim,, V(A7)/

(Am(, y(v))=1-p. By computing lim,.,, n"/lz””! w
=1-8, therefore lim, . V(A] )/n,j_v Since A'l and
A7, may be translated inside A, ,; ,(v) with mutual
separatlon 9’ R « =Ry, for large enough j,

1
98tijw Iogl/(An,p(ij)(U), 2844w 1)

n
ii
zb(xj)v n IOgV(A{ 7"{ 5'] )
iy
n” 1
i .
* 550w W log )/ (A7, n7, T4,
i

The theorem follows from 3. 3.

Corollary 3. 6: Suppose {(A,,n‘)}:1 is a Fisher system
tending to density 1/v, v#v,, with each A, connected,
and f is an asymptotically open t-valued observable with
A >v. Then, if J e ,(v),

11m;— log |/(A,,n,,d)=S(v,J)

fomo
exists, and

S(v,d)

s(v, x)= inf
xEJECt

is given by

s(v,x)=s, o(v,x), xke(0,K).
Therefore, s has the continuity and concavity properties
of Corollaries 1.7 and 1. 10.

The existence of the limit follows from 3.3 and 3.5 by
removal of the contractions from J% as in 2.3, and from
an argument similar to 3. 5.

We note that when /=1 and f is the potential energy U
of a tempered interaction, s(v,¢) is the usual micro-
canonical configurational entropy per particle for a
system at density 1/v and interaction energy per
particle €.
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Statistical physical theories are frequently formulated in terms of probabilistic structures founded on a *“logic

of experimentally verifiable propositions.” It is argued that to each experimentally verifiable proposition there
corresponds an experimental procedure which, in general, alters the state of the system, and is completely
characterized by a “measurement transformation” or “operation.” An analysis of the relations among

these experimental procedures leads us to a “logic of operations” which is quite different from the

“lattice theoretic logics™ that are often considered (albeit inadequate empirical justification), as models for

the calculus of experimentally verifiable propositions of quantum theory. It is seen that the quantum

probability theory based on the logic of operations provides the proper mathematical framework for

discussing the statistics of successive observations in quantum theory. We also indicate how a theory of quantum
stochastic processes can be formulated in a way similar to the Kolmogorov formulation of the classical theory.

1. INTRODUCTION

It has been widely recognized® that the theory of
probability as has been systematized by Kolmogorov? is
not suitable for a discussion of situations that arise in
quantum mechanics. It is also a common belief that
probabilistic concepts appear in quantum mechanics in
an entirely different way, as compared to classical
statistical mechanics. In fact, there are many striking
illustrations of the nonconformity of quantum theory with
traditional probability theory. We may cite, for exam-
ple, Feynman’s discussion of the double slit experi-
ment,! recent investigations of the nonexistence of joint
distributions for noncommuting observables, *=% de Bro-
glie’s discussion of the “quantum interference of prob-
abilities, **° etc.

The attempts to construct a generalized probability
theory that would be appropriate for quantum mechanics,
originated with the work of Birkhoff and von Neumann!
on the logic of quantum mechanics. Their basic idea
was that the formalism of a statistical physical theory
is that of a probability theory founded on a calculus of
events or what are called the experimentally verifiable
propositions of the theory. The structure of this cal-
culus is to be deduced from empirical considerations,
Birkhoff and von Neumann argued that the experimental -
ly verifiable propositions of quantum theory form a
nondistributive lattice in contrast tothe Boolean alge-
braic structure of the classical (experimentally verifi-
able) propositions. This has inspired several investi-
gations on generalized probability theories founded on
lattice structures.* 12718

In recent years, an alternative approach to quantum
theoretic probability, called the “operational approach,”
has been investigated (mainly) by Davies, Davies and
Lewis, and Edwards.*™"!* This is based on the obser-
vation that von Neumann’s theory of successive mea-
surements?® can be used to introduce statistical concepts
into quantum theory. By suitably generalizing von
Neumann’s theory of measurement transformations
(also called the “collapse expression’), Davies and
Lewis were able to develop certain basic notions of a
generalized probability theory.

In this paper we attempt to formulate the operational
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approach to statistical physical theories as a probabi-
listic theory based on a “logic of operations,” Our
contention is that the empirical basis that has been
provided for adopting the lattice structure for the ex-
perimentally verifiable propositions in quantum theory
is totally inadequate. Also, it gives rise to a repre-
sentation of each experimentally verifiable proposition
in terms of the set of all states that assign unit proba-
bility to the proposition—a representation which fails
to characterize the corresponding experimental proce-
dure completely. We propose a representation of the
experimentally verifiable propositions in terms of the
“measurement transformations” or “operations” that
completely characterize the corresponding experiment-
al procedures., The propositional connectives can now
be more directly correlated with empirical procedures,
and the ensuing “logic of operations” is seen to have a
structure quite different from various lattice structures
considered hitherto., We also find that the resulting
probability theory has a very rich structure and goes
well beyond the ordinary statistical interpretation in
discussing statistical correlations among several ran-
dom variables.

2. STATISTICS OF SUCCESSIVE MEASUREMENTS
IN QUANTUM THEORY

One of the basic features of quantum theory is that the
measurement of an observable causes a transformation
of the state. A theory of such transformations due to
measurement was initiated by von Neumann via his
“projection postulate.” We will briefly describe von
Neumann’s theory, for the case where it is ideally
applicable —measurement of an observable with discrete
spectrum.

Let A be the self -adjoint operator representing an
observable, with the spectral resolution

A=7\P, 2.1)
i

where P, are projection operators onto the eigensub-

spaces of A, The basic postulate of von Neumann can

be stated as follows.

If, after the measurement of the observable A, all
the information that is extracted is that the result lies
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in a Borel subset E of the real line, then the act of
measurement transforms the state p, of the system
before measurement, into the state p’ (unnormalized)
given by

p’ = E PipP ie

A;eE

2.2)

In particular, if we ascertain that the eigenvalue 1, is
obtained then p’=P,pP,. Also if we make a “complete
measurement” or what has been called a “measurement
without sorting” where no information is extracted, then

p':EPipPi, (2.3)
i
which corresponds to a mixed state in general.

If the spectrum of the observable is nondegenerate,
the projection postulate can be obtained from the hy-
pothesis of repeatability —‘If, on a measurement of the
observable A in a state p, the result is found to lie in
the Borel set E, then an immediate repetition of the
measurement will lead to the same result.” If the
spectrum of the observable is degenerate, then, in
order to obtain the unique measurement transformation
(2.2) (usually called the collapse expression), an addi-
tional assumption of “least interference” or “minimum
distrubance” is also necessary, 2%

The projection postulate of von Neumann is sufficient
to give all the statistical correlations between succes-~
sive measurements, as long as we restrict ourselves
to observables with discrete spectrum only. For
example, the joint probability P,(\,¢;, ,f,) that a mea-
surement of A at time ¢, gives the value A,, and a
measurement at a later time /, gives the value 1,, can
be given by

2.4)

where P()\;1,) is the probability for obtaining 1; at 4 and
W{x 4,1 0y 1,) is the conditional probability for obtaining
X, at f,, given that 3, has been obtained at #,. W(\,¢,!
M4 ) is calculated by performing the appropriate mea-
surement transformation (2.2) on the initial state at ¢,
and calculating the probability of obtaining 1, when this
state has evolved to the time {,. If we consider Hamil-
tonian time evolutions given by the unitary operator
Ult,, t,), we have

Py(Aytys Apty) =Tr{P,V(i,, 1,)Pp(t)PVI(L,, t)P,]. (2.5)

Pyt Aots) = POyty) Wkata| M),

Equation (2.5) can be generalized to the »th order joint
probability distribution
P,,()\lt].; v ,Krtr)z Tr[PrV(tr, tr-l) T sz(tz, tl)Plp(tl)
T T
XPyV (tyy )Py v+ V (¢, t,)P,]. (2.6)

If we had considered the evolution in the Heisenberg
picture, we would have

P.(\by oo\t )=TI[P(2) - Pty)p
XPy(ty) -+« P(t)]. 2.7

Equations (2.6}, (2.7) contain all the relevant statis-
tical information for studying the correlations of suc-
cessive measurements. In this context we can recall
the dictum of Wigner?? that one obtains a consistent
formulation of quantum mechanics (free from the well -
known duality in the change of the state vector), if one

1673 J. M#th. Phys., Vol. 16, No. 8, August 1975

adopts the viewpoint that “quantum mechanics gives
only probability connection between successive obser-
vations on a system.” Wigner also emphasizes that:
“This formulation frankly gives primacy to the act of
observation; it considers it as the basic quantity be-
tween the values of which physics establishes regular-
ities, though, according to quantum mechanics only of
a statistical, that is probabilistic nature.” An analysis
of the nature of these probabilistic connections is thus
very basic to the understanding of quantum theory.

de Broglie!® studied particular cases of the joint
probabilities (2.6), (2.7) and pointed out that they do
not satisfy all the properties of joint distributions in the
classical theory of stochastic processes (see also Ref.
6, 23, 24), Infact as the projection operators P,(t,)
do not, in general, commute among themselves, we
have

(1) P.(\if1, 44,2, 1,) are not symmetric in general.

(ii) They satisfy marginal probability conditions only
when summed over the variable corresponding to the
final time 7,, i.e., though we have

; P (gl eeos ol Mt )=P, 00h, .., Xpeitya)s
(2.8)
we also have, for example,
20 P00t Moty) # POt (2.9)

A1

de Broglie pointed out that these nonclassical features
reflected a certain “interference of probabilities” in
quantum theory, which is due to the fact that the mea-
surement of one quantity can influence the values of the
other., This led him to the conclusion that the “usual
mathematical statistics is based on postulates which
cease to be exact in wave mechanics in such a way that,
to make the formalism of wave mechanics enter into the
general picture of the calculus of probabilities, it is
necessary to construct a mathematical statistical theory
more comprehensive than that of which use is generally
made —by abandoning certain too restricted postu-
lates.® For a realization of this program it is very
necessary to overcome first the limitations on the theo-
ry imposed by von Neumann’s projection postulate.

We can list some of the arguments that show that the
projection postulate of von Neumann, or equivalently
the collapse expression (2.2), is at best, only of limited
applicability.*"'%2 Firstly the collapse expression
(2.2) cannot be used for observables with a continuous
spectrum, as there are no projectors P, available for
this case. von Neumann proposed (what he himself
acknowledged to be) a “temporary” way to circumvent
this difficulty by partitioning the spectrum of the ob-
servable into nonoverlapping intervals. This procedure
is quite unsatisfactory as the partitioning is arbitrary
and usually destroys the invariance properties of the
original observable. Secondly, von Neumann’s projec-
tion postulate is based on the repeatability hypothesis;
existence of measurements which are not repeatable has
been widely accepted, and these have been termed the
“measurements of the second kind. ”** (For example,
the system changes, due to the first measurement, in
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such a way that it is not available for a repetition of the
measurement. )

A suitable generalization of von Neumann’s projection
postulate, which is also free from the above limitations,
was proposed by Davies and Lewis.'® They generalized
the notion of “operation” as formulated by Schwinger?®®
and Haag and Kastler,?” to obtain a general class of
collapse expressions which he called “Instruments.”
Each instrument completely characterizes the measure-
ment transformations associated with a unique observ-
able which is in general a positive operator valued
measure. This constitutes also a generalization of the
standard formulation of quantum mechanics which ad-
mits only projection valued measures for observables.

An instrument is defined as a mapping
I:B(RyYXV—~V,

where B{R) is the set of all Borel sets of a value space
R (usually the real line), and V is the set [ ;(H) of the
self-adjoint trace class operators on a Hilbert space H.
The requirements on the mapping I for it to define an
instrument are

(i) I(E,v)=0
whenever v € V* for all E € B(R) and

(ii) [(QE,, v):Z)I(EE,v), (2.10)

for each countable family {E,} of pairwise disjoint sets
E,c B(R).

(111) 1<E7 o0 +a21)2) Zall(E, 'U]_) +021(E, Uz), (2.11)
for each E€ B(R) and v,, v, v,
{iv) TrI(R, v)=Trv, {2.12)

for each vc V.

Davies and Lewis!'® proved that given two instruments
1, and I, on value spaces R; and R, (which satisfy certain
requirements like, for example, that of a complete
metric space), we can consider their composition as a
unique instrument I defined on R, XR,. Also, given an
instrument I on a value space R, there corresponds a
unique positive operator valued measure

w: B(R)—~ B(H)
where B;(H), is the set of all bounded positive operators
on H, such that

TrlI(E, v)]=Tr[vw(E)),

for all v V. Conversely, given any positive operator
valued measure w, there exists af least one instrument
I such that (2. 14) is satisfied.

(2.13)

(2.14)

This shows that if, by the representation of an ob-
servable, we also intend to characterize the corre-
sponding measurement transformation or the collapse
expression uniquely, then a proper (and necessary)
generalization of the standard formalism of quantum
theory would be to identify the set of all observables
with the set of all instruments. The notions of gener-
alized measurement transformations and the associated
instruments will be fundamental to a discussion of the
foundations of the probability theory appropriate to the
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analysis of statistical connection between successive
measurements in quantum theory. Davies and Lewis
have called this the “operational approach to quantum
probability.”

3. LATTICE THEORETIC APPROACH TO QUANTUM
PROBABILITY

The general framework that has been used to analyze
the logical structure of physical theories, ever since
the pioneering work of Birkhoff and von Neumann, is
one where the basic notions are those of “states,”
“observables, ” and the “experimentally verifiable pro-
positions” of physical systems. The experimentally
verifiable propositions are of the form: “A measurement
of a given observable, on the system, yields a result in
a given Borel subset of the value space of the observ-
able.” Thus the general features of a system which are
independent of the particular state of the system are to
be found among the relations between the different pro-
positions —the so-called “propositional calculus,”

The propositional calculus or the structure of the
“experimentally verifiable propositions” (or what are
also called the “events”) of the system is a basic con-
stituent, which might vary from one theory to another,
depending on basic phenomenological considerations.
The states of a system are usually defined as some kind
of probability measures on the set of propositions. The
observables are defined as some kind of measurable
functions —~random variables—from the Borel subsets
of the value space (usually the real line) of the obser-
vable, into the set of propositions. It is thus clear that
the basic notions of Kolmogorov’s theory of probability,
are also basic to the logical structure of any physical
theory, and as Kolmogorov’s axioms are rooted in
empirical experience, any change in our basic concep-
tions of the universe will be reflected by a correspond-
ing modification of the basic probabilistic structure.

A. The “logic’’ of propositions in classical theory

It was Birkhoff and von Neumann who precisely stated
that the experimental propositions concerning any sys-
tem in classical theory correspond to a Boolean alge-
bra of subsets of its phase space. Consequently, the
logical structure of classical statistical mechanics
coincides with that of Kolmogorov’s probability theory,
and we will describe it briefly. ¢

The set B of all propositions form a Boolean algebra,
which can be characterized by the following properties.

(P1) B is partially ordered by a reflexive, asymmet-
ric, transitive relation <, i.e., we have

(a) A< A for all Ae B,

(b) A, <A, and A, <A, implies A; =4, for all 4;, A4,
€ B,

(c) A, <A, and A, <A, implies A, <4, for all A;,A,,
A e B.

The relation < corresponds to the notion of implica-
tion of experimental propositions.

(P2) B contains a “null” element ¢ and a “unit”
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element 2, such that
(a) ¢ <A for all AcB,

(b) A <Q for all AcB, The null element ¢ corre-
sponds to the absurd proposition which is always false,
and the unit element 2 corresponds to the trivial pro-
position which is always true.

(P3) B is a complemented distributive lattice, i.e.,

(a) Given a finite set 7 of elements A, B, B contains
a unique infimal element C=, i€y A, and also a unique
supremal element D=, Y, A;i.e., C<A, forall 4
€ 7 and P <A, forall A;< 7implies P<C; and A, <D
forall A, e 7 and A, <Q for all A, c_? implies D < Q

We denote , {34, by 4,A4, and Y 4, by A,V4,,
We may note that /\corresponds to con]unctmn and V
corresponds to disjunction of propositions. (b) For any
A,, A,, A€ B, we have the distributive laws

AV (Az/\Ag) = (A1VA2)/\(Al VAS):
A1/\(A2VA3) = (A].V Az)/\(Avas) .

3.1)
(3.2)

(c) For any element A ¢ B, there exists an A’ B such
that

AAA':d, (303)

and

AVA' =@, (3.4)

A’ represents negation of the proposition A, B will be
called a Boolean o algebra, if in addition to (P1), (P2)
and (P3), we also have (it should be noted that we have
not given an axiomatic characterization of Boolean al-
gebra.)

A /E\,A, and A,\E/:,Ai exist and belong to B, for every
countable subset 7 of B.

We can deduce from (P1)—(P3) that the negation of
each proposition is unique and satisfies the following
properties:

Ay =A (3.5)

A; <A, implies Aj<A{, (3.6)
and

(AiCtIA )= A;C&’ (3.7

Two elements A,, AZEB are said to be disjoint, a rela-
tion that is usually denoted as A, 1A, iff A; <Aj. lisa
symmetric irreflexive transitive relation for a comple-
mented distributive lattice.

