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Using Faddeev's form of time-dependent scattering theory, we give an abstract definition of time delay 
valid for multichannel scattering. For the three-body scattering problem we find an explicit relation, that is 
valid on the energy shell, between the time-delay operator and the S operators and their energy derivatives. 

I. INTRODUCTION 

This paper studies the time-delay problem as it oc­
curs in three-body scattering. 1 Roughly speaking, the 
time-delay effect is the advancement or retardation of 
wavepacket motion due to the presence of interactions 
not contained in the asymptotic Hamiltonians. In the 
following we first give a rigorous definition of multi­
channel time delay. This definition is an extension to 
the multichannel case of the one employed by Gold­
berger and Watson. 2 Using then Faddeev's3 results in 
time-dependent scattering theory, together with the 
primary singularity structure4. 5 of the exact stationary 
wavefunction, we construct an explicit solution of the 
time-delay problem by following an approach similar to 
Jauch and Marchand's treatment6 of two-body time de­
lay. Specifically, we obtain a relation between the time­
delay operator and the different S operators and their 
energy derivatives, that is valid on the energy shell. It 
is the proof of this relation that is the main objective 
of this paper. 

The physical interpretation of the time-delay opera­
tor we define is only touched upon very briefly. Because 
of the controversy that clearly exists already for two­
particle time delay regarding the different defini-
tion, 2,6.7 which might or might not be equivalent, 8 that 
are given in the literature, and because of the length 
of the present paper, we prefer to discuss the physical 
aspects of the problem elsewhere. 

This paper is organized into five sections. Section II 
introduces those features of three-body time-dependent 
scattering theory which are necessary in this problem. 
In Sec. III we define a set of reduced S operators which 
have an explicit energy dependence because the solution 
of the time-delay problem cannot be expressed directly 
in terms of the usual S operators. In Sec. IV we con­
struct the time-delay operator starting from first 
principles and state the problem we want to solve. 
Section V gives the main body of the derivation of the 
time-delay relation. Finally, Appendix A contains a dis­
cussion of the projection operators and their moment­
um-space representations. Appendix B collects some 
of the details needed in Sec. V. Appendix C discusses a 
class of terms which vanish and do not contribute to the 
result derived in Sec. V. 
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II. TIME-DEPENDENT SCATTERING THEORY 

This section gives an outline of the aspects of three­
body time-dependent theory that are necessary in the 
analysis of our problem. The physical scattering prob­
lem is taken to be that studied by Faddeev, namely the 
scattering of three distinct nonrelativistic particles in­
teracting via short range forces. Furthermore, the 
interaction in each two- body channel is assumed to be 
such that there is only one two-body boundstate. 

Let us briefly describe the coordinate systems we 
employ. After the center-of-mass motion has been 
eliminated from our problem there remain six degrees 
of freedom. In coordinate space we choose the Jacobi 
variables 9 x"' y" to describe these. The variable x" is 
the separation of particle Q from the center-of-mass of 
the ({:ly) cluster. The independent variable yO/gives the 
vector separation of the constituents of the Q cluster 
namely the spatial separation of particles (:l and y. The 
canonically conjugate momenta related to x" and yO/are 
denoted by POI and qO/. The momenta POI describes the 
relative motion of particle Q and cluster Q. The kinetic 
energy of this motion is given by p~/2nO/ where nO/ 
= n'/0/(m8+my)/(IJI" +m8+ lJI y ) represents the reduced 
mass of particle Q and cluster Q. The internal moment­
um of cluster Q is just qO/. The kinetic energy associat­
ed with this motion is q~/2/1-0/ where /1-,,=m 8m/(m8+mJ 
is now the reduced mass for particles {:l and y relative 
to their own center-of-mass system. It is clear that we 
have three distinct (Q = 1,2,3) Jacobi coordinate sys­
tems each of which provides a complete description of 
the degrees of freedom. 

The behavior of any physical system is determined by 
its Hamiltonian. The free Hamiltonian related to the 
total kinetic energy is given by 

-~ q~ HO - 2 +2 ,Q=1,2,3. 
n" /1-", 

We shall employ an abbreviated notation for these 
kinetic energies, viz. 