There are general results on the representations of
abstract Boolean algebras®~'® as a Boolean algebra of
subsets of some phase space. |[For Boolean ¢ algebras,
such a representation is not possible in general. The
implications of this on the foundations of (traditional)
probability theory may be found in Refs, 28, 29.] In
classical mechanics this will be the phase space of all
pure states of the system, and each proposition will now
be represented by the subset composed of all the states
that assign unit probability to the proposition. The
connectives <, V, and A now correspond respectively
to set theoretic inclusion, union, and intersection.
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For the sake of the abstract theory, it is sufficient to
assume that the set of all experimental propositions of
a classical system is given by a Boolean o algebra B.
The states of the system are probability measures on
B, i.e., a state yu is a real valued function

u:B-—1[0,1]

such that
(SL)p(6)=0; (3.8)
(82)u ()= (3.9)

(S3) I 7 is a countable set of mutually disjoint elements
A,€B, then
iy CaAi)’ 2 pid).
A€y
The “observables” of the system are the “random
variables”

X:B(R)—~ B

(3.10)

where B(R) are Borel subsets of the value space R, such
that

(C1) X(¢)=4¢;
(O)X(R) =

(3.11)
3.12)

(0O3) If E, are mutually disjoint Borel subsets of R, then
the X(E,) are mutually disjoint elements of B such that

XWUE)=AX(E). (3.13)
: 1

We just note that in the standard Kolmogorov model, the

random variables are defined as measurable functions

from the phase space into the value space.

It is well known that the rich structure of traditional
probability theory is based on the above formalism,?
Birkhoff and von Neumann’s analysis thus relates the
discussion of logical notions presupposed in classical
statistical theory with the empirical foundations of
classical probability theory,

B. The “logic’’ of quantum propositions—the lattice
approach

In generalizing the structure of classical propositional
calculus, to obtain a “logic” of quantum experimental
propositions, Birkhoff and von Neumann’s main objec-
tive was to provide a phenomenological basis at a very
fundamental level for the well-known Hilbert space for-
malism of quantum theory. The two main observations
on which they based their analysis were the Heisenberg
uncertainty principle and von Neumann’s conclusion that
two noncommuting observables cannot be measured
simultaneously.? It should, of course, be noted that
the latter result is widely contested by many au-
thors,®® % and it has also been argued that the projection
postulate and the nonclassical nature of the joint prob-
abilities are among the main arguments in favor of such
results on incompatibility.

von Neumann’s main conclusion was that the set of
experimental propositions in quantum theory do not
form a Boolean o algebra, but an “abstract projective
geometry.” Without going into the technicalities of
lattice theory, we just note that the properties (P1),
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{P2), (P3a), and (P3c) are assumed to hold in quantum
propositional calculus also, where as the property
(P3b) of distributivity is given up. Instead of (P4) one
now assumes,

P4’y If {Ai} is a sequence of mutually disjoint pro-
positions, then VA, exists.

|Recall that propositions A, and 4, were defined to be
mutually disjoint (4, L A,) whenever A, <A}, For the
quantum case A; AA,=¢ is only a necessary condition
for 4, and A, to be disjoint, whereas in the classical
case it is also a sufficient condition. ]

There has been an extensive study® on the additional
axioms one has to impose in order to finally realize
specifically the (so-called) standard representation of
quantum propositional calculus-—the orthocomplemented
nondistributive lattice / of all the closed subspaces of
a Hilbert space H over the field of complex numbers.
For our purposes, it suffices to consider / as repre-
senting the logic of quantum propositions.

In /, the relation < is again realized by one of inclu-
sion. The orthocomplement A’ of a given closed sub-
space Ac/ is given by

A= {ycH|{y, ¢)=0for all gcd},

where (, ) denotes the inner product in H. The im-
proper subsgpace H and the null subspace ¢ function as

the unit and null elements, respectively. From the
lattice structure of /, we can immediately conclude

that A, A4, is represented by the subspace obtained by the
set theoretic intersection of the subspaces A, and A,;
A,V 4, is represented by the smallest subspace con-
taining both A; and 4,. Two subspaces A;, 4, are ‘dis-
joint’ (4,1 A,) whenever they are orthogonal.

Two subspaces A; and A, are said to be compatible
(denoted by A; —A,), if there exist mutually disjoint
subspaces I, D,, and D, such that

A=DVD, and A,=D,VD,

If A, A,, and A, are mutually compatible subspaces,
then the distributive laws (3.1) and (3. 2) are valid.

Since there is a one~-to-one correspondence between the
set of all closed subspaces of a Hilbert space and the set
of all projection operators, we might as well consider
the projection operator P, onto the subspace A as re-
presenting the corresponding proposition. A, and A,

are compatible iff P, and P, commute,

The states of a quantum system can now be repre-
sented by probability measures on / that satisfy (S1)—
(S3). It is a celebrated result of Gleason®® that to each
such measure 4 on/ (the lattice of closed subspaces of
a Hilbert space H), there corresponds a unique density
operator p, on d (i.e., a self-adjoint positive trace
class operator with trace unity), such that

u(A):Tr(puPA),
for all A=/ .

(3.14)

The random variables or observables are mappings
from Borel sets on the value space into /, which sat-
isfy (01)—(03). Thus an observable X can be identified
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with the projection valued measure

PyiE— Pyp,

and therefore corresponds to a unique self-adjoint
operator. Also, each observable X generates a prob-
ability measure on the value space, for each state i,
given by
PL(E) = W(X(E)) =Tr(p, Py s)). (3.15)

Thus, an identification of the propositional calculus of
quantum theory with the orthocomplemented nondistri-
butive lattice / generates the complete orthodox formal-
ism of quantum theory including its statistical interpre-
tation as given by (3.15). The objective of obtaining a
generalized probability theory is also fulfilled. How-
ever, it is well known that this probability theory lacks
the rich structure of Kolmogorov’s theory in that no-
tions like joint distributions, conditional expectations,
stochastic processes, etc., can be defined only under
highly restricted circumstances,

In fact, if x; and x, are two observables, one can, of
course, form

1)51,::2 (Ey, E))=nu (xl(El)/\xz(Ez));

(3.16)
for each state. But p; , does not define an additive

measure on R? in general. This phenomenon can be
directly traced to the nonvalidity of the distributive law
in /. For example, if E\NE;=E,NE,=¢, p% will be
a probability measure on R? only if e

Pe ) BV B, EQVE)=pp. | (Ey, E)) +pf (B, Ey)
+ph o Bsy Eo) Tp7 L (Byy By, (3.17)

From (3.16) it is clear that the validity of (3.17) de-
pends on the validity of the distributive law among the
subspaces x,(E,) and x,(E;); the distributive law is a
consequence of commutability of the corresponding
projection operators. There are general results due to
Varadarajan,’* Gudder,* et ¢l., which enumerate the
conditions under which joint distributions exist.

Also, the time evolution of an observable can be
considered as a stochastic process only when Xepp¥ g
etc., have joint distributions, For Hamiltonian evolu-
tion this would be the case if the operators correspond-
ing to x, and dx,/dt commute. *

C. Critique of the lattice theoretic approach

We will now analyze some of the arguments given by
von Neumann and others in favor of the nondistributive
lattice structure for the quantum propositional calculus.
First of all, we should point out that there are many
divergent views on the interpretation of the calculus of
the experimentally verifiable propositions and its re-
lation to the similar calculi of mathematical logic. One
school of thought is best summarized by the following
excerpt from Jauch’s book!s: The calculus of experi-
mentally verifiable propositions is “the formalization
of a set of empirical relations, which are obtained by
making measurements on a physical system. It ex-
presses an objectively given property of the physical
world, —The calculus of formal logic, on the other
hand, is obtained by making an analysis of the meaning
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of propositions. It is true under all circumstances and
even tautologically so. Thus ordinary logic is used
even in quantum mechanics of systems with a proposi-
tional calculus mostly different from that of formal
logic. The two need have nothing in common.” Thus
the nondistributive lattice of experimentally verifiable
propositions is viewed purely as an algebraic structure,
which bears certain formal resemblance to logical
structure, but does not function as a vehicle for logical
reasoning. Another viewpoint,*® %" which can be traced
back to the paper of Birkhoff and von Neumann, is that
the canons of classical logic are violated by quantum
theory, and hence, there are empirical grounds for
adopting a “deviant logic” as embodied in the nondistri-
butive lattice structure of the quantum propositional
calculus. Recently, there have been many discus-
sions®**~* on the syntactical and semantical notions
associated with the above viewpoints, apart from the
basic philosophical question as to whether logic is an
empirical science,*?

As our intentions are to examine the probabilistic
structure associated with quantum mechanics, we only
need to start from the guiding principle that the formal
structure of statistical physical theories is that of a prob-
ability theory founded on the calculus of experimental-
ly verifiable propositions of the theory. The experi-
mentally verifiable propositions have to be related to
the experimental procedures that can be carried out on
physical systems. The propositional calculus is a
structure that reflects the relations among these ex-
perimental procedures. Thus the justification for
choosing a particular set of axioms for the propositional
calculus has to come from a heuristic discussion of the
relations between experimental procedures—relations
which are independent of the state of the system., Our
main contention is that the axioms proposed by Birkhoff
and von Neumann fail to satisfy this criterion. We
should also note that there are several other critiques of
the Birkhoff —von Neumann proposal, from various
standpoints, 34,43

Among the postulates, the postulate (P1), that the
relation of implication in a propositional calculus de-
fines a partial ordering, is generally uncontestable.

One has just to point out the experimental procedures of
measuring the position of a particle to be in Borel sets
E, and E,; whenever E, C E,, the first proposition im-
plies the second, and this does generate a partial order-
ing.

In this context, it should be emphasized that the par-
tial ordering <, should not be identified with implication
() in formal logic, which is a propositional connective;
i.e., if A, and 4, are propositions, so is the implica-
tion 4, — 4,. In order to understand this difference
clearly, we have only to note that the algebraic struc-
ture that is usually called the calculus of experimentally
verifiable propositions is actually what is called the
Lindenbaum —Tarski algebra* of a corresponding pro-
positional logic (the algebraic structure that is obtained
from the propositional calculus after identifying equiva-
lent propositions). Also, it is well known*® that prob-
ability measures on a sentential calculus are equivalent
to probability measures on the Lindenbaum —Tarski al-
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gebra of that calculus. We may also note that mathe-
maticians have also considered logical systems, whose
Lindenbaum —Tarski algebras are not Boolean®®—for
example, the intuitionistic logics which correspond to
pseudo-Boolean algebras and some systems of modal
logic which correspond to more general lattice struc-
tures.

We now come to the definition of the connectives A
and V. In the lattice theoretic approach, it is not only
assumed that these are defined for any two propositions,
but are also related to the partial ordering <, as lattice
operations; thus they also are associative and commuta-
tive operations. The main problem lies in relating these
connective to specific combinations of experimental
procedures. Birkhoff and von Neumann!! left this as a
suggested question at the end of their paper: ‘“What
experimental meaning can one attach to the meet and
join of two given experimental propositions?” Let us
first discuss the connective A—the conjunction. Birk-
hoff and von Neumann recognized the basic difference
between conjunction in a classical propositional system,
“which just involves independent observers read off the
measurements which either proposition involves and
combining these results logically, ” and conjunction in
quantum theory; the latter can be treated in the same
way as conjunction in formal logic only under excep-
tional circumstances—*“only when all the measurements
involved commute (are compatible), ” In spite of this,
the only justification provided for continuing with a
commutative and associative conjunction is that these
are the well-known formal properties of conjunction in
classical logic or lattice theory. The reasons for doing
away with the distributive law were: (i) A distributive
complemented lattice would become a Boolean algebra,
so that one returns to the formalism of classical theory,
and (ii) distributivity is a property that relates different
experimental propositions which may not obey classical
relations whenever the corresponding measurements are
not compatible. We should emphasize that the same
arguments can be repeated in favor of giving up any
property that involves different experimental proposi-
tions.

The preceding analysis clearly shows that there is no
justification for assuming lattice theoretic properties
for the connectives A,V, of quantum propositional cal-
culus, unless combinations of experimental procedures
are constructed, and they are verified to satisfy these
properties. In fact, it can be argued that the postulates
of Birkhoff and von Neumann arise either from an anal-
ogy with formal logic or an analogy with the structure
of the set of all closed subspaces of a Hilbert space,
rather than as a result of a specific consideration of the
nature of quantum mechanical measurement—the study
of which owes a lot to the contributions of von Neumann.

The problem of devising an experimental procedure
for the proposition AAB (when the procedures for A
and B are given) has also been discussed by various
other authors. Jauch'® has suggested the following
schematic procedure, and postulates that “the proposi-
tion AAB is true if the system passes the ... filter” in
Fig. 1, If we assume the projection postulate, it can
be shown that the experimental procedures for proposi-
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FIG. 1. Jauch’s scheme for testing the proposition AA B.

tions AAB and BAA are the same, i.e., transform all
the systems in the same way. This is based on the
well-known formula for the projection operator P A AB?

P,pp=lim (P, Py)", (3.18)

However, if we restrict to any finite chain in the filter
proposed for AAB, the commutativity of the conjunction
is no longer valid. Apart from the fact that it is de-
pendent on the projection postulate, our main objection
to Jauch’s proposal is that it is an idealization which is
not what is usually achieved in correlation measure-
ments; the correlations among observables are directly
related to the properties of the conjunction of corre-
sponding experimental propositions.

Birkhoff*” has suggested that the experimental proce-
dure for the proposition A A B may be taken to be the
sequence of experimental procedure for A and B taken in
that order. This is a perfectly legitimate empirical
definition (and in fact the one that we will adopt in the
next section), and makes the conjunction noncommuta-
tive. However, for the propositional calculus Birkhoff
advocates the lattice theoretic commutative conjunction
arguing that the set of all states that have unit probabil -
ity for satisfying the experimental procedure {4, B} also
have unit probability for satisfying the sequence {B, A}.
Firstly, in general this is true only when we restrict to
measurements that satisfy the projection postulate. It
is more important to emphasize that the set of all states
that assign unit probability to a proposition do not
completely characterize the corresponding experimental
procedure. The experimental procedure can be com-
pletely characterized only by designating how it trans-
forms different states of the system. Two experimental
propositions can have the same set of (all) the states
that assign unit probability to a proposition do not
different experimental procedures if the associated
measurement transformations are different.

[We should mention that if one restricts the set of
allowed measurements only to those that are described
by the projection postulate, Jauch’s scheme gives a
valid definition of conjunction. However, apart from
the limitations of the projection postulate itself, we
cannot even include a simple succession of two experi-
mental procedures, to be represented in the theory.
This is directly related to the well-known fact that a
composition of measurement transformations of the
form (2,2) cannot, in general, be recast as a measure-
ment transformation of the form (2,2).]

Instead of continuing with a repetition of our argu-
ments on specific proposals, we can summarize our
viewpoint as follows. To each experimental proposition,
there corresponds an experimental procedure which is
designed to test the proposition. The experimental
procedures (in quantum theory) in general alter the state
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of the system, and are completely characterized by the
corresponding “measurement transformation” or
“operation.” In fact, this is the basic reason why the
experimentally verifiable propositions of classical
theory are related as in formal logic, while those of
quantum theory are not.

In a statistical theory each state of the system pro-
vides an assignment of probabilities to the propositions,
We can model this situation by saying that if we subject
an ensemble of systems to a given experimental proce -
dure, only a part of the ensemble (depending on the
probability) satisfies the test {triggers the apparatus).
However, the ensemble that emerges after the test need
not be a subensemble of the original ensemble, but a
new “distorted” or “collapsed” ensemble, with the total
number of copies diminished by a factor equal to the
probability. In the classical theory, this distortion due
to measurement is absent, and hence after carrying out
an experimental procedure, a genuine subensemble of
the original ensemble emerges. This allows us to
identify the experimental procedures, and hence the cor-
responding propositions of classical statistical theory,
with the set of all states that satisfy the proposition.
This allows us to reformulate classical propositional
calculus as a calculus of subsets of a phase space. The
quantum propositions, as we have explained, do not
admit such a representation; they are to be directly
correlated with a complete description of the experi-
mental procedures, as is accomplished by the “mea-
surement transformations” or “operations, ”

4. “LOGIC” OF QUANTUM MECHANICAL OPERATIONS

We have argued that the experimentally verifiable
propositions of a physical theory, correspond to the
(measurement) operations on physical systems. The
structure of the corresponding propositional calculus
will now be analyzed on the basis of a heuristic discus-
sion of the relations between the experimental proce-
dures that these operations characterize. Our discus-
sion of the propositional calculus of quantum theory is
based on the generally accepted notion of “operations”
in the Hilbert space formalism of quantum theory, and
will be mainly confined to the definition of propositional
connectives and the corresponding experimental proce -
dures. The procedure is similar to what Finkelstein®
characterizes as “taking a well-known theory and dis-
tilling its logic.” Discussions of general axiomatic ap-
proaches to statistical physical theories, based on sim-
ilar notions, can be found in the works of Davies, Ed-
wards '**%% Hellwig and Krauss,’® % Lewis, Lud-
wig®*~* Pool,*® et al.*®

In the standard formulation of quantum theory, the
states are represented by the density operators, which
are positive trace class operators on a Hilberg space
H, normalized to unit trace. The set of self-adjoint
trace class operators on H, which we denote by V (also
denoted by 7 ,(H) in the literature), is a Banach space
under the trace norm. The set of positive (self-adjoint)
trace class operators V' =7 :(H) forms a closed cone in
V. This generates a partial ordering
for uvy,v,cV iff

v, SV, vy —v,E V7,
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From our discussion of the measurement transforma-
tions in Sec. 1, it is clear that an operation is to be
defined as a positive norm -nonincreasing linear oper-
ator on V, i.e., if () is the set of all operations on V,
then £ () is a mapping

E:VaV,
such that
(C1)¢ is linear,
(02) If ve V*, then & (v)e V* also,
(03) Tré (v) < Trv  for all ve V¥,

4.1)

Also, it is well known'®*® that the set V* of continuous
linear functionals on V can be identified with the set
B¢ (H) of all bounded self-adjoint operators on H, Thus
to each operation, we can associate an adjoint & * which
is a positive norm-nonincreasing linear mapping

E*: Bg(H)~ Bg(H).