(2.1) 

-;:'2_~ -2_~ 
P"'-2n ,Q"'-2 . (2.2) 

'" /1-", 

The right-hand side of Eq. (2.1) is independent of the 
index Q. We shall take notational advantage of this in-
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variance of Ho by frequently omitting the G label. There 
is a similar invariant quantity in coordinate space. If we 
define 

(2.3a) 

and 

p2=x:,+y;" (2.3b) 

then p is a coordinate space invariant for all Q. 

The complete Hamiltonian is then obtained by adding 
to Ho all the interactions possible in the system. So 
for the system Faddeev studies we get 

3 

H=Ho+ 6 V'" 
",=1 

(2.4) 

where V", is the potential acting between the particles 
{3 and y. The Hamiltonians Hand Ho are operators acting 
in the Hilbert space of square integrable functions of 
our six degrees of freedom, i. e., L2(p"" q",). We shall 
denote this Hilbert space by H, the inner product related 
to H by (, ) and the identity operator on H by E. Acting 
on H, Ho and H are both self-adjoint operators. 3 

We next want to consider the different kinds of 
asymptotic motion because these will finally specify the 
solutions of the scattering problem. Because of the 
short-range nature of the forces we may expect that as 
t - ± 00 the three-body problem is characterized by free­
ly moving clusters. We have two distinct types of clus­
ter motion. First, there are three possible cases of 
motion involving two clusters, each of which can be 
labeled by the index a, indicating the particle that 
moves in isolation. Secondly, there is a single motion 
involving three clusters, labeled by the index Q = 0, 
namely when all three particles move independently. 
With each cluster description of the asymptotic motion 
there is an associated asymptotic Hamiltonian, deter­
mined by including all the intracluster potentials and 
omitting the intercluster potentials. For the two-cluster 
type of motion these Hamiltonians are given by 

(2.5) 

For the three-cluster motion the asymptotic Hamil­
tonian is clearly Ro. 

At this point we recall that each two- body interaction 
is capable of supporting only one boundstate. We shall 
let l/!",(qa) be this unit normalized two-body boundstate 
wavefunction in the space of square integrable functions 
of q"" i. e., L2(q",). The corresponding boundstate en­
ergy is - X~. So we have 

(2.6) 

The symbol Vat represents the potential found in the 
two-body problem involving the particles {3 and y. As 
we know Va and v'" are integral operators in momentum 
space whose kernels are related in the following way: 

(2.7) 

Because of this fact that there is only one bounds tate 
for a pair, each of the different cluster geometries 
will specify a scattering channel. We now want to de­
scribe the wavepackets that characterize the asymptotic 
channel motion. Let us consider, e. g., the Q channel 
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(0'"* 0). The cluster ({3y) will be described by the bound­
state wavefunction l/!a(q",). To describe the relative mo­
tion of G and the center-of-mass of the pair (j3y) we 
shall need the appropriate wavepacket indicated by 
f",(P",). In effect this function f '" is like a two-particle 
wavepacket except that one of the particles is a Cluster. 
So for f", to be an acceptable wavepacket it must lie in 
the Hilbert space of square integrable function of Pa, 
L e., L2(PoJ which we denote by H a' The inner product 
for this space will be (,)" and Ea will be the identity 
operator. So the Q channel motion is described by 
f,,(Pa)l/!a(q,,) and since l/!" is a known function, all the 
nontrivial information about this channel is given by f",. 
For the three free particle cluster we have all six de­
grees of freedom present and the related wavepacket 
will have the form fo(p, q). The space for fo will be 
L 2 (p, q) = H 0, its inner product (,)0 and its identity Eo. 
Of course, H 0 is mathematically identical with H. 