The set of all operations () will now correspond to the
set of experimental propositions of a physical system.
We will now discuss the ensuing structure of the propo-
sitional calculus,

A. Implication

The relation of implication is again a partial ordering
on (), which can be interpreted as follows. “An experi-
mental proposition &, is said to imply another experi-
mental proposition £ ,, whenever the experimental pro-
cedure for &£, is a subprocedure of the experimental
procedure for £ ,.” This may be formalized via the
following definition:

Ersé, it Ewségp, 4.2)

for all v € V*. < can immediately be verified to be a re-
flexive, asymmetric, transitive relation, defining a
partial order.

B. Absurd and trivial propositions

As in classical logic, () also contains a unique absurd
proposition 6. @ is the operation such that

8(v)=0 forall eV, (4.3)
We also have
6<¢, forall £e(). (4.4)

The quantum logic (), however, does not admit a
unique “trivial proposition” that is implied by all pro-
positions. Actually, () has a subset T of maximal pro-
positions with the property

Trle(v)] =Tro, “4.5)
for all tcz. Of course, the set T contains the identity
operation /, which leaves all the elements of V un-
changed. Also, given an operation £ <(), there always
exists a £c T such that 6 <& < ¢ (see the discussijon in
the Appendix). Such a £ is not unique in general, We
should also note that a general operation & does not
satisfy the relation ¢ </, Infact, the operations that
satisfy the relation £ </ correspond to experimental
procedures which pass a subset of the set of all states
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unchanged, and do not pass the rest of the states; in
this respect, they are analogous to classical experi-
mental procedures.

C. Disjoint propositions

Since ( is a set of mappings on a linear space, there
is a natural operation of addition defined on it. But as
() only containg the set of all positive norm-nonincreas-
ing maps, it is only a convex set under addition., A
countable set of propositions {£ i} is said to be a dis-
joint set of propositions iff> £ ().

If the set {£,,& ,} is a disjoint set of propositions, we
also write &, L£,. We may note that L is a symmetric
relation, which is not transitive or irreflexive in
general. In the classical logic, as well as in lattice
structures, the notion of disjoint propositions was
defined using the notion of “negation” or “orthocomple-
ment” as in Sec, 3. Since we do not have a unique unit
element in our logic of propositions, we have to define
a complement or negation of the proposition £, to be a
proposition ¢’ such that

& +éEe .

This criterion, of course, does not lead to a unique
negation for each proposition. For instance, all the
elements of ¥ act as negations of 6, which in turn
serves as the negation for all of them. The notion of
negation is not a very useful concept unless one re-
stricts oneself to the range of a single random variable
(instrument).

D. Conjunction

We have extensively argued in Sec. 3 that the pro-
positional connnectives have to be defined by a specific
reference to the corresponding experimental proce-
dures. This actually constituted our main objection to
the lattice theoretic definition of propositional connec -
tives. We define the proposition £, A¢, as follows,

“The experimental procedure corresponding to the
proposition £,/A¢£, is the procedure in which the system
is subjected to the sequence of procedures &,,¢ , in that
order.” Schematically this can be depicted as shown in
Fig. 2.

The operation &; &, is hence given by the composi-
tion of ¢, and &,; i. e.,
ENE W) =ErE )W) =E,E,0)), (4.6)
for all veV where o denotes composition of operations.

It is immediate that £, A£, is a well-defined operation
for any two given operations &,,¢&,.

From the definition it is obvious that A is an associa-
tive operation, which is not commutative in general,

& & .
. > FIG. 2. Experimen-
—— 7] tal procedure for
4 4 the proposition
S —e——— /\62-
Ziné,
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? FIG. 3. Experimen-
/ 4 tal procedure for

> f £y &,  the proposition
e, EVE;, when
< é; i(i.

This noncommutativity of conjunction constitutes a
fundamental departure from the structure of classical
propositional calculus. (We should note that a non~-
commutative conjunction has been advocated by P.
Jordan®” also. Based on this, he has formulated a
theory of noncommutative or skew lattices as a struc-
ture appropriate to quantal propositional calculus, As
our propositional calculus is not based on a lattice
theoretic framework, we will not discuss Jordan’s ap~
proach in this paper.} We can define two propositions
to be compatible (denoted by ——), whenever £, A&,
=¢,NE .

The conjunction satisfies the properties
ENI=INE =€ and EFNO=0AE =6

for all £ ¢ (/). However, we do not have EAE =¢ in
general. We can define a proposition to be repeatable

(4.7

(for lack of better terminology), if EAE =¢ is satisfied.

E. Disjunction

In classical logic or in Birkhoff and von Neumann
lattice theoretic approach to propositions, disjunction
is defined using the negation and conjunction, via De-
Morgan’s laws (3.7), and turns out to be well defined
for any pair of propositions; this, of course, is based
on the belief that one can provide experimental proce-
dures that justify a lattice theoretic conjunction.

Since we have no apriori justification for employing
lattice theoretic constructs, we have to define disjunc-
tion separately and provide an empirical counterpart.
We may note that the connective disjunction is mainly
encountered in joining two propositions which refer
to obtaining values in disjoint subsets of the value
space of an observable (as in the case of two geiger
counters which are active for disjoint volumes).
Therefore, we define disjunction as a connective which
is defined only for disjoint propositions and refers in
some sense to the “fusing” or physical adjoining of the
corresponding experimental procedures (the terminol -
ogy should be changed when we talk of position mea-
surements). Schematically we can represent this as in
Fig. 3. Mathematically, the disjunction £,V ¢, of two
operations is defined only when they are mutually dis-
joint (€11 ¢ ,), and is given by

61\/5'_):61 +((,‘2, (4-8)

whenever £,1£,. V is a well defined operation in () and
can be extended to any countable disjoint set of propo-
gitions. In an abstract characterization of the logic (),
the extension to countable sets will have to be ac-
complished via regularity assumptions.

We see that the disjunction is commutative and
associative whenever defined. Also

EVE=£. 4.9)
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However, note that & L& implies that
EVE =2¢.

A very important feature of these definitions is that A
is distributive with respect to V whenever the latter is
defined. Infact, if £,L¢&,, then (£, AE)L(EAE,) and
(ELNEDLEZNE,) for all £, (0, and we have

(_Cl /\(ézvéa) = (élAé..z)ngl /\ 53),
(EgV(Cg)/\él = (é g/\é;)\/(é‘a/\é})v

However, is not, in general, distributive with respect
to A. Finally, if £’ is a negation of &, then

EVE e,

But £V’ is not the identity operation in general. Thus
two complementary propositions will only give us a
maximal proposition, but not the identity proposition in
general, unless the propositions are classical.

(4.10)

(4.11)

F. States

Having given a brief sketch of the “logic* of the set
{) of experimental propositions of a quantum system, we

can now define the states on the logic (). These are
functions u:() —[0,1], with
(QS1) u(8)=o, (4.12)
(QS2) pn(e)=1 for all =y, (4.13)

(QS3) {¢,} is a countable disjoint set of propositions,
then

u(\f/&)zEu(é,-)e (4.14)

Note that the properties (QS1) and (QS3) are the same
as the assumptions (S1) and (S3) for the states in a
classical theory except that the notion of disjointness is
specific to the propositional calculus. However, (QS2)
differs from (S2) in that we assign unit probability to all
the maximal propositions £=% in quantum theory.

Since the disjunction in (4.14) is the same as addition
of operations, every state will define a linear continuous
functional on (). Since our characterization of () has not
been axiomatic, we do not consider the precise deter-
mination of the set of all states on an abstract logic of
operations. Instead, we only note that for the particular
realization of the logic under consideration, all the
quantum mechanical density operator states satisfy
(QS1)—{(QS3). These are states of the form

w(¢&)=Tx (p), (4.15)
where p&V*and Trp=1.
In this context, we may also note that we have
p(EAD =TrlE(E ON]
=Tré (p) (4.16)
=p(&),

for all £=(), and tcx. This property will prove to be
of importance in the discussion of joint distributions of
random variables.

We can follow the traditional terminology and call the
ordered pair ((), ), where () is the quantum logic of
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operations, and p a state on (), a “quantum probability
space.” The random variables in the present theory
will coincide with the “instruments” defined by Davies
and Lewis.

G. Random variables—Instruments

By following the general program outlined in Sec. 3,
a random variable or an instrument can be defined-as
a map from the set of all Borel subsets B{R) of a value
space R (usually the real line, or a general completely
separable metric space), into the “logic” (), such that

(QO1) Xx(g) =6, 4.17)
(QO2)X(R) 2, (4.18)

(QO3) if {E } is a sequence of mutually disjoint Borel
sets in B(R), then {X (E,)} is a disjoint sequence of pro-
positions and

X(UE)= VX(E,). (4.19)

Let us first note that (Q0;) and (QO3) imply that

X(E,) <X(E,), (4.20)

whenever E; CE,, This shows that if we had assumed
X(R)=1, as in classical probability theory, instead of
(QO2), then all the operations associated with the in-
strument X would have been constrained to satisfy the
classical relation X(E) <I, Our requirement (QO2) on
the instruments clearly reflects the basic feature of
quantum instruments that even when the measurement
is such that minimum information is extracted (that the
result is somewhere in the value space of the instru-
ment), more than often the state of the system under-
goes an alteration.

H. Quantum probability theory

The quantum probability spaces (0, u) and instru-
ments defined on them, constitute the basis for a gener-
alized probability theory appropriate to quantum sys-
tems. The basic features of such a theory has been set
forth by Davies and Lewis in their pioneering work*® on
the subject.

First of all, each state of the system p associates,
with every instrument X, a probability measure on the
value space of the instrument, given by

PHE) =p (X(E)), (4.21)

for each Borel subset E of the value space. (It is
immediate to check that p*is a probability measure on
R, the value space.) As we have already noted, this
coincides with the statistical interpretation of quantum
mechanics.

If X, and X, are any two instruments, the natural
definition of the joint distribution of the ordered pair
(X,,X,) in the state u, would be

bl (Bry E) = O (B)) AXL(E,)). (4.22)
That pt r, 38 defined above can be extended to a unique
probabfhty measure on the Cartesian product R, X R, of
the value spaces, is a direct consequence of Davies and

Lewis’ result on the composition of instruments noted
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in Sec. 2, In fact, any ordered n-tuple of instruments
gives rise to a unique joint probability measure on the
Cartesian product of the value spaces. One of the
properties crucial for the existence of these joint prob-
ability measures is, of course, the distributive law
(4.10),

These joint probability measures exhibit all the
typical features of the “quantum interference of prob-
abilities, ” i.e., we have

(Ey, E))#py, . (Ey, Ey)

’1 xg3 % XY

£l o (Ras B # L ()
Pt (Ey, E)# pXENE,),

in general, unless the instruments satisfy special con-

ditions, However, we still have the marginal probabil -

ity condition
r1,,,2(1;“1,122) le(E1),

as can be directly verified using (4. 16).

(4.23)

Thus all the nonclassical features of quantum prob-
ability theory (as summarized in Sec. 2), arise as a
natural consequence of the quantum logic of experiment-~
al propositions.

5. QUANTUM STOCHASTIC PROCESSES

In classical probability theory, a stochastic process®
is a family of classical random variables {C,},,, indexed
by a set T. In a physical theory T could be taken to be
the interval (0, «) or a subset thereof. Thus it is natu-
ral to define a quantum stochastic process as a family
of instruments {@,},,, on a quantum probability space
(O,u), as defined in Sec. 4, We will only consider the
case when all the instruments @, have the real line R for
their value space.

In classical probability theory, there is a basic con-
struction (due to Kolmogorov) which reduces the study of
the stochastic processes to a study of probability mea-
sures on the space of paths—i.e.; on the space of
suitable class of functions

TR

This is achieved by considering the so-called “measures
on finite dimensional cylinder sets, ”” which can be de -
rived from the joint distributions of the form
oty tarene, tr(El’ Ey .., E)

=y (Ctl(El)m Ctz(Ez)ﬁ seol C,r(E')) (5.1)

These ‘“finite~dimensional distributions” satisfy wne
well-known consistency conditions

(c1) He r(El’ E,,...,E ) are invariant if {E,} and

I —

{ti} are permuted together in the same way,

€yt Erree s By R)=py B, B
(5.2)

(Cs)ﬂ- teee 'tr'l'tr(E]" aoay E"l’ Er)
Bty Frr oo s E DB, (5.3)

whenever t,.,=t,. From (C1) and (C2) we can conclude
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that the marginal distribution condition (5.2) is valid for
the other time variables ¢, (i <#) also.

The basic result of Kolmogorov is that,*® given a
family of finite -dimensional distributions u, which
satisfy the consistency conditions (C1)— (CB) there
exists a classical probability space (B, i) and a sto-
chastic process {C},., such that p,  , will be its
finite -dimensional distributions. = "

We will now consider how a similar formulation can
be attempted for quantum stochastic processes. Let
{Q,},7 be a family of instruments on a quantum prob-
ability space ((J, ). The finite-dimensional distribu-
tions of this quantum stochastic process will be given
by

Bopeint, Erre oo B)=p(Q, (EA--A\Q, (E)).

If the state p is characterized by the density operator
p, then

(5.4)

Hotyoes, ¢ (El.sw-’E,-x, E,)

r-l'

=Trl{Q, (£)2Q, (E,.)o++-2q;, (Elp)- (5.5)

We can rewrite (5.5) also in terms of the so-called
“expectations” @, which are nothing but adjoints of
instruments, being mappings from B(R) into the corre-
sponding adjoint operations. We get the well -known
result

Beyone, Erses

1 ) 2

,E)=Trl{(Q} (B )°"'°Q* (EMN}p].
(5.6)

It was stated in Sec. 4, that (5.5) or (5.6) define a
joint probability measure on R”. The equation (5.6)
may be used to analyze these joint distributions in
terms of the positive operator valued measures,>®
which associate each Borel subset E,X-+«+XE_, or R,
with the bounded positive operator {Q* (E )o -oQ* (E, )}1

Before analyzing the properties of these d1str1bu-
tions, we should note that if “/” is interpreted as a
physical time, then the finite-dimensional distributions
(5.4) can be given an operational meaning iff /, <¢,
<e++<{ . One could argue that the same will be true
of the finite-dimensional distributions (5.1) of a clas-
sical stochastic process in a physical context. How-
ever, the basic difference is that the finite-dimensional
distributions (5.1), considered as functions paramet-
rized by ¢, have the property of symmetry as given
by (C1) whereas the quantum finite-dimensional dis-
tributions (5.4) are not symmetric in general, because
the conjunction A is not commutative. Similarly, we
can see that (C3) is not a general property of the
finite -dimensional distributions (5.4). In fact, the
validity of (C3) depends on whether the instruments @,
satisfy a “repeatability property” of the form

QUE DNQUE)=Q,(E 4NE). (5.7
Still we can show that (C2) is valid for finite distri-
butions (5.4) also. We have only to note that @, (R)rs“
and use (4,16) to obtain
(Q) utl" ot (EU ae oy Er"l’ R) :"Lti,«-ntr-l(E” vasy E,r_l)u
(5.8)

p-1st,
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Since (1) is no longer valid, we cannot deduce from
(5.8) the marginal probability condition for other time
variables t;,, i <7, Thus we conclude that the only
consistency condition on the finite-dimensional distri-
butions of a quantum stochastic process is given by (&).

We can pose the Kolmogorov problem for the quantum
stochastic process as follows: “Given a set of finite-
dimensional distributions Wi,....:, which satisfy the
consistancy condition (Q), ddes there exist a quantum
probability space (0, ) and a stochastic process such
that Fonnt, will be its finite-dimensional distribu-
tions ?”

One result that may be considred as being related to
this problem is the result of Benioff>® that “operator
valued measures on finite Cartesian product spaces R’
which obey a consistency condition similar to (Q), can
be extended uniquely to the space of all infinite real
sequences.” We may also note that in the theory of
classical stochastic processes, if we just restrict to the
consistancy condition (C2) [or (Q)] alone, as is some-
times done in the study of functions of Markov chains
using “stochastic modules, ” then we obtain a represen-
tation of the process in terms of probability spaces
similar to quantum probability spaces. This remark-
able feature, which has been pointed out by Kingman,®°
may be of considerable significance in the study of
quantum stochastic processes.

A rigorous analysis of a closely related class of
quantum stochastic processes has been carried out by
Davies® % in a series of papers, which also initiated
the general operational approach. He has obtained
several analytical results, including a characterization
of these processes in terms of infinitesimal generators.
However, as his analysis is not based on a quantum
probability space, the characterization of quantum
stochastic processes from their finite ~-dimensional
distributions and the corresponding consistency condi-
tions is not immediate, We should also emphasize that
a formulation in terms of quantum probability spaces
facilitates further considerations of conditional expecta-
tions, Markovicity, etc., which are basic to a probabil-
ity theory,

Quantum Markov processes

A rigorous formulation of the condition of Markovicity
would involve a discussion of conditional expectations
on quantum probability spaces. We will restrict our-
selves here only to a few remarks on some differences
between quantum and classical Markov processes, For
this, we will only consider finite -dimensional measures
on R", of a quantum stochastic process, which are ob-
tainable via finite~dimensional distribution functions of
the form P,(\;#,...,\ t,). The consistency condition
(Q) will be

2P 0yl Ot

A

A, -, -1,>\,tr)— cosral, ny
(5.9)

where the sum will be replaced by an integral for the
continuous case. We can define the conditional proba-
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bilities in the usual way, by

Pty 0o epholy)

+(5.10)
P, 2ty eeosr, al (

W0 | N sy e M) =

As in the classical theory, we can say that a process
is Markovian if

WL IN, afyoase e s Mt)=WOUE N, L 0),  (B.11)
for all {x,¢,} with ¢, <¢,,, for all 7.
This is, of course, equivalent to
P Outyy e o0 8) = POyt Wty 1ety)e o
(5.12)

XWX, 4t 4).

To obtain an example of a quantum Markov process,
let us consider an instrument which obeys the collapse
expreesion (2.2) of von Neumann and corresponds to a
self-adjoint operator A, with a discrete spectrum as
given by (2.1). If we assume that the system undergoes
Hamiltonian evolution, then we can obtain a quantum
stochastic process given by the family of instruments
{Q,},.r defined by

Q,(Ep= 2o P(pP,(D), (5.13)
)L'.EE
with
P (H)=V()P,0)V(2). (5.14)

We can immediately see that the finite -dimensional
measures (5.5) of this process correspond to the joint
distribution function (2.7); i.e.,

P (A, esn, 1 Y=TrlP (¢ )+ Py(ty)p
XP;L(tx) Tt P,.(t,.)]-

If, in addition, the spectrum of A is nondegenerate,
then {P } will be a orthonormal set of projection oper-
ators onto one-dimensional subspace; now using (5. 14),
we can rewrite (5.15) as

(5.15)

Pty ooy 8)= POyt ) WOtats | Xyty) « o+

XWNL N al,0), (5.16)
where

WOt Xty ) =TIl P, (¢ )P, (¢, )] (5.17)

Equations (5.186) and (5. 17) show that we have a quantum
Markov process. However, we also have

2I W0t | Xt ) WO ot | A ith) # Wt |0y, (5.18)

in general. In fact it is a general characteristic of
quantum Markov processes that the Smoluchowski,
Chapman, Kolmogorov (SCK) equation is not valid in
general. In the study of classical Markov processes,
the SCK equation is usually derived using the consis-
tancy conditions (1), (2), together with the condition for
Markovicity (5.11) or (5.12), The failure of SCK equa-
tion for quantum Markov processes is again a direct
consequence of the “quantum interference of probabil-
ities” and can be illustrated by several such examples.

We may also note that if the instrument @, corre-
sponds to a self-adjoint operator A as in (2. 1) but with
a degenerate spectrum, then we can no longer derive
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(5.16) from (5.15), and actually we obtain a quantum
stochastic process which is non-Markovian in general.
In this context we can recall an observation of Goldber-
ger and Watson® that in the measurement of observables
with a spectral degeneracy, the previous information
(memory) persists even after a new measurement is
made. The preceding discussion also makes it clear
that Markovicity is a special property of certain instru-
ments and the dynamics of the system, and is not a
general feature of all quantum stochastic processes.
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APPENDIX: “OPERATIONS' AND ““EFFECTS” OR
“SIMPLE OBSERVABLES”

Apart from the lattice theoretic approach, there are
other axiomatic studies in which each experimental pro-
cedure is associated with a positive operator Fe B!(H)
such that 0< F <1, Such operators have been called
“effects” or “simple observables.” The set of all ef-
fects may be denoted by . It can be shown'® that, to
each operation ¢ € (), there corresponds a unique effect
F & = @ such that

Trlé ()] = Tr(Ffv),

for all veV*, However, given any effect Fe@, there
exists several operations in (), which are all related to
F in the manner of Eq. (Al). For example, we may
define operations ¢, and & ,, by

(A1)

@) =Tr(Fo)p, (A2)
where p is an arbitrary density operator, and

E (W) =F/2Ft /2 (A3)
s0 that we have

TrlE, ()] =TrlE ()] =Tr(Fv), (A2)

for all vcV*, Therefore, a representation of the ex-
perimentally verifiable propositions by elements of @
will not provide a complete characterization of the cor-
responding experimental procedures. This can be
demonstrated more clearly, by showing that the logical
relations among the experimental procedures cannot all
be inferred just by a study of the set @ of all effects
alone.

Two operations £,,& ,& () are said to be isotonic!® if

Trl¢, ()] =TrlE,0)], (A5)
for all veV*, The set of all operations isotonic to a
given operation £ is an equivalence class (termed “iso-
tony class”), which may be denoted by [€]. From (Al)
and (A5), it is clear that to each element of @ there cor-
responds a unique isotony class and conversely, In this
context we should also note the following property of the
logic () of quantum mechanical operations. The condi-

M.D. Srinivas 1683



tion
) =uls,), (A8)

for all the density operator states u, will only allow us
to conclude that £, and ¢, belong to the same isotony
class. This is significantly different from the lattice
theoretic logics (and some of the algebraic approaches
to axiomatic quantum theory), where probabilistically
indiscernable propositions are assumed to be identical.

In fact, it has been emphasized by Edwards?® that the
properties of operations (and hence of the corresponding
experimental procedures) can be classified into two
categories, namely those which are shared by all the
members of an isotony class (isotonic properties) and
those which are not. The transmission probability or
the factor by which the size of an ensemble is diminished
when it is subjected to the experimental procedure is a
property of the first category, whereas the purely
quantum mechanical “distortion” or the “collapse” of the
ensemble is a property which varies with the different
members of an isotony class, We can show that, in
each isotony class '3 ], there exists a unique operation
¢, given by

& o) ={Tr¢ )/ Tr{)}v, (an)

for all veV*, which satisfies the condition of distortion-
free measurement,

Eosl. (A8)

Such operations have been called “reflections” by Ed-
wards,*®% who has also given a detailed analysis of
different classes of operations.

We now examine the structure of the logic () of quan-
tum mechanical operations in relation to the structure
of the set @ of all effects—or equivalently the set of all
isotony classes of operations., The relation of implica-
tion is not an isotonic relation. ¥ &£, <&,, we evidently
have F¢ <Fg , where Fg_ is defined in (Al). However,

1 2 i
the converse

The absurd proposition forms an isotony class by it-
self. The set of all maximal operations form an isotony
class containing the identity operation, i.e.,

[9] :{9}',

tl==x

(A9)
(A10)
The set of all negations of an operation &£ is the isotony

class [I=€,] where &, is given by (A7), For each
Ereli-€,), we have

& +¢&ez,

Also every element of the isotony class [£ ] is a negation
of every element of the isotony class [1—60] and vice
versa.

(Al11)

The relation of disjointness is isotonic, as
ELE, iff FgleF(gzsl° (A12)
Also, if &,L¢E, and & ,c[¢,] and & ,€[¢,] then £;1E, and
ENMEELIENVEL (A13)

However, the conjunction &, A¢, of two operations is a
connective that is crucially dependent on the “distor-
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tion” produced by the experimental procedure &,, and
hence cannot be characterized in terms of isotonic prop-
erties alone,
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The problem of definition of elementary systems in general relativity is analyzed and some current
theories are compared. A definition of dynamically free local elementary systems in general relativity
is proposed, taking into account the influence of the gravitational field arising from the intrinsic

dependence of the symmetry groups on the field.

1. INTRODUCTION

By an elementary system we shall understand the col-
lection of structureless objects which are obtained from
the classification of the unitary irreducible representa-
tions of some symmetry group in a physical theory.1 In
the case of the special theory of relativity the elemen-~
tary systems defined by the group of isometries of
Minkowski space—time (the Poincarégroup) gives a very
close approximation to what is presently known as ele-
mentary particles. When we deal with general relati-
vity we have a collection of space—times instead of the
single Minkowski space—time of special relativity. This
change in the geometrical structure compels us to ask
if the structure of elementary systems in general rela-
tivity should be different from that in special relativity,
what are the changes in structure, and finally what are
the physical implications of the new structure,

The definition of elementary systems in general rela-
tivity depends on a characterization of a certain sym-
metry group to be defined in the general theory of
relativity.

Unlike the case of special relativity, in general rela-
tivity we do not have a previously given space—time.
However, given a certain space—time of general relati-
vity we should also be able to define elementary sys-
tems in this space—time. Therefore we have two prob-
lems. On the one hand, the definition of elementary sys-
tems in general relativity without the previous choice
of a certain space—time and, on the other hand, the de-
finition of elementary systems in a given space—time of
general relativity. These two problems must be com-
patible. One way to ensure this compatibility is to choose
a group of symmetries such that it holds true in both
problems. This solution imposes strong restrictions on
the choice of the group of symmetries. A more general
solution is to consider a group of symmetries defined
in general relativity and project it on each space—time.
In this case the compatibility condition is that the pro-
jected group should coincide with the appropriate group
of symmetries defined in the space—time.

2. KINEMATICAL COUPLING

We proceed to review briefly and comment on some
currently proposed theories of elementary systems in

general relativity, labeled according to the adopted
groups of symmetry.
A. The Poincare theory

This theory is based on the assumption that the
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gravitational force is too weak to produce any signifi-
cant change in the structure of the elementary systems
as defined in special relativity. Therefore the ele-
mentary systems are defined by the representations of
the Poincaré group. This group can be defined in gen-
eral relativity in different ways. It can be considered as
the fiber group of the tangent bundle plus translations.
It may also be considered as the holonomy group of
orthogonal tetrads plus translations.

The fact that translations have to be added separately
on the Poincaré group in general relativity seems to be
pathological.? While there may be some mathematical
means of introducing the Poincaré group in general
relativity, this should not be done too artificially. The
Poincaré group in special relativity has a clear mean-
ing as the group of isometries of the space—time.

On the physical side it can be said that the weakness
of the gravitational force should not be taken too seri-
ously when we are considering a group theoretic defini-
tion where no dynamical considerations take place. One
example of a theory of this type is the one proposed by
Ne’eman and Rosen® which assumes a Poincaré type
definition for the elementary systems and uses a local
embedding technique to define internal symmetries.
Another example is the recently proposed f—g theory of
Salam which assumes a Poincaré type definition of spin
two mesons but curiously enough assumes dynamical
interaction when a strong gravitational field is present.?

B. The BMS theory

The second proposed structure of elementary sys-
tems is based on a group which is closely associated
with the group of isometries of the space—times of gen-
eral relativity?; since the Poincaré group is the group
of isometries of Minkowski space—time it is natural to
search for a group structure with similar properties in
general relativity. Unfortunately, exact isometries are
not always present in the space—times of general
relativity. However, in the cases of asymptotically flat
space—times an approximate isometry group can be de-
fined. This group is the BMS group of asymptotic
isometries and it differs from the Poincaré group by
the fact that translations are replaced by supertransla-
tions in the semidirect product with the Lorentz
group. *®

Since the elementary systems associated with the
BMS group are asymptotically defined they can be as-
sumed to be dynamically free from gravitation. How-
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ever, the fact that the BMS group differs from the
Poincaré group is one indication that the elementary
systems defined by this group are not entirely free from
the gravitational field. This can be seen from the follow-
ing thought experiment. Supposing that the gravitational
field could be switched off (i.e., not simply “made
zero” by taking its sources to a far away distance), then
the group of isometries in this new situation would be
the Poincaré group which would lead to the gravitational
free elementary systems of special relativity. In actual
fact the switching off cannot be done and the elementary
systems feel the effects of the gravitational field even if
they are very far away from the sources of this field.
Therefore the elementary systems defined by the BMS
group are indirectly coupled to the gravitational field.
This is not a dynamical coupling. It is due only to the
dependence of the considered group of symmetries
(BMS) on the gravitational field and is independent of

the strength of that field.

The above conclusion lead us to the concept of kine-
matical coupling. Any phvsical structure defined by
a group of symmetries is said to be kinematically
coupled to the field upon which the group depends. Thus
both the BMS and the Poincaré structures of elementary
systems in general relativity are dynamically free from
the gravitational field. However, in the BMS case they
are kinematically coupled to that field.

One difficulty of the BMS theory lies on the asymp-
totic character of the elementary systems, leaving un-
solved the problem of definition of elementary systems
near a gravitational source. Further difficulties are
the limitation to asymptotically flat space-~times and
the infinite number of Casimir operators of the BMS
group.®

C. The de Sitter theory

The most extensively studied model of elementary
systems in general relativity is based on the de Sitter
group. The cosmological implications of the de Sitter
space~—time, the easy comparison with the flat space—
time case and the ten parameters of the de Sitter group
are the main attributes of this model. Some representa-
tions of the de Sitter group were calculated using the
local isometric embedding of de Sitter space—time,7"®
The resulting elementary systems are obviously kine-
matically coupled to the gravitational field which
characterizes the geometry of the de Sitter space—time.
Further properties of these elementary systems were
studied in analogy with the elementary systems of the
Minkowski space—time. °

A negative aspect of this theory, when it is viewed
from the standpoint of the theory of general relativity,
is its restriction to a single and specifically chosen
space~time. Thus it would be desirable to have an ex-
tension of this model of elementary systems to the
whole of general relativity.

3. ISOMETRIC LOCAL ELEMENTARY SYSTEMS

The extension of the de Sitter model of elementary
systems to all space—times of general relativity can be
made provided the following observations are made.

Since the de Sitter model of elementary systems is
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defined on a previously chosen space—time, its exten-
sion to general relativity requires in the first place that
Einstein’s equations hold throughout the process of
definition as defining the set of space—times to be used.

Secondly, we notice that the de Sitter model is based
on an exact isometry., This seems to be too restrictive
since not all space—times of general relativity admit a
Killing vector field. Nevertheless there are some good
physical justifications for the use of isometries. Ina
physical theory based on a metric geometry, the physi-
cal measurements are performed during intervals of
time when the measuring rods are expected to remain
invariant, an indication that a timelike Killing vector
field should exist. Physical theories without isometries
or even without a metric can be defined but the notions
of observable and the measurment conditions should be
revised {Newtonian theory is based on an affine geome-
try but with a metric on the space sections).

The elementary systems so far known to agree with
physics are defined by a group of isometries. Thus, at
least in a first attempt on a theory of elementary sys-
tems in general relativity it seems reasonable that they
should be defined by some group structure associated to
isometries as in the last two theories analysed in the
previous section. Observe that we are not restricting
the definition of elementary systems to space—times
with isometries but only stating that they are more
likely to agree with present day physics when restricted
to space—times with isometries.

The third remark to be made is that the elementary
systems of the de Sitter model are locally defined, in
the sense that they hold for a neighborhood of an arbi-
trary point of the space—time.

With these observations we conclude that to obtain an
extension of the de Sitter model to general relativity we
need a group structure with the following properties:

(a) It is a subgroup of the manifold mapping group of
general relativity, defined independently of the pre-
vious choice of a specific space—time.

(b) The restriction of this group to a certain space—
time of general relativity is local and must result in
the full group of isometries of the space—time if the
space—time admit isometries and is completely in-
nocuous otherwise (that is, if the space—time does
not admit isometries the restriction of the group to
this space—time results only on the identity
transformation).

(c) In the flat limit the group should reduce to the Poin-
caré group.

4. THE GRQUPS L(p,r,s)

We shall show that for each of the minimal isometric
embedding classes of the space--times of general rela-
tivity the homogeneous fiber group of the embedding
bundle satisfies the required conditions for the exten-
sion of the de Sitter theory of elementary systems.

If R4 denotes any space—time of general relativity,
the minimal isometric embedding bundle £(R4) is the
Whitney sum of the tangent bundle and a minimal nor-
mal bundle whose dimension is given by the Gauss—
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Codazzi equations of R4, The typical fiber M(p, 7, s) is
a pseudo-~Euclidean space with dimension p > 4 and
meiric signature » +s. R4 is the base space and each
fiber is locally defined on R4, The minimal condition
not only specifies the smallest embedding space but also
gives the uniqueness of the embedding, provided the
space—time metric is not changed.

The use of embedding formalism is regarded here as
in the de Sitter case, not a result of physical imposi~
tion, but as a convenient mathematical tool, useful to
deal with group representations.

It is important to notice that an embedding bundle is
not a property of a single space—time but a property of
a class of space~times, so that M(p, 7, s) is the same
for all space—time of that class. In general relativity
there are 22 distinct minimal isometric embedding
bundles.

On each fiber M(p, 7, s) we may use Cartesian co-
ordinates denoted by X* (all Greek indices run from 1
to p) and Gaussian coordinates based on the space—time
hypersurface, denoted by x*. The Gaussian coordinates
may be separated into coordinates on the space—time,
denoted by x! (lower case, boldface Latin indices run
from 1 to 4) and coordinates orthogonal to the space—
time, denoted by x* (capital boldface Latin indices run
from 5 to p). In the Gaussian system the space—time
hypersurface embedded in M(p, 7, s) is defined by the
equations x*=0, The Cartesian components of the
metric tensor of M(p, v, s) are denoted by 7,, and its
Gaussian components are gys.

If f(x*) is a function defined on M(p, 7, s), its space—
time projection is

F(%) | gy = Hmf(x®).
xA -

The embedding is obtained when the functions X*
=X*(x*) and its Jacobian matrix with elements X",
are given. Let

X=Xt 4+U*, UF=e" X", U%=0 (4.1

be an infinitesimal transformation of the homogeneous
fiber group L{p, », s) of M(p,r,s). In Gaussian co-
ordinates we have

e

(4.2)

where £ =x%,U*, x*, being the components of the in-
verse of the Jacobian matrix x*,X*;=8%;. The last of
Eq. (4.1) corresponds to

f@h =g, (4.3)

Semicolon denotes covariant derivative and round
brackets on indices denote complete symmetrization. In
order to obtain Killing’s equations in R4 by projection
of (4. 3) on the space—time we require the additional
conditions!’