It is useful now to construct Hamiltonians that act in 
the channel spaces H". These new Hamiltonians are 
suggested by utilizing Eqs. (2. 5), (2.6), and (2.7) to 
get 

H ",fa (p",) l/!", (q",) = (p~ + q~ + V",)fa(Pa)l/!",(qa) 

= (P~ - x~)f",(P",)l/!",(q",), G"' O. (2.8) 

Eliminating the multiplicative factor iJ!",(qa), we are 
lead to define the channel Hamiltonian H", by 

(2.9) 

For the 0' = 0 case the channel Hamiltonian Ro does not 
differ from the asymptotic Hamiltonian Ro. Thus 

Hofo = (pz +cj2)/o E. Ho. (2.10) 

We then introduce a single Hilbert space to describe 
all these possible asymptotic motions of the three-body 
system. This space, denoted by ii, must clearly be the 
following product space: 

(2.11) 

The inner product of it will be (, )., its identity will be 
E. This inner product is given in terms of previous 
inner products as 

3 

(f'/'). = 0 (fa'/;)",' (2. 12) 
",=0 

An important remark we have to make here is that for 
multichannel scattering this Hilbert space describing 
free asymptotic motion, namely if, is different from the 
Hilbert space describing the exact solution, namely H. 
So, if the channel functions /'" are set in H by writing 
f",l/!"" then the channels are not orthogonal, viz. 
(fA", f;1fJs)"* 0 (G, {3:> 0). 

To conclude this part, we first define a projection 
operator P a from H into H by 

Paf=f",iJ!",E H, 0' > 0, 

where 

(2. 13a) 

(2. 13b) 

The subspace associated with the range of P", consists 
of all separable functions in p", and q" where the func­
tion of q", is l/!",. Secondly, we define an operator I", from 
H onto H a by 
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(2.14) 

We now turn to the discussion of the Moller operators 
U~:) which are the basic elements of scattering theory. 
Faddeev's work3 establishes that U~) may be construct­
ed from the solutions of a Fredholm integral equation 
that contains the same physics as the three-body time­
independent Schrooinger equation, with the supple­
mentary advantage that the boundary conditions are built 
into the structure of the equation. 

The U~:) operators which map II '" into II, have the 
following three properties: 

(1) U~:)tu~:) '= oa6E6 : liB - II"" (2.15) 
3 

(2) ~ U~:) U~t)t '= E - Pd 
",=0 

: II-II, (2.16) 

(3) HU~) '= U~:)jj", : II", -II. (2.17) 

We shall refer to these baSic statements as the funda­
mental theorem. Property (1) is a statement of the 
channel orthogonality of the exact wavefunction solution, 
when Cl' '= i3 it becomes a statement of probability conser­
vation. Property (2) is the asymptotic completeness of 
the exact scattering states. Pd. is the projection opera­
tor onto the subspace spanned by the eigenfunctions of 
the discrete spectrum of H. Property (3) is the inter­
twining property and states that the exact wave function 
will have the same energy as the incident wavefunction, 
i. e., energy conservation. Furthermore, the function 
(p",qa I U~:) I p~) has the following structure: 

(p",qa I U~:) I p:,,) '= 1/!",(q,,)o(pa - p~) - (Paq", IK~) I p:,,). 

(2.18) 

The first term on the right represents the unscattered 
portion of the wavefunction. The second term is the 
scattered wave and can be written as 

( IK(:)I '),= (p",q",IB~:>lp:J 
Paq", '" p", '72 -:::2 -,2 2 '0 P +q -p", +X",±t 

(2. 19) 

where 

_lr(q,,)(Pr'H~~ Ip~ ) 
p",-x~-p~+X~'fiO . 

(2.20) 

Here the functions (p",q", I (j;~ I p:,), (p", IH;~ I p:,) are the 
half-on-shell solutions of the well-known Faddeev 
integral equations, 10 viz. 

(p !H (:)! 1\ -H (p. I 'p-/2 2 '0) 
r 1'''' p",,- 1'''' ",p"" '" -x",±t , 

( I,-(:)! I\-C; (p . I. 12 2 '0) Prqr Lir'" p",,- 1'''' ",qr,P""P", -X",±t . 