EA R4:0=

(4.9
We may write

EA:xAu U+ :xAuequV :ngé‘\"x,,
where we used the fact that x*, X", =%, and

aB

L8 B _uv
€T =x", X,
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Since X"pX, =3(1,,X"X") 5, we have
EA= (XX, g™

Thus (4. 4) is equivalent to
%(XVXV),QEM'R4:O- (4.4')

With these conditions we get vector fields in M(p, 7, s),
projected on R4, which are defined by the set of

equations
E(i;!)|R4:0’ 5“;“])24:0, g(A;B)‘R‘l:O' (4.5)

The first equations give the descriptors of the homo-
geneous part of the group of isometries of the space—
time. To understand the meaning of the second set of
equations we may consider the Lie algebra of L(p,7,s).
The operators of this algebra L,,, in the Cartesian
frame, satisfy the commutation relations

[Zy0Lool= MuoLve + TooLoip = MuoLp = Moo Lyo). (4.6)
The Gaussian components of these operators are
LatB:XuaX"BLuu
and
[Laglys]=X" 4 X*sX?X [ Ly Ly .
That is,
(Lyylul= (gl + gl - gul - guxli),
[LiijA] =(gulya T &5alu— ialsx— Zulia),
[LysLapl=(gialss +&mLlia—gisLia— g1als),
(LiaLsn]=(g1sLas +ganlis— &1L as— £aslin),
[Lialecl=(gi8Lac*gaclin - g1cLlan — £anlic),
[LasLopl=(gaclep +gaplac—Lanlec- gaclan)-
Now define the “translation” operator
m=a*Li,

where the a® are some conveniently chosen space—
time functions so that they vanish in the flat limit., In
terms of 7y the above commutators are

[LuLn] =(guln—gnli- gnlx— gnla),

[Lljﬂk]: (gixTs— 8xTy) + a‘(ngLu— fialsy),
OIAOZB[LULAE] = OIA(gu"s - guﬂx) + 05(1‘315‘"1 - zﬁ’mﬂj) =0,
[yl = (guaAaBLu ~&i8 015771 - gasatny),
[mLacl=a*(gi8Lac+gaclin — S1clas ~ ganlic),
[LasLop)=(gaclep +&eolac— Sanlec—8aclan)-

Projecting these commutators on R4 and taking the flat
limit, we obtain the group contraction!!

[Ln"x] |R4,ila.t = (g Ty — £xTy) | Ray
[771771] }R:i,(lat =0,

["TiLB c]\ rat1at = 0,

where we used gy | r4 =0. We notice that in the flat limit
7y behaves like a translation operator of the Poincaré
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group. Consequently, the 7, are the translation operators
in R4. They are given by the second equation (4. 5),
which together with the first equation give the Killing
vectors of R4, In general we will be dealing with the

L, in the group representations so that we do not need
to specify the functions a*.

The third equation (4.5) correspond to a degree of
freedom in the choice of the complete set of Gaussian
coordinates. This freedom of coordinates is eliminated
when we define once for all the orthogonal coordinates
x* to coincide with some of the Cartesian coordinates.

Finally, if Killing’s equations in R4 have no solution
apart from the trivial one, we have

g |py=2", U* |rs =0,
which together with (4.4) gives
£ |ra= €2 X" X, |ra =0,

so that in this case the projection of L(p,7, s) on R4
gives only the identity transformation. Therefore, for a
given class of space—times the class group L(p, 7, s)
satisfy the conditions for generalization of the de Sitter
model. In particular, it applies to the flat space—time
case giving the Lorentz group L(4,3,1) (in this special
case translations have to be added separately). Another
example is the de Sitter group L(5,4,1). In this case
(as in any constant curvature space—time), it is impor-
tant to notice that the conditions (4. 4) are trivially
satisfied so that L(5,4,1) is identical to L(5,4, 1) 4 sitter-
This is not the general case where distinct space—time
embedded in M(p, 7, s) have distinct solutions for (4.4)
and consequently distinct groups L(p, 7, s) | z,.

Thus, assuming that the isometric local elementary
systems in general relativity are defined by the unitary
representations of the various groups L(p, #, s), the
elementary systems on the space—time R4 are defined
by the unitary representations of the group L(p, 7, 8)ig,
defined by (4.4) and (4. 5). Since for L(p,#,s) we do not
have a previously given space—time, we refer to the
elementary systems defined by this group as “abstract
objects” in the sense that they can only attain space—
time meaning when restricted to a space—time.

5. ISOSPINORS

An elementary system is described by fields which
are defined in the space of the unitary irreducible rep-
resentations of the adopted groups of symmetries.
Taking this group as being L(p, #, s}, these fields can
be obtained from the spinor representation of the
Clifford algebra defined on M(p, r,s). ¥ p=2v or p=2v
+1, these spinors have 2" components (half the number
of components can be considered in certain cases).
These spinors transform according to a representation
of the group of automorphisms of the Clifford algebra.
Denoting the generators of this algebra by e,, then the
subset of the algebra generated by

Luv: %e[u €y1) (5" 1)
is isomorphic to the Lie algebra of L(p, », s). Choosing
one of the many possible Weyl representations of the
Clifford algebra'? and denoting by M,, the matrices
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representing L,,, the infinitesimal transformations of
the spinor group S are given by

S=1+3"'M,,. (5.2)

With the conditions (4. 4) the group L(p,7,S)| py
gives the isometries of the space—time R4. Under the
same conditions the matrices (5.2) generate a spinor
representation of this group of isometries, denoted by
Slgs and called the isospinor group of R4. The spinors
which transform according to S|z are called
isospinors. 1°

Since S is a representation of L(p, 7, s), the ele-
mentary systems obtained by the unitary representa-
tions of S are described by the spinor fields of the rep-
resentation space. Similarly, the representations of
Sigr4, which can be obtained from the representations of
S, give the space—time elementary systems which are
described by the isospinors of the representation space.

6. FIELD EQUATIONS

Since the spinors constructed in the last sections are
defined on the fibers of the embedding bundles they are
only locally defined. Furthermore, they must satisfy
some field equations, which are defined on these fibers
but subjected to physical considerations, defined on the
space—time. We have a situation in which a set of field
variables is defined in the spaces M(p, 7, s) but only
those which are “space—time defined” are to be con-
sidered as having physical meaning. Let ¢'*’(x*) be any
field variable defined on the Gaussian system, where
(o) stands for any collection of indices. In particular,
$®’ may be the components of the spinors constructed
on M(p, 7, s).

A function defined in M(p, 7, s) is said to be space—
time defined if it depends only on the space—time co-
ordinates. If the function f is defined in Gaussian co-
ordinates, then clearly f(x') is space—time defined. On
the other hand, if fis defined in the Cartesian system,
SIX*) is space—time defined only if the coordinates X*
correspond to a point of the space—~time. In general,
the projection f(x%) |, of a function f defined on
M(p,7,s) on the space—time is space—time defined.

The sought field equations are defined on M(p, 7, s)
but must yield space-—time defined field equations.

Given a set of space—time defined field variables
there are two cases to consider depending whether the
Lagrangian function is or is not space—time defined.

In the first case we obtain field equations which are
space—time defined, independently of the choice of a
particular space—time. In the second case we get field
equations which are not necessarily space—time de~
fined but that can be projected on the space—times
afterwards.

Consider the space—time defined Lagrangian
L=L(p@", p@ ! ;) (6.1)

and the action integral A= [ L@, where dx is the p-
dimensional volume element defined in the Gaussian
systems, We can write d°x =d'x d*x where d’x is the
part of the volume element corresponding to the sub-
space orthogonal to the space—time. Let A be a varia-
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tion of A such that 53 (x!) vanishes on two three-
dimensional neighbouring surfaces Z, and Z, in the
space—time:

aL aL
5A:/<a—¢—(a—) a¢‘“>+—7——a¢ & azp“’",)d’x.

Defining
oL

(o)
By L

oL
6A = f[(a_[m - ﬂ:(a)")w(au, (ﬂi(a)azp(a)'t)] d*x dix.

Using the Gauss theorem in the second term of the in-
tegral and assuming 3A =0,

T
T @)=

oL i (o) T2 i (@) t
W—ﬂ(a) " 5y Fx+ T (@) 5y dzi)dxzo.
)y

1
Since 63'*’ vanishes on Z,, T, the last integral is zero.
The first integral gives the space—time defined field
equations

oL

s —“m)‘,izo- (6,2)
In the case p =6 these equations coincide with some of
the equations obtained by Fronsdal. '3

Consider now a situation where the Lagrangian is not
space—time defined. This may occur for example when
the field variables are subjected to operations which
destroy the space—time character. The result is
the same as before, but the field equations have to be
projected on the space—time

g%l(la‘) R4—ﬂ(u)i'l ze=0. 6.3}
Consider the following example. The Lagrangian
= =3[0 P (vap 5~ 10 a) + ]
+5{(xaT g - Xp¥ o) €* Py = Ymy), (6.4)

where €* =x%,¢*, ¢" are the matrices of a Weyl rep-

resentation of the Clifford algebra defined on M(p, 7, s),
and ¢ are the spinors of a spinor representation of the
same algebra. m is a scalar function defined in the
space—time, such that it reduces to a constant in the

flat limit. $=9"u where u is the Hermitian matrix pro-
portional to the product of all anti-Hermitian generators
of the algebra.'* The operator

0 d
Jap=%a 38 =8 575 »

which appears on the above Lagrangian, when applied
to a space—time defined field variable does not neces-
sarily give a space—time defined variable. For
example, J pi(x!) =0 but Jy,p(x!) =x,(3%/3x?). Conse-
quently, the Lagrangian (6.4) is not space—time de-
fined. Considering ¢ as a space—time defined spinor
function, Eq. (6.3) gives

Z(Jije‘e’ - m) irg =0,
('  +m)Pigy = 0. (6.5

The spinor field which satisfies these equations trans-
form according to S:z, and therefore is an isospinor
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field. Equations (6.5) generalize the equations proposed
by Dirac for the de Sitter space—time.!®

In the flat limit the isospinor field ¥ coincide with
Dirac’s spinors and Egs. (6.5) give the equations for
spin 1/2 particles. This fact suggests that the ele-
mentary systems defined by L(p, v, s) which satisfy
Egs. (6.5) in R4 may be labelled spin 1/2 elementary
systems. However, this is only a suggestion since in
general relativity the meaning of the word spin may
differ from the usual concept in special relativity as it
is clear from the analysis of de Sitter space—time.°

7. UNITARY REPRESENTATIONS OF L(p,r,s)

To obtain the elementary systems in the scheme pro-
posed in the previous sections we need to calculate the
unitary irreducible representations of each group
L(p,r,s), or equivalently, the representations of the
corresponding spinor groups S, and classify them.
Once a specific space—time R4 is chosen and the condi-
tions (4.4) applied on the representations of L(p, 7, s),
we obtain the representations of L(p, 7, s)ig,, or of
Sigs and the elementary systems of R4.

Since these representations involve lengthy calcula-
tions for each of the 22 groups L(p, 7, s), only the out-
line of the method of representation is given here.
Specific calculations for some interesting cases will be
given elsewhere.

We may start by writing down all commutators of the
Lie algebra of L(p, 7, s) given by (4.6), where the L,
are given by (5.1).

Next we consider the reduction of L(p,7,s) to its
maximal compact subgroups O(n) and their decomposi-
tions into O(3) factors denoted O;(3). For each of these
0;(3) factor groups we determine the well-known
unitary representations

Ony MzD my)=my,
Gmy M Ly =0 +my + 1) = m) 2,
@my ME Lo, )y = =m + 11— m) 3,
where
4;=0,3,1,++- ,
wli=1, .., =0, +1,—1,,

”li:ln i

i=1,2,...,% where k is the number of O(3) subgroups
in O(n). M, M¥, M are the operators of the Lie
algebra of O,(3) written in the usual Cartan basis.

Once the above matrix elements are determined we
can proceed with the determination of the matrix ele-
ments of the remaining Lie algebra operators L,,, cal-
culating the matrix elements of the commutators

[LMV: ]V[Ei)]; £Lu.u’ ‘Wlii)]y [Luv, 1\/1(2“]’

in terms of » arbitrary matrix functions of /;. Some
recurrence relations between these functions arise
from the matrix elements of the commutators between
the L,,’s not appearing in M, M¥) and M,

The final step consists of the determination of the
Casimir operators and their eigenvalues. As the groups
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L(p,r,s) are all semisimple the number of Casimir
operators is equal to the rank v of the group.

The resulting structure of elementary systems is
labelled by I;, m; and the eigenvalues of the Casimir
operators. These quantum numbers in general have not
the same meaning of the flat space—time case and for
different L(p, 7, s) there is a different variety of
quantum numbers.

8. PARTICLES AND INTERNAL SYMMETRIES

In order to verify if the elementary systems defined
by L(p,r,s), or any other proposed group, have any-
thing to do with the physics of elementary particles it
becomes necessary, in the first place, to compare the
resulting set of quantum numbers with the observational
data. We may either choose to calculate all the repre-
sentations of the 22 groups, a rather laborious task, or
choose a certain space—time R4 according to its physi-
cal reality and find the corresponding class group
L(p,7,s). Thus, for example, if we decide that the de
Sitter space—time is a physically interesting model the
group to be considered is L(5, 4, 1). In this particular
example the calculations of the group representations
are simpler than in the other cases. The spinor fields
constructed on M(5,4,1) are automatically isometric
covariant and the field equations are also automatically
space~time defined. Consequently, the elementary sys-
tems constructed with L(5, 4, 1) may be claimed to have
physical meaning. In the general situation this simplity
does not occur. While the elementary systems con-
structed with L(p, 7, s) are regarded as abstract objects,
it may be claimed that the physical space of the elemen-
tary particles is the chosen space—time. Thus in order
to obtain the elementary particles from the elementary
systems we would need to project these on the space—
time. Only then could we deal with the problem of in-
terpretation of the quantum numbers.
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From the point of view of fitting the theory with some

current theories of elementary particles some of the

space—times of general relativity may prove to be more
interesting than others. Thus, for example, if we want
to comply with the SU(3) model, the de Sitter group is
not as interesting as L(8, 6, 2) which contain the Lie
algebra O(6) ~SU(4) > SU(3). L(8,6,2) is the smallest
group in an even-dimensional embedding space which
contains O(6). Since eight is the largest number of di-
mensions needed to embed space—times with a surface
orthogonal Killing vector field, 18 the study of the rep-
resentations of L(8,6,2) seems to be interesting as re-
gards the search for a SU(3) subgroup.
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We interpret the one-element central extension of the Lie algebra of the group of real inhomogeneous
linear canonical transformations of phase space as a time dependent invariance algebra in the
Schrédinger picture. By limiting to a two-dimensional space quantum system, we exhibit all the
nonconjugate Hamiltonians contained in the symplectic algebra which, in the Heisenberg picture,
plays the role of dynamical algebra and contains several known degeneracy and spectrum generating

algebras.

INTRODUCTION

In quantum mechanics the Schrodinger picture is
usually a description in which the states evolve in the
Hilbert space as time goes on while the operators rep-
resenting the observables stay fixed. The dynamics of a
quantum system is then governed by a time evolution
operator and the gtates satisfy the Schrddinger equation
i{d/dtyd, = HY,, where H is the Hamiltonian operator of
the system.

However, it is also possible to introduce explicit
time dependent operators S(f) in the Schrodinger picture.
Under the action of such operators the transformed
states ?p, =S(¢)y; satisfy the Schrodinger equation with
the new Hamiltonian A = S¢)HS™(¢) +[25(t)/at]S1(¢).
Hence, starting with a good time independent Hamilto-
nian H, in general we obtain an explicit time dependent
one H. (Conversely such transformations can be used to
make time independent an explicit time dependent
Hamiltonian, ) But it is also possible to select the trans-
formations which keep invariant the Hamiltonian, i.e.,
such that A=H; then we are led to consider the time
dependent operators satisfying

. oS(t
[, s(0)) =59 . ®
Numerous interesting properties have been deduced
from the study of this relation. !* In this paper we shall
need the following ones:

—For a given Hamiltonian the set of all the operators
satisfying (1) is a Lie algebra §, (not necessarily a
finite-dimensional one).

—An operator S{f) satisfying (1) corresponds in the
Heisenberg picture to a time independent operator S
given by

S = exp(iH!)S(2) exp(— iHt) = $(0). @)

Consequently the operators S generate a Lie algebra
S, isomorphic to §;, i.e., from a mathematical point
of view, §, is the same algebra as §, but depending on
t as a real parameter.

—Conversely to every algebra of time independent
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operators which do not commute with a given Hamilto-
nian (in the Heisenberg picture) there corresponds an
explicit time dependent invariance algebra in the
Schridinger picture.

Then the above properties permit us to give an
answer to the two following questions:

(a) Congider a Hamiltonian possessing some time de-
pendent invariance algebra /4, the generators of which
being written as functions of some fundamental observa-~
bles {w} Is it possible then to embody this invariance
algebra into a largest one, the added generators being

fxfressed in terms of the same fundamental observables
wi?

(b) A quantum mechanical system being given charac-
terized partly by some noncommuting observables gen-
erating a Lie algebra 4, what could be the Hamiltonians
of the system if they are going to act on 4 by their ad-
joint representation, namely ad(H). 4 <4, hence admit-
ing A as a time dependent invariance algebra?

Technically a solution is obtained by considering the
derivation algebra /) (4) of what we call the “germ” 4
and by constructing the semidirect sum 4 0/)(4), i.e.,
the split extension of /)(4) by A4, this construction has
been described in Ref. 1{a). Indeed let & (R2) be the
enveloping algebra of the Lie algebra Q generated by
the fundamental observables {w}. Then problem (a)
amounts to extracting from 4 (/) (4) the largest sub-
algebra Z isomorphic to an algebra in £ (), and all the
one-dimensional subalgebras of Z are solutions of the
problem (b),

Now we are interested in applying the above general
considerations to a quantum system of N (interacting)
particles of different masses m(n) (1 =1,2,...,N),
without spin. Every particle is characterized by the
components of its position vector g(u) and of the canoni-
cally conjugate momentum p(u) which generate the
Heisenberg algebra #y(k), [a,(1), px(k)] =70, (G, %
=1,2,3). The ¢’s and p’s are the fundamental observa-
bles and generate the Lie algebra =&, //(n).
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TABLE I. Miscellaneous realizations of the Sp(6,R) algebra.

Spi6,R), S5p6,R)cu Sp6,R)g

()2 (1) _Pyp s m(p)+m@) 12
ARl =S TR~ E, o (i G P40V
Sh =§5=1 m (i) gy (1) gy (1) S?,,“=%’%"— Sk =Ev@—(g)ﬁiﬁ_@ 4, gy (u,v)
Rt= /2% 15,0, a4 g -Kas Pl R~z P g (400, (0, 0k,

In Ref. 1(a) problem (a) has been treated in the case
of a free system of particles possessing either the
derived extended Galilei algebra §’ or the center of
mass Heisenberg algebra //; alone as a germ. We re-
call that (' =//,(1§0(3), i.e., besides the Heisenberg
algebra generated by

N N N
M= 2mu), Py=2pym), Ky=2am(wa,w) @

with
(K, Py)=i8,M, 4)

the derived extended Galilei algebra contains the §O(3)
algebra generated by the total angular momentum J of
the system

N
Iy= 2 @ AP, (5)

We have then shown that {” can be enlarged up to the
so-called extended Schradinger algebra 5 ch

=G’'0 §1(2, R), which is known as the Lie algebra of the
one-parameter central extension of the group of trans-
formations of the Newtonian space—time which keep
invariant the Schrodinger equation.

By removing the rotational invariance, i.e., by re-
stricting the germ to the Heisenberg algebra, one ob-
tains a larger derivation algebra so that the Heisenberg
algebra can be embedded into the central extension of
the inhomogeneous symplectic algebra denoted 4, in

Ref. 1(a): 4,=7S5p(6, R)=4;0 §p(6, R).

In Ref. 1(b) we have also treated problem (b) starting
with the germ ¢’; (. in this case the problem is algebrai-
cally simple since we have to consider the one-dimen-
sional subalgebras of §I(2, R) only. There are three
classes of Hamiltonians representative elements, which
are respectively the Hamiltonians of an isolated system
of interacting particles and of a system subject to ex-
ternal isotropic harmonic or “antiharmonic” fields.

In this paper we want to treat problem {(b) by con-
sidering the Heisenberg algebra as a germ and con-
sequently looking for Hamiltonians contained in p(6, R).
But quickly the Lie algebra technics appear too cumber-
some if we deal with a three-dimensional space. Then
in the largest part of the paper we restrict ourselves
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to the study of two-dimensional space systems without
an appreciable loss of information,

The paper is organized as follows

—TFirst we present the quantum mechanical part
which is divided into six sections

L Miscellaneous realizations of the {p(6, R) algebra.

IL. Selected classes of Hamiltonians,

HII. The Heisenberg algebra in the Schrédinger
picture.

1V. Possible chains of invariance algebras con-
tained in the symplectic algebra.

V. The Symplectic algebra in the Schrddinger
picture,

VL. The mutual interaction problem.

—Then the Lie algebra technical part is treated in
four Appendices

A. Symmetric decompositions of the {p(2n, R)
algebra.

B. The isomorphy between §p(4,IR) and §O(3, 2).
Related basis and Casimir operators.

C. Daughters, grandchildren and one-dimensional
nonconjugate subalgebras of (p(4, R)=0(3, 2).

D. Automorphisms induced by the general element
of $p(4, IR).

I. MISCELLANEOUS REALIZATIONS OF THE
$p(6, R) ALGEBRA

In Ref. 1(a) we have given a realization of the
S$p(6,R) algebra related to the absolute motion of the
system. In this realization, denoted $p(6, IR),, all the
generators are expressed as sums of individual parti-
cle generators (acting in their respective Hilbert
spaces), i.e., we are dealing with a reducible repre-
sentation of {p(6, R). Up to the mutual interaction term
the possible total Hamiltonians can be written in terms
of the {p(6,IR), generators. But there exists another
realization of §p(6, R) related to the motion of the
center of mass, denoted $p(6, R)cy the generators of
which are expressed in terms of K, P, M. The actions of
Sp(6,IR), and §p(6, R)cy on the Heisenberg algebra are
identical; then

H3D 5P, R)a =430 5p(6, R)en
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It is then easy to see that by substracting from each
generator of §p(6, R), the corresponding generator of
Sp(6,R)cy a third representation of {p(6, IR) is obtained
which does not act on /5. We denote by (p(6, IR); this
realization which is related to the internal or relative
motion of the constituent particles of the system. Its
generators can be written in terms of the relative
canonical coordinates:

mip(p) - m(ulp(»)
m(p) +m(v) ’

qu, v)=q(p)~-q(v) and p(u,v)=

(6)

The coexistence of these three realizations of the
Sp(6,IR) algebra just reflects the well-known decom-
position of the absolute motion of a system into the
relative motion and the motion of the center of mass

Sp6,R), ={X4 =X+ XX $p(6, R)cy, X5 € §p(6, R)p}

Table I gives the expressions of the {p(6, IR) generators
in the three above described realizations, in the particu-
lar basis defined in Appendix A [Eq. (A8)].

These three realizations do not commute but are such
that for every subalgebra 4 C (p(6, R) we have

[As AculSAcus [AnsArIC AR [AcwsArl=0. (7)

More precisely the actions of Ad(4,) on Acy and 4y are
“identical,” which can be expressed by the relation

Ad(X)-f=f- Ad(X),

f being the canonical linear mapping f: 4 cu — Ar defined
by

FXM =X with X € {T, Ry Spat-

Let us remark that the Garthenhaus—Schwartz trans-
formation® induced by the unitary (for finite A) operator
U, = exp(- i(3/2) 33,1 R$}) relates all the generators T},
of §p(6, R), to the corresponding ones in Sp6, R)ey,
but keeps invariant the R;‘,, generators and is singular
when applied to the S4,’s; we have

UTHUG = Th+ = DTS = Th,

UARJAAU;I =RJAM
U,SHUR =Sh+ (e* = 1) — +o0.
R ol

Some other general comments deal with the Casimir
operators of invariance algebras. Owing to the semi-
direct sum structure of every subalgebra /3044
CHs01 Sp(6, R), the invariants are on the one hand the
center M of the Heisenberg algebra and on the other
hand the Casimir operators of the corresponding 4 cu
algebra, which by construction of A ¢y also belong to the
enveloping algebra of #3004 4.

Obviously the Casimir operators do not depend upon
time and are identical in both Heisenberg and Schro-
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dinger pictures, which confirms the unicity of §, and
Sos L e., the role of  as a parameter in the nonrela-
tivistic quantum mechanics. Moreover, the relations
(7) are sufficient to assert that the explicit time depen-
dences in the Schrodinger picture are the same for cor-
responding generators in the three realizations because
of the identical action of H belonging to §p(6, IR), on the
generators of (p(6,R),, §p(6,R)cy, and $p(6, R)g.

Finally we want to emphasize on the existence of rela-
tions in the enveloping algebra of the (p(6, R) algebra
in some particular cases. For instance, if we consider
either the center of mass motion of any system or the
absolute motion of one particle or the relative motion of
a two-body system there exist numerous relations in
the enveloping algebra; in particular, we have

{Tﬂzy ”u}+ Z{sjk’ tjlz}+ + %6/;; +1.

So, in the above three cases the second order Casimir
operator given by Eq. (B4) reduces to a number (, = %
This is an example of a general property of quantum
(and classical) mechanical realizations as demonstrated
in Ref. 3: “No semisimple Lie algebra of rank n can be
realized with less than » degrees of freedom and if just
n degrees of freedom are used then the invariants are
multiples of the identity.” We recall that (p(6, R) is of
rank 3,

{I. THE SELECTED CLASSES OF HAMILTONIANS

Here we want to study the Hamiltonians as inducing
outer automorphisms of the Heisenberg algebra, i.e.,
acting as outer derivation on it. Then they are com-
patible with the partial characterization of the system
by the canonical quantities of its center of mass.

From this definition all the desired Hamiltonians are
contained in the general element of (p(6, R), which can
be written

X=2p"R,, +§) (T, +6%8;;) + 3 20 (1T, + 07%S,,)
ok

Jtk

(with the parameters p’*, 77 0% ¢ R). (8)

But if there are two Hamiltonians H; and H, conjugated
by an inner automorphism of §p(6, R),, i.e., if there
exists an element Y belonging to §p(6, R) such that
exp(iY)H, exp(-iY) = H,, then exp(iY) transforms the
eigenstates of H, into the eigenstates of H,. Therefore,
it is interesting to classify the Hamiltonians into con-
jugacy classes which amounts to looking for the one-
dimensional subalgebras of §»{6, R) up to a conjugation
[or what comes to the same to looking for the orbits of
the group Sp(6, IR) on the projective space of $p(6, R)].

Now for mathematical convenience and to be more
concise we restrict ourselves to the study of two-
dimensional space systems. We therefore consider
H2OSp(4, R) as the total invariance algebra, and we in-
troduce a “physical” basis of the §p(4, IR) algebra given
by the following ten generators expressed in terms of
the generators Ry, S, Ty, defined in the Appendix A
{Bq. (A3)], where we take n=2; we set

J =Ry = Ry, the orbital angular momentum operator,
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T=3(Ty + Ty), the kinetic energy operator of a free
system,

D=- (Ry; +Ryy), the dilation generator,
C=3(Sy1 + Sp),
Q= k(i - Szz)}

)

the expansion generator,

the mass-quadrupole momentum opera-

Q12 =Sz ' tors and their “derivatives”:
Q =Ry - Ry Q=Ty- Tzz}
Q2= (Ryp+Ryy)’ @12=2Typ

The technical aspect of the classification and the re-
sults are given in Appendix C where, in every class of
nonconjugate one-dimensional subalgebras, we tried to
give the more characteristic Hamiltonian as represen-
tative element,

There exist three nonconjugate compact subalgebras
isomorphic to §0O(2). One of the corresponding classes
may be represented by T + C conjugate of the Hamilton-
ian T +wC of a system of particles in an external
harmonic field

exp(-iaD)(T +wC)exp(iaD)~T+C with a=3logw.

Another class contains J which governs a system having
a magnetic momentum in a static magnetic field,

Finally one finds a one-parameter family of §0(2)
algebras such that to every value of the parameter
9 > 0 there corresponds a unique §O(2) algebra up to a
conjugation; representative elements can be written
T +C+95J., The motion of a charged system of spin zero
in the plane perpendicular to a constant uniform mag-
netic field B is governed by the symmetric gauge
Hamiltonian

N

1 c 2
H=750 ?ﬁ(p(“)— 5o B CI(M)) ,
which in the “physical” basis becomes
H=T+fC+pJ with B=¢|B|/2mc. (10)

1t is seen to be conjugate of T+ C +J. For one particle
one has the Hamiltonian of the Landau electron.

All the other classes of the family 9 #1 have in
common an interesting representative element which is
the Hamiltonian of a system of particles in an external
anisotropic harmonic field, namely,

1 N
H=35(Tyy +014S11 + Typ +0335) With 044,050 >0, 043 #0,,.

Indeed, one can check that

2 2
explitm(Tys +Spp)] exp —l%' <E1 a,R,,)] Hexp[z' (!Z,‘l a,R,,)]

Xexp[— i5m(Tyy +S)] ~T+C + zi::: J
2
with @, =3logo,, and 9, = %af—i .
i

In all cases starting from a representative element,
the whole corresponding class is generated by using
the technics described in Appendix D. Then interesting
connections between Hamiltonians may appear; for in-
stance, the Hamiltonian of the Landau electron conjugate
of T+C+J is also conjugate of Ty, +S;; the one-dimen-
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sional harmonic oscillator Hamiltonian as it has been
emphasized in Ref, 4.

All the remaining one-dimensional subalgebras are
noncompact and among them one identifies:

~the Hamiltonian of a system in an external “anti-
harmonic” field: T~ C, the spectral analysis of which is
done in Ref, 5.

—the Hamiltonian of a free or isolated system given
by T.

Finally one finds harmonic anisotropic oscillator
Hamiltonians containing damping terms, that is, of the
form

H=Tyy + Ty +014S)1 + 0338y + p11Ryy +p2aRa,

which correspond to several nonconjugate one-dimen-
sional subalgebras of (»{4, R) according to the values of
the two invariants &,=40,,~p%; (j =1, 2) of the algebras
50(2,1);2{T,;, S;y, Ry} [note that 0, =2(g + £)):

§1=§ <0,
£1<0,£ <0, %8, H~T-C+3(Q-1Q)

H is conjugate of T-C

with 8 = (1 - exp[2(&; - £)])/(1 + exp[2(¢; - £)]),

£ <0, £=0, H~T~4[§+9(D+Q)]
with 9 = V=,

£> |&|, H~T+C+d,
£ <0, £>0, b=|&l, H~T+Q, )

5<|f|, H~T-C+@-39,
£,=0,£>0, H~T+C+%@Q-D),
£1=£=0, H~T,

E2# &y, H~[(91=92)/(91+92)] J+T+C

£,>0,&>0, with 9, = (£2+1)/(g,+1),

Ezzgl, H~T+C,

ill. THE HEISENBERG ALGEBRA IN THE
SCHRODINGER PICTURE

In the Schriddinger picture the Heisenberg algebra
takes an explicit time dependence governed by the action
on it of the chosen Hamiltonian following the relation

H4 = exp(~ iHt)/} exp (i HE).

Obviously all the possible representations of 4§ are
obtained if we take for H the general element X of
S$p(4,IR) given by Eq. (8) withj,2=1,2. We have then to
exhibit the action of X on 43; but it must be noticed that
the center of an algebra is kept invariant under the ac-
tion of any automorphism!‘® so that the generator M is
not concerned by the transformation (11) and we have
only to determine the time dependence of the P and K
generators. Following the technics described in Ap-
pendix D, the explicit time dependence of P and K is
established by constructing the 4 X4 square matrix
e®t such that

ay

Py(f) P,(0)
Pyt)| _ 3¢} Pa(0)
Kia) =e KI(O) ’ (12)
K, (t) K(0)

where & is the coadjoint representation of X in the
algebra /,0X:
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TABLE II, One-dimensional nonconjugate subalgebras of .Sp @, R) and their embedding in miscellaneous (in particular maximal)

subalgebras.
9, J. Representative generators ~ [d | S -~ o = :'? 8
$06,2) basis “Physical” 8 8 RE8 2 8 & & 3
1y =) 8o = Q a )
basis B & &/Oj 3= SS9 Voﬁ S) °
L/)
My + My, T—C+Qp+(1/2)Q X X X X b'e
o o Mg +My, T ) X X e X X
V2(My ~My)) — Mog +Mye  T+A/2)T+Q1+Q;, X
Mgy +Mggs + Mg+ Myye T-(1/2)02T-(1/2)Q, X X X
My J X X X X X X
+ 0 Mg, T+C b'¢ X X D'
Mgy — Mgy, + My, T+(1/2)J X
2Myy +Myg, — My, T-C+(3/2)Q+Q b'e
+ - 2M g0 + Mg — My e T+C+{/2)@Q-D) X
My, +9My. 9> 0) T+C+@0/9)J X 9=1 X X 9=1
_ 0 M;y, T+D=T-C X X X X X X X
My +Myo—~ My T+1/2)Q-J-C-Q@ X
My +Myps + (1 +9) My, T- 1/2)(Q+3(D+Q)] > ¢ x
- - +(1—19)M2ol(‘9> 0)
T-C+9(Q-1Q) X X X 9=1
0 - My +Mygs + My g0 = My, T+Q X X
- + My —SMyy ©>1) T-C-1/9)d X X X
0 + My — My, T-C-J=T+D—J X X X
+ + My My, (0<9<1) T+D-(1/9)J X X X
P11 Pz 20y Ogp %t ly g 0 =1+ 3¢+ (B2/21)2 + (3/31)83; 17
-] P2 P2 O 20n (13) A
-27Tyy — Tz — P — P2 and for the Hamiltonian 7 of a free system Eq. (17)
= Tg —2Tp —pu —Pn furnishes the well-known Galilean form of K and P,

It is possible to show that e®* depends on the invariants
ﬂz and ¢, defined in Appendix C which partly character-
ize X as a subalgebra of Sp(4, R) through the charac-
teristic roots 1\’ of &:
M= 2=k Qg V=T, N=N= 3 ga= V=DM,
(14)

we have

2%t = 1
T 322 r
A~ )\32

[~ 3(sinm{t _ sinhaft

7 7 )+ 3? (coshA{t — coshAjt)
M A3

~ : A., : 7
+ q,( ;2 sinhast A2 smh)qt} IL(\? coshajf — Aéz coshx{t)].