(2.21) 

(2.22) 

The function rf>r is the vertex function defined by rf> (q ) 
-2 2 . l' l' 

'= (qr + Xr)1/!r(qr)' In the same way, the wavefunchon for 
three to three scattering is 

(p",q" I UJ:) I p~q:,>,= l5(q", - q~)o(p", - p~) - (p",q", I K~:) I p~q:,> 
(2.23) 

where the matrix elements of K~:) are related to Fad­
deev's M ",6 operators:!' 5 

(2.24) 
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(2.25) 

In concluding this section we recall that Faddeev 
proves the above described results with the assumption 
that the two- body potentials satis fy a boundedness 
property and a Holder continuity requirement. Using 
these assumptions, e. g., the half-on-shell two-body 
t-matrix satisfies l1 

I(p I t(:) I p) I '" C/(l + Ip - p' 1)1+8, 

I(p+ Aplt(:) Ip' + Ap') - (p I t(:) Ip/) I 
-"'SC/(l+ jp_ p /j)1+8[jApj"+ jAp'!"], v<t 

(2.26) 

(2.27) 

where I Ap I < 1, I AP' I < 1, and v may be taken as close 
to i as deSired. In our time-delay proof we shall have 
to construct derivatives of the half-on-shell amplitudes 
with respect to the momentum arguments. It is clear 
that the estimate (2.27) is not strong enough to claim 
that (p I t(:) I p') is differentiable with respect to p or p'. 
We have not investigated the necessary modifications 
needed to ensure differentiability of tIt) and the other 
half-on-shell matrix elements fi~td, Bci~), T<±). How­
ever, it is likely that the original potential must be 
differentiable and that this derivative of the potential 
must also satisfy a Holder continuity requirement. 

III. REDUCED S-MATRIX ELEMENTS 

In this section we describe the essential features of 
the S matrix and introduce the reduced S-matrix ele­
ments needed in our derivation. The S matrix is de­
fined to be a mapping between the initial experimentally 
determined wavepacket f", and the observed post-scat­
tering wavepackets~. We know3 that, in terms of the 
Moller wave operators, this mapping looks like 

(3.1) 

so 

(3.2) 

This S matrix is even simpler when written down as an 
operator on the asymptotic channel space if. In this 
case the information in Eq. (3.1) can be expressed as 

(3.3) 

Let us now recall the basic properties of the S matrix 
because it will turn out that the time-delay operator has 
properties which parallel those of the S matrix. The 
first basic property of the S matrix is that it is a unitary 
operator when acting on the channel space it, viz. 

sts '= sst '= E. (3.4) 

In component form the equivalent of Eq. (3.4) is 
3 

~ S;",S'B=EBIi"'6' (3.5) 
1'=0 

This unitarity is an immediate consequence of the 
statements (1) and (2) in the fundamental theorem. 

The second basic property of S we want to stress is 
tEe intertwining property with the channel Hamiltonians 
H"" 

(3.6) 

T.A. Osborn and D. Bolle 1535 



                                                                                                                                    

This intertwining feature is the direct consequence of 
statement (3) in the fundamental theorem. 

We now shall turn to the definition of the reduced 
matrix elements of 5. In order to carry out this defini­
tion we first require the known4• 5 representations of 
the kernels of 5 in terms of r(+>, 8~~>' and H~+i in­
troduced in Sec. II. For a rearrangement scattering 
process one has 

5"a(P,,; Pa) '" o"ao(p" - Pa) - 27Tio(p~ - X~ - P'r/ + X~) 
x(p" IH~+i Ips>. (3.7) 

The 5 matrices involving three free particles in either 
the initial or final state are given by 

50a(p, q;Pa) '" - 27Tio(p2 +r? - p~2 +X~)(pqI8~~) Ips), (3.8) 

and 

(3.9) 

The amplitude 13 ~~) is related to 13~;; by 

(p" 18 ~~) Ip'q') '" (p'q' 18 ~;,) I pJ*. (3. 10) 

The * indicates complex conjugation. Finally the three­
to-three 5 matrix is 

500 (p, q; p'q') '" o(p - p')o(q - q') 

_ 27Ti o(r +cr - p,2 - q,2)(pq I r(+) I p'q'). 