A M

(15)

In the particular case ¢, =0 the formula (15) is no long-
er available and we must use the following one:
%t | g~ (1/20"%)[@%(cosh)\’t - sinhA’£/A’) + B2A’ sinh)\'¢

+& (3’ sinh)\’t - 2’2 coshA’t) + 1~(2)"? cosh)'¢

= A3ginha’#)], (16)
where X' =3 V=1,

The Hamiltonians T +C and T — C belong to the above
case, and Eq. (16) leads to the explicit time dependence
which has been given in Ref. 1(b) [Eq. (11a), where «
stands for A’]. Again another relation corresponds to

919470
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i.e.,

P(#)=P(0), K(f)=K(0)-1P(0).
IV. POSSIBLE CHAINS OF INVARIANCE ALGEBRAS
CONTAINED IN THE SYMPLECTIC ALGEBRA

The one-dimensional nonconjugate subalgebras of
$p(4,IR) being taken as Hamiltonians, it is interesting
to look for the various chains of subalgebras included
between the H’s and the whole {p(4, R) algebra, all
these subalgebras being able to play the role of explicit
time dependent invariance algebras. However, we do
not give the full lattice of the nonconjugate subalgebras
of $p(4, R) because of the great number of the two- and
three-dimensional subalgebras it contains.

In Fig. 3 in Appendix C we give the top of the lattice,
i. e., the daughters and grandchildren of §p(4, R).
Moreover, we have completed the chains which contain
a three dimensional semisimple Lie algebra, i.e.,
either §0O(3) or one of the three nonconjugate $§0(2,1)
algebras labelled I, II, and III. Let us note that some
particular realizations of these semisimple Lie algebras
are well known and are used in physical models; for
instance:

—$0(3) = §{/(2) corresponds to the restriction to a
two-dimensional space of the algebra used in the so-
called Elliott SU(3) nuclear model. 6 1t is also the de-
generacy algebra of the harmonic oscillator Hamilton-
ian = §0(2), Let us note that //, =C0Q2)® §(/(2) is
maximal compact in §p(4, R).
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—$0(2,1); = SI(2, R) generated by {/, @, @} is the re-
duction in a two-dimensional space of the §I(3, R)
algebra introduced in Ref. 7 to study the E, transitions
in nuclear rotational bands.

—$0(2, 1) = §{/(1,1), a basis of which is furnished
by {T, C, D}, is the spectrum generating algebra of the
harmonic oscillator Hamiltonian 7 +C,

—$0(2,1)11; = Sp(2, R) is the spectrum generating
algebra of the free Landau electron. A basis for
Sp(2, R) is obtained by adding to H, the two following
generators:

.

A=FQp+8Q -8, B=FQ-BQy-1Q.

Moreover, in Table II the embedding of the one-
dimensional nonconjugate subalgebras (i. e., of the
miscellaneous Hamiltonians) into the maximal sub-
algebras and into the four above-mentioned semi-
simple subalgebras is given. For instance we remark
that:

—The Galilean Hamiltonian T belongs to §0(2,1)
@ $O(2) Cpae SP(@, IR), which by acting on the Heisenberg
algebra corresponds to the chain

Goc Schy < d3h@, R).
—The Landau electron Hamiltonian H; is contained
in
$p@2,R)C 5p2, R)® Sp2, R) C_Sp4, IR)
which corresponds to the chain
a0 Sp(2, R)CH,00 502, 2) 7 SHE, ).

Let us now give some properties of the Casimir
operators. In the same conditions as in Sec. I, i.e., in
the case of a system of one particle or in the relative
motion of a two-body system or in the center of mass
motion of any system, the Casimir operators C, and
C, of §p(4, R) defined in Appendix B [Eq. (B8)] reduce
to the following numbers:

Cg="%, C4=0.

For the §0(3,1) and §O(2, 2) subalgebras which are
also of rank two the Casimir operators C, and C, de-
fined in Appendix B [Eq. (B5)] become

C2=—%, 62=0.

This is due to the fact that in the three cases the cor-
responding realizations are irreducible unitary repre-
sentations of the discrete principal series of the
algebras.

Obviously the situation is more complex in what
concerns the three-dimensional semisimple subalgebras
of rank one to which the theorem of Ref. 3 does not
apply. The Casimir of §0(2,1);;; always reduce to a
number

Cy=H - 3(A*+BY) =-3,
but, in the three other cases the Casimir operators ex-
press in terms of an extra generator, we have:
—For §O(2,1);: Cy=J* = @* = @}, =~ (D? +1), where D
generates the R algebra in §0(2,1),® R%.
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—For §0(2,1)y: C,=31{T,C},~ iD*=J% - ¢, where J
is the generator of the §0O(2) algebra in §0(2, 1),
S $O(2),.

—For §0(3): C; =7 +(2Q +§)? + (2Qq + @yp)* = (T + C)?
+1, where T +C generates §0(2) in §O(3)® §0(2)={/(2).

Hence in these three cases, the Casimir operators
eigenvalues depend on the eigenvalues of another simul-
taneously diagonalizable operator and consequently
some constraints are imposed on the available repre-
sentation of the semisimple algebras, This fact is well
known in the case of the three-dimensional harmonic
oscillator problem for which the family of “triangular”
${/(8) representation is realized only.

V. THE SYMPLECTIC ALGEBRA IN THE
SCHRODINGER PICTURE

As in the case of the Heisenberg algebra the explicit
time dependence of the symplectic algebra depends on
the chosen Hamiltonian. We can still treat the general
case by taking for Hamiltonian the general element X
of §»(4,IR), and we can use the results established in
Appendix D which are basis independent; in particular,
the column vector W can be as well constructed in the
physical basis. Therefore, the explicit time depen-
dence of the generators of the §p(4, R) algebra in the
Schrddinger picture is given by

W(¢) = exp(= iXt)W(0) exp(iXt) = exp(At) W(0), (18)

where exp(Af) is deduced from exp(A) with At taking
the place of A in Egs. (D9), (D11), (D17), (D18), (D19)
of Appendix D; note that by doing this all the charac-
teristic roots A are also multiplied by £, For instance,
the relation (D9) becomes

-~ ~ ZZ - AZ
ef=m.+dn n =Mt
i1,3,57  Aj

A o
+ M'Zsz . 7[—;}; (A sinhat + 2,1 coshat)

Al- xin)]
xkr}J( AJ- Ak : (19)

More explicitly we can treat as an example the ex-
plicit time dependence generated by the rotational sym-
metric Hamiltonian H=T + 8C +yD (B, ¥y € R) which cor-
responds to ¢, =4(8- %) and ¢, =0; the analog of Eq.
(D11) for Af must be used and leads to the following
explicit time dependence of the “physical” generators

{where 1= \/:y_z;e 0):
C(t)= (cosh)\t + 2%: sinhM) Co+ %\ sinhM D, + % {coshxi—1)H,
Y o 48 _.
D(t) = |coshat -~ 2;\ sinhat)D, - X sinhatC,
1 . 2y

+2 3 sinhaz - N (coshat-1))H,

Q)= [(%‘,3 + 1) cosh + %’ sinhf - %@] Q
2 s .
+ (772’ (coshxt-1) + i sinh)\t) @+ )l[ (coshat ~ 1)Q,,
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FIG. 1. Mutual interactions compatible with the Hamiltonian T
of an isolated system and the chosen invariance algebra among
the possible one’s between {T} and Sp @, R).

Q) = [(1 41—) coshat+4% ]QO +( (1-coshyy 20

+ -i: sinh)\t) éo - 2? (2%\ (coshxt-1) + sinh)xt)Qo,

Q)= [( - +1> coshat — 2 sinh) — 2—%}(‘9’0
+ ZE (ZE (coshat~1) - sinh)\t)Q +4E% (coshxt-1)Q
AN 07N 0

We do not write @,,(?), Qﬂ(t), and @12( t) since their ex-
pressions are deduced from the expressions Q(t), Q(t),
and Q(t), respectively, in which one has to read @,,(0),
Q12(0), and Q,,(0) in place of @(0), &(0), and Q(O),
respectively. This is due to the fact that {9, Q, Q}

and {Qys, @42, @12} are two isomorphic invariant sub-
spaces under the action of H,

The angular momentum J does not take any explicit
time dependence owing to the rotational invariance of
the Hamiltonian [H,J]=0. {H, C, D} being also an in-
variant subspace under the action of H, the expressions
of C(¢) and D(f) are identical to the corresponding ones
given in Ref, 1(b) {Eq. (15a)] (in which 2« stands for
), where the §O(2,1),; algebra generated by {H, C, D}
has been considered only.

When the parameters 8 and y are such that ¢, =0 the
time dependence of the generators becomes a poly-
nomial one given by the analogous of Eq. (D18). But
Al= 0, so that the generators are second order poly-
nomials in ¢: '

C(t)=(1+2y2)C, + tDy + £2H,
D(t) = (1 = 2yt)D, = 49%C, + 2t(1 — yt)H,
Q(t) = (1 +¥)%Qy + H(L + 1)@, + 328,, (21)
Q)= (1= 2/ )Gy + (1 ~ y1)Q, - 2% (1 +¥1)Q,,
G(1) = (1 - y1)*Qy + 29'2Q, — 20%4(1 ~ 41)Q),.
Now if we take y =0 in the above expressions we ob-
tain the time dependence generated by the free Hamil-

tonian H=T, already given in Ref. 1(a) [Egs. (19) and
(21)] in the three space-dimensional case.
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VL. THE MUTUAL INTERACTION PROBLEM

Up to now we have shown that the general element X
of $p(4,R) can be associated with Hamiltonians de-
scribing a collection of particles submitted to mis-
cellaneous external fields except in the case where X
reduces to 7. But it is also possible to introduce in X
some mutual interaction V. At the one-dimensional
Sp(4,R) subalgebra level we have just to ensure that V
does not modify the action on the Heisenberg algebra
of the Hamiltonian. So V must not act on //,, i.e.,
[V,/4,]=0. This condition is satisfied as long as V de-
pends on the relative coordinates defined in Eq. (6)
only.

The situation becomes more complicated when the
Hamiltonian is included in an §p(4, IR) subalgebra 4
because of the commutation relation it must verify.
Hence V is submitted to some constraints which differ
according to the “kinds” of commutation relations
which appear in 4. By degrees we find:

—The commutation relations of the form [H,X ]
=C8X, (in a basis where H is one generator: HU {X}
=4 C §p(4, R)) imply [V, X,]=0 only.

—The commutation relations of the form {H,X,]
=cH+CEX, to be conserved require the X acts as a
dilatation on V, i.e., [X,, V]=cV.

—The more stringent situation comes from the rising
of H on the right-hand side of commutation relations
which do not involve H [X,, X;]=cH+C,/'X,. We are
then in a Poincaré-like situation: Either several gen-
erators must contain interaction terms or there is no
possible interaction, i.e., V=0, But our approach does
not permit the coexistence of several Hamiltonians. So
the Dirac solution cannot be retained® and we are left
with V=0.

Therefore, given one Hamiltonian, it belongs to
several (p(4, R) subalgebras, and the choice of one of
them as invariance algebra depends on the mutual inter-
action terms we want to keep in H.

It is worth noticing that in all cases the §p(4, R)
algebra does not suffer any mutual interaction.

To illustrate the above discussion, the constraints
imposed on the possible mutual interactions associated
with a free system of particles %enlarging the in-
variance algebra from #/, up to gs p(4, R) are exhibited
in Fig. 1. The chains of algebras are stopped when V
disappears or when it cannot contain any dependence on
the q(u, v). Moreover, only two-body terms are given
but three- and four-body terms are possible as well, ?
We denote by V(x,v.--.) the fact that V only depends on
x,y+-+ and V. (x,y---) denotes any linear function of
x,y -+ with coefficients which commute with D, i.e.,
which depends on terms of the type ¢,(u, v)p,(u, v) only.

The essential feature is the fast melting of V as the
invariance algebra increases.

CONCLUSION

In this paper we began to study the properties of the
one-element central extension of the inhomogeneous
symplectic algebra from the quantum mechanical “point
of view” of explicit time dependent invariance algebra
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FIG. 2. Chains of nonconjugate 955(6, R) subalgebras contain-
ing the extended Galilean algebra,

in the Schrédinger picture. This Lie algebra approach
corresponds to the existence of an unique unitary ray
representation of the group of real inhomogeneous
linear canonical transformations of phase space the role
of which in elementary (Galilean) quantum mechanics is
comparable to that of the Poincaré group in relativistic
physics. ”1 The same algebra was also considered in
Ref. 11 as a “limitable” dynamical algebra, i.e., as
an algebra which contains the geometrical subalgebra
g’ * and possesses an integrable representation describ-
ing the interacting system, The interaction part in the
Hamiltonian is such that it can be switched off by a lim-
iting procedure, giving rise to a representation of the
dynamical algebra of a free particle. In Ref. 11 a
representation was constructed using Nelson extensions
which describes spinless one-particle systems with
second-order polynomials in ¢, as Hamiltonians,

The algebra § $(6, R) is the central extension of the
derivation algebra of the Heisenberg algebra up to a
nonphysical dilation but, by following a more general
procedure described in Ref. 1(a), it was introduced as
the maximal subalgebra of the split extension £/ 0/ (4)
mapped via an injective homomorphism into the envelop-
ing algebra £(Q) of the fundamental observables
{a(w), p(w), m{1)} characterizing the individual consti-
tuents of the quantum mechanical system. In fact we
have shown in Sec. I that there are two distinct injec-
tive homomorphisms: One of them leads to the §p(6, R),
realization related to the absolute motion of the system;
the other one corresponds to the center of mass motion
and can be considered as an injective homomorphism

into £(K, P, M) C £(Q).

In Secs. II and IV we tried to exhibit the largest num-
ber of known Hamiltonians associated with one-dimen-
sional §p(4, R) subalgebras, and the related known de-
generacy (symmetry) algebras and spectrum generating
algebras contained in §p(4, R). In particular we give a
complete classification of the harmonic oscillator
Hamiltonians with linear damping terms.

Working with two-dimensional space systems greatly
lightens the algebraic part without a too big loss of in-
formation; however, it seems interesting to give (Fig.
2) the chains of nonconjugate subalgebras of %(6, R)
which contain the Galilean algebra g 30
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Section VI deals with the problem of introducing a
mutual interaction term in the Hamiltonians., I is worth
noticing that a given invariance algebra does not charac-
terize the possible interaction term in general, but both
chosen Hamiltonian and invariance algebra strongly
limit the dependence on the relative coordinates of the
individual constituents of the system which can be in-
troduced in the mutual interaction term. Moreover, no
Hamiltonians conta/i&/ing relative interactions can
possess the whole ,9 $p(6, R) as invariance algebra.

Finally in Secs. I and V we give the explicit time
dependence of ¢ {p(4, R) in the Schrddinger picture
justifying the introduction of this algebra as a time de-
pendent invariance algebra. We emphasize this concept
of explicit-time dependent algebra in the Schrodinger
picture which is intimately related to the various notions
of dynamical algebras including symmetry or degenera-
cy algebras and spectrum generating algebras!? in the
Heisenberg picture, and allowed us to get the right non-
relativistic interpretation of the Wigner—Inonii contrac-
tion—extension procedure of the de Sitter algebras, 1
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APPENDIX A: SYMMETRIC DECOMPOSITIONS OF
THE § p(2n, R} ALGEBRA

It is well known that the $p(2n, IR) algebra admits the
direct vector space decomposition

Sp(2n, R) =¥, ® Glin, R)OY}.

where ¥, and ¥ are two 7-dimensional [¥ = $n(n +1)]
Abelian algebras related by an involutive inner auto-
morphism () of {p(2n, R) such that

O %,=9¥ and 0 -9F =9,
Moreover,

(%, %%]=Gl(, R) and [Gl(n, R),%,]Cy,.
Then the above relations imply

0-Glin, R)C Gln,R) and [gl(n, R), y*] Cy*.

Therefore the decomposition given in (A1) makes two
conjugate semidirect sums appear,

%,0Gll, R) and A*0 Glin, R),

and the above properties can be summarized in the ex-
plicit notation

(A1)

Sp(@n, R) =(§;) 5 Glin, R). (A2)

A basis reflecting the decomposition is given by the
following set of 27 +n®=n(2n +1) generators {T,, =T
Sk = Spy, Ryp) satisfying the commutation relations

(Ryes Rin] =i(84iRym— 8;uRy), the Gl(n, R) algebra,
[Sis Stm} =[Ty» Tim] =0, the ¥, and %* algebras,
(Rits Tim =i (60; Ty + 80 Tys), (A3)
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(Rzs Stm) == 9(81Sum+ O jmSur)s
[Sits Tim] = (0 Rpp + OymB iy + 81 Ry + O3 ),
where j,k,l,m=1,2,..

Let us also note that gl(n R) = §I(n, IR)® R*, where
the dilatations IR* are generated by 3., R, and that the
involutive inner automorphism () can be associated with
one of the group elements exp[i9 374 (T;; +S;;)], 9 taking

the values + /4, +37n/4. Moreover, the set {3}, R,
1 Siss 2.1 Tyst generates an §p(2, R) algebra.

But there exists another symmetric vector space
decomposition of the §p(2n, R) algebra given by

Sp(zny ]R) ZIL/n~1 ®CSP(2(n - 1); ]R) @Hﬁ-iy

where /{,_ denotes the {2n — 1)-dimensional solvable
Heisenberg algebra

(49,9 2)]=R"™, the center of //,.4,

n-1

(A4)

(A5)
and
CSp@2m~1), R) = p(2(n - 1), R) R®

(the upperscripts ¢, p, m and d,,d, are just introduced to
differentiate the diverse % and IR algebras).

(A6)

Therefore, (A4) appears as a canonical decomposition
of the Sp(2n, R) algebra. Again an involutive inner auto-
morphism ()’ of §p(2r, R) is such that ()'- 4, =HX,,
and we have the following properties:

[Sp(z n—1 IR) Hn-i]cﬁn-h [SP(Z n-= 1)7 ]R) H* ]Cfl/n-b

(Hat/ R R = pk /RO 14 /R R =g/ IR

(Hpt/ R™ A5 /R™*] = Sp(2(n - 1), R);

moreover, {IR'"™, R IR%} generates an §p(2, R)
algebra.

Likewise there are two conjugate semidirect sums
HoyD CSp@-1),R) and Hi 0 (CSpREr-1),R),

and so we can write the second symmetric decomposi-
tion under the form

Sp(2n, R) = " ""}@ CSp2(n~1),R). (A7)

From the relations (A3) it is easy to deduce that

$p(2(n~1), R) is generated, for instance, by {T;, Rj,
Syt with j,k=1,2,...,n—1, the dilatation generator of
IR% being R,,. The Heisenberg algebra //,., (respective-
ly /%_;) being given by

W =R (S5a), ¥ ={T AR,
]R(m) = Tnn; B(m)* :Srm

Then the involutive autemorphism ¢}’ corresponds to
the group elements exp[(¢9(Tpy+ Sun)] With 9 =+ 7/4,
+3n/4.

It should be mentioned that many structural prop-
erties can be deduced from the existence of both above
symmetric decompositions; in particular, the following
nonexceptional maximal subalgebras of {p(2r, R) can
be extracted:

,0 L0, R), /fns0 CSPR0=1), R),
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Sp(k, R)O Sp@R~k),R), SpR2,R)OSOM), (A8)

where §O()C §l{n, R). Curiously only the maximal
compact algebra (/(n) does not appear,

APPENDIX B; THE ISOMORPHY BETWEEN
S p(4,R) AND, 50(3,2). RELATED BASIS AND
CASIMIR OPERATORS

The first kind of symmetric decomposition described
in the Appendix A also give a canonical decomposition
of the §O(p, q) algebra indeed

50(p,q) [”M-Z]acsom 1,9-1), (B1)

U p+a-2
where ( §O(p,q) = §O(p, g)® R%. 1t is then interesting to
remark that (B1) and (A2) coincide for p=3, ¢=2, and
n=2 since

GLE2, )~ §12, R)® R= 502, 1)@ R=(50(2,1)
so that we obtain the well-known isomorphy between
S$p4,R) and §O(8, 2).

An usual §0O(3, 2) basis is given by the ten skew-
symmetric M, with j,k=0,0',1, 2,3 satisfying the fol-
lowing commutation relations:

[Mypy M| =3(8 jmMig + M jm~ & 1My = EemM 31)

with gop =g == &11 = — &2 =~ £33=1, and we choose the
following relations between the above basis and the
Sp(4, R) basis satisfying (A3):

Tyg+ Top = 2(Myw + Myy), Tap~ Ty =2(Mgg + Myey),
Ty =Mz + My,

(B2)

Syq + Sy = 2(Myny — Msq), Sy~ Sy =2(Myy =~ Moes),
(B3)
Sia=My3~ My,
Ryy=Myp— Myg, Rog=Mgp+Myy, Rip=My+My,
Ryy = Moy ~ My,
The quadratic Casimir operator of the §p(2n, R)
algebra is given by
n n
:;2 (ASy5, Tysho— 2R3 +2 f<§=’2 S Torh = {Rges Rasts).
(B4)

But in the §p(4, R) case it is more convenient to use the
isomorphy with §0(3,2), and so we gain the nice prop-
erties of the (O(p,g) Casimir operators for p +¢ odd,
which are expressed in terms of the Casimir operators
of the contained. (O(p’, ¢') algebras such that p' +4’
=p+g—1. In §O(3,2) there are two conjugate §0(3,1)
algebras

50(3, l)u ={Mjklj’k=0,! 1) 21 3}

and

SO0@, DV ={M,|j,k=0,1,2,3},

and three conjugate §0(2,2) algebras labelled I, OI, V
and generated respectively by the M, such that j, &

e (0,0,1,2), (0,0%,2,3), (0,0’,3,1). All these algebras
possess two quadratic Casimir operators denoted by C,
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and (:’2 and given by
C2 :é—nuk)“m)Mjle (Bs)

where nW*@m ig the element of the Killing form asso-
ciated with the pair of generators M,,, M, belonging to
$0(3,1) [ §0(2, 2)] and defined by

A 1 _(Gryam) *
Cy=327 Mjlerm

m?

YR O™ e (AdM,, AdM,,,), (B6)
the symbol Ad being defined by Eq. (D1), and
Ml*m = %n(pq)(lm)éqrsMrw (B7)

€77 being the Levi-Civita alternating symbol defined for
the standard ordered sets of indices above given and

characterizing the various §0O(3,1) and §0O(2, 2) algebras.

Then the Casimir operators of §p(4, R)= §0O(3,2) can
be written

7‘ C§¥, where K {1, 10, I, IV, V},

;} I)K C(K))

(B8)

APPENDIX C. DAUGHTERS’ GRANDCHILDREN, AND
AND ONE-DIMENSIONAL NONCONJUGATE
SUBALGEBRAS OF §p(4, R)~50(3,2)

The maximal nonconjugate subalgebras (daughters) of
SP(4, R) have been classified as the stabilizers of the
three kinds of vectors and of the three kinds of two-
plane of the pseudo-Euclidean space E(3, 2) on which
$0(83,2) has a natural action. This can be done either
by making use of the representation

My, =i(g;t%8,

- 8uk'oy), (C1)

which acts on the vectors £ E(3,2), or by introducing

the algebra ¥ ;,,(7 §O(3, 2) where §O(3, 2) acts on the

generators V,; of the Abelian algebra according to
[Mjk’ Vz] =i(gm Vi—gn V). (C2)

Then we find

A&LMZ) @mf* szw

Maximal subalgebras
(daughters)

2.0 CS0@, 1) =(ffp,y (Weyl)

1701

Corresponding invariant
subspaces of E(3, 2)

“lightlike” vectors
such as £0+ g3
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AN FIG. 3. Daughters, grandchildren, and nonconjugate three-di-
; , mensional simple subalgebras of 5’17 “,R)250,2).
f | Raerti \ nmu Dok

Sp2, R)® Sp(2,R)~ §0(2,2) “spacelike” vectors

s.a, &
£0(3,1) “timelike” vectors
s.a, £
HiO CSp2, R) “lightlike” two-plane
s.a. (E+&L 4 %)
S03B)® SO(2) ={/{(2) “timelike” two-plane
s.a. (£, &%)
Sp2,RY® SO(2)={/(1,1) “spacelike” two-plane

S.a, (El’ ‘EZ)

Hence §p(4, IR) contains the exceptional maximal sub-
algebra §0(3,1) besides the expected ones given in
(A8).

We have also classified the grandchildren (maximal
nonconjugate subalgebras of the daughters) by using
powerful theorems developed in Ref. 14, The results
are given in Fig. 3, where the chains crossing the
three-dimensional simple nonconjugate Lie algebras
have been completed.

The one-dimensional subalgebras have been obtained
according to the following property: Every one-dimen-
sional subalgebra stabilizes at least one vector belong-
ing to the E(3, 2) space. So the problem reduces only to
classifying the one-dimensional subalgebras of the
stabilizers of the three kinds of vectors in E(3, 2), and
then to take into account for the “new” conjugations
coming from the embedding into the §O(3, 2) algebra.

The one-dimensional subalgebras of §O(3,1) are
well known. ! Those of the Weyl algebra /2,1 have been
obtained from the knowledge of the one~dimensional
Poincaré subalgebras in presence of one more dilation
generator. Finally the one-dimensional §O(2,2) sub-~
algebras have been constructed by coupling the one-
dimensional ones coming from both members of the
direct sum §p(2, R)® $p(2, R)= (0(2,2). It should be
mentioned that §O(3,1) does not bring any extra algebra
besides those furnished by [{/,,; and §0(2, 2); this must
be related to the exceptional origin of the §O(3,1)
algebra into §p{4, R).
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The results are summarized in Table II in which the
embeddings of the nonconjugate one-dimensional sub-
algebras into the daughters and into the three-dimen-
sional simple subalgebras of §p(4, R) are pointed out.
Obviously the continuous invariants gz and ¢, are not
sufficient to classify the one-dimensional subalgebras
and let many degeneracies subsist. Let us recall that
the invariants J»and ¢4 are formally obtained from the
Casimir operators C, and C4 given in Eq. (B8) by sub-
stituting the coefficients u * of the general element
3u'*M,, of S$p(4, R) to the corresponding generators

M.lk'

APPENDIX D: AUTOMORPHISMS INDUCED BY THE
GENERAL ELEMENT OF S p(4, R)

Each element x in a Lie algebra 4 gives rise to a
linear operator Adr acting in 4, defined for all y in 4
by

(Adx)y =[x, y]. (D1)

Adx is an inner derivation of /4, the mapping Ad is a
linear mapping from the Lie algebra 4 into the space of
linear operators on 4; moreover, it is a (not faithful in
general) representation called the adjoint representation

of 4.

Let us denote {«, ") the structure constants of the
Lie algebra defined by

[xa!xﬂ] = ((1, By)xr; (D2)

then the element x, is given by a matrix A, in the ad-
joint representation the components of which are

(Ag)g=(a, B7). (D3)
Now it is important to note that
(expx)y[exp(- x)] = (exp Adx)y (D4)

is not only a shorthand notation of the Baker—Hausdorff
formula

(expx)y[exp(=x)]=y + [x,y]+ 1/2D)[x, [x, 1] +- - -,

but also permits us to obtain the conjugate elements of
all the generators of /4 under the action of the auto-
morphism induced by the general element of 4. To see
this, let us return to the specific case of §p(4, R), the
general element of which can be written in the §0(3, 2)
basis defined in Eq. (B2)

X:%ujijk (ujk:_ u’”e]R). (D5)
Then
AdX = (i/2)u?* A =i 8, (D6)

where A is a 10X10 square matrix. But to our purpose
we prefer to use the coadjoint representation which acts
on the dual vector space of the Lie algebra and is just
the transpose of the adjoint representation

CoadX = AdX =4 &] (D7)
Let us denote by W a column vector the ten components
of which are the generators M,,; then we obtain the con-
jugate elements of every generator, and therefore of
any element of (p(4, R), under the action of the general
element X by considering
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[exp(~ iX)|W(expiX) = [exp Ad(- iX)|W = (expA) W.
(D8)
So we have to compute the exponential function of the
10x10 matrix A. As a consequence of the Cayley—
Hamilton theorem expA is expressed in terms of the nine

first powers of A and, by using the Lagrange Sylvester
interpolation polynomial, ¥ can be written as follows:

expA=(I+4) Il (A )ull)
7=1,3,5,7 AG

SZ =2l
M J=1.Z3.;5.7{-2_7\§ [kl;[j <—— (M@ a0y ~e M@= ll)}}
(D9)

where the X's are the nonzero roots of the characteristic
polynomial of A which are function of the invariants gg
and 'g4 defined in Appendix C, we have

A== g = (= Jo+ V=),
)\3:-7\4=(—ﬂ2“‘/_—7:)“2,

1 (D10)
7\5:—M:_["gz*'(gzz—gﬂ“z]“z,

)\7__)‘8—_[_0((72‘ (95~ ga'%] e,

But in the particular case where ¢, vanishes A =23=2;
and A; =0, the relation (D9) is no longer available and
we must use the following one:

1 3\ ~ - A2 27y
eXpAfg —o—[ﬂ+A+(2, + \)A2+(31| A?) :\ & —:%]1)
+[11+< ———)(A NI+ ;(1+—__35—7\%11M\>

~4
X (A- xln)]g}q "1(3+A111)3—[ (1+—§)\—i>
x(z+x1n)+§<1+§5—;—%£7‘—‘) (Z+A111)2]
(D11)

Obviously the relations (D9), (D11) can be reduced to
every (p(4, R) subalgebra; in particular, it is interest-
ing to give the reductions to the §0(2,2) and §0O(3,1)
subalgebras which possess nice properties. Let us in-
troduce the vector W*, analogous of the vector W, but
constructed from the M*’s defined by Eq. (B7) and the
matrix A* defined by

AW == AW,

Then, for any §0(2,2) or §O(3,1) subalgebra associated
respectively with an index XK odd (even), we have

(D12)

tr(B)?==4947, tr(&%A,) =(=)""4 " (D13)

and

(Ag)? = (=) (a})2 (D14)
The useful property is that Ay, (A,)%, A%, and (A%)?

furnish a basis for the powers of Ay; indeed
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Bg)=
A (AR =

ytx)A +92(K)A§,

ﬂ (K)A}kr + (_)K+192(K)ZK.
Finally the coefficients of the exponential terms with
25 and A vanish in (D9) and the other parts can be
managed so that expA, is given by a relation formally
identical to (D9) with two \’s only which are the charac-
teristic roots of Ag:

(D15)

}\(K) [ yszf) + (_)K(K#Z)-hlgz(lf)]i /2 _ _ X;X),

(D16)
A [ gun (_)K(x+2)+1g(x)]1/2 -,

Now by taking into account the relations (D15), the
particular case ¢35 =0 can be deduced which also cor-
responds to the reduction to §0(2,2) or §0O(3,1) of the
relation (D9). Then we obtain a formula formally identi-
cal to the one which can be directly computed starting
from a §O(2, 1) algebra, we have

(Zx)2 +g 2(}'{)
g 2‘1{) g(x)
where A= (=~ ¢;)!/%, (D17)
The last particular case corresponds to (,= }7 2 =0; then

there is only one null root of multiplicity nine and we
obtain

explegzumo =

9 ~
A

E -

me1m!

whereas for the §0(2,2) and §O(3,1) subalgebras, if
s = (Q \¥)=0, again we obtain a formula analogous to
the §0(2,1) case due to the relations (D15), we have

(D18)

emzlﬂfﬂ 4=0

1703 J. Math. Phys., Vol. 16, No. 8, August 1975

[e*(@ag + A1) +e"‘(AK - 1)),

"2

eprK|ﬂ‘K) -G =1 + Bp+gy- (D19)

*Aide Individuelle No. 02-995683.
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Erratum: Four examples of the inverse method as a canonical

transformation [J. Math. Phys. 16, 96 (1975)]

D. W. McLaughlin

Department of Mathematics, University of Arizona, Tucson, Arizona 85721

(Received 14 March 1975)

PACS numbers: 01.85., 02.30.H, 02.30.Q

In our initial computations, a condition was checked
which is necessary, but not sufficient, for the maps to
be canonical. Since then, following Zakharov and
Manakov [Theor. Math. Phys. 19, 332 (1974)] we have
checked the invariance of the Poisson brackets and have

TABLE 1. The main results.

found errors, primarily normalization errors,
Toda Lattice column of Table I. Because of these

in the

errors, as well as several minor errors and misprints
in the other columns, it seems best to publish a cor-

rected table.

Toda lattice Nonlin. Schrod. Sine—Gordon Korteweg—deVries
1. Nonlin- é,, =exp(Q,_; — Q,) =ty +i Xl u* . v=u, = Uy — Uy
ear dy- — eXP(Qy ~ Qpey) ty = sinf) v =sin)
amics © 2
2. Hamil- # =2 P—z +lexp@) — A +A)) H=i[ Wl PQ, — (X/20P@dx H=["ueos([*w ) dx') —1)dx H = [ 1 +id/2] d2
tonians =
. . . 96t .
ang_/./_:a Q= 6H=—iQ“—i£PQ2 U yor u=
n
. . * *’ 9
3. Canoni- P,,=—gzg = e8n — gPnsl s P=— %~ B, +iXPQ =:—xf ax’ Sin(f v (x”) dx”> =$[3u2
cal eq. n « -
from A, =@, — @,
N ; N N
4. Hamilton- K=Zi%l‘f E1+In() :-é‘%)f (p® - p} K=—2i2 e,/ K E_zz
ian 7= i=1
~“action 7 w w
angle”  + f 2 sin (6)p () do . f 48 @) dt f Lowae + f 8% (¢) d
0 . o
5. Canoni- . 8K 4 P _aﬁ 20 4 . 3/<___ /0 ; :ﬁ_,
cal eq. le—an = (&;~¢7) i~op xl’, 9= ap, 2 a; ap;
“action 6/< 1
angle”  4(o) :%:z sinfp) 3@ ——K—4g2 G&) =55 ==2¢ q(€)
[ip 097 -

6. Canoni- p(®)=Q/m)sin@)Inf1+ 1512 p@E) =(2i/EDIfl- (512}  pE)=—C/7&)In{1 - 151%} pE)=E/MIn{l+ 1517}

cal maps q(¢) =argb(et®) g(t)=argb(t)
== +§'1) Py =22k
dy=1nl c¥, ' €] -/ 0 e,

q () =argb(t)
b= —41ng;
q; =Inc;

1
q]j:Z lrll[icj a’ (Cj)]
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