(3.11) 

We want to construct 5 matrices related to the ex­
pression above but with the energy delta function re­
moved. We will use a lower case s to denote these new 
5 matrices. Consider, in the first instance, 5"8' De­
fining E '" 1l;. - x~ and E' '" p~2 - X~ and employing the 
relation 

, o(E - E')M])" - p~) ( 
o"ao(p" - Pa) '" o"a (n"panaP~)1I2' 3.12) 

we may write Eq. (3. 7) in the form 

, o(E - E') 
5"a(P,,;Pa) '" (n"p"neP~)1/2 

x[o"ao(P" - Pa) - 27Ti(n"p"naPs)1/2 

x(p" IH~i I p~)]. (3.13) 

In these expressions P indicates the unit direction vec­
tor associated with p. Thus we are lead to define s"a(E) 
by 

A I I A A A 1/2 (p" s"a(E) Ps):0"ao(p"-P~)-27Ti(n"p,,neP6) 

x(p" IH~+llpB>. (3.14) 

The energy dependence E appears on the right-hand side 
of Eq. (3. 14) by virtue of the fact that p" '" [2n,,(E 
+ X~)]1!2 and Ps '" [2na(E + x1)]1/ 2. The kernel 
(p"ls"a(E)lps) represents an operator that will map 
square integrable functions with respect to the measure 
dn;'a' i. e., L 2(P8)' into L 2(P,,). When a "'f3 the leading 
factor on the right of Eq. (3.14) is the identity operator 
on the space L 2(P,,). The energy dependence indicated 
on the left of Eq. (3. 14) means that for each 5"s opera­
tor we have a one-parameter family of operators s "e(E). 
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We consider next 5 matrices involving three free 
particles in the initial or final state. The kinematic 
relation E '" p~ + q;. suggests we define the angle w" such 
that 

(3.15) 

Using this convention the six-dimension delta function 
appearing in (3.11) may be written 

o(E - E')o(w" - w:,)o(P" - p:,)o(q" - q~) 
p "q "p~q~(J1. "n,,)112 (3.16) 

Then using Eq. (3.11) we find that the reduced matrix 
operator son (E) is 

(waP",q "I soo(E) 1 w~~q~ 
= o(w" - w~)o(p" - P~)o(q" - q~) 

- 27Ti(J1."n")1/2p"q"p~q~(p"q,, I r(+) Ip~q~). (3.17) 

Here the operator soo(E) takes a function from 
L2(W~Ji~,fJ~) into L2(w",QOl'P,,), In this case the Hilbert 
space is defined relative to the measure t(2J1. ,,2n,,)3 /2 

Xcos2w"sin2w"dw"dP"dq". This measure is independent 
of a. From now on, we will denote this space by L~ and 
L~ will indicate the space L 2(P,J. 

The reduced S-operator related to 50e and 5,,0 are de­
fined in the same way, e. g. , 

5 ( . ')-o(E E') (wJjij"lsoe(E)lpiY 
oa p", q", Pe '" - (11 Oln,,)1I4p "q 01 (nePs)1 /2 

(3.18) 

and, using Eq. (3. 8) 

(w"p"q" I soa(E) Ips) 
'" - 27Ti (J1. "n,,)1 / 4p "q" (neP6)1 /2(p "q" 113 ~~) Ips) (3.19) 

where p" and q" are the momenta determined by E. 

The momentum and reduced mass factors are chosen 
such that the operator relations 5 obeys on if are also 
valid for seE) on a reduced space. To illustrate this 
consider the kernel form of the unitarity Eq. (3.5) for 
a,{3"O 

3 

03(p" - Pa)o"a '" ~f5",,(p~, p,,)* 5"s(P;', p~) dp; 

J 5 (" " )*5 (P" ". ')d "d " + o"p",q";p,, oa Olq",Pa p" q". 

(3.20) 

If we now use 

dp~ dq~ '" (nOlJ1.a)1/2p~2q~2 dE" dw~ dP~dQ~ (3.21) 

together with Eq. (3.12) and we equate the coefficient of 
o(E - E') appearing on bot. I. sides we obtain for Eq. 
(3.20) 

3 

15 "a15(P" - P8) '" 2:; f(p~ Is",,(E) Ipa>*(p; IS"a(E) Ip;y dP; 
,,=1 

+ f <w~~q~ 1 so,,(E) Ip ,,)* 

x(w~~q; I soa(E) IfJ;Y dw; dP~ dq~. 
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This result is the kernel form of the operator equation 
3 

Ii"'Bl", = '0 S;",(E)S~B(E). 
)':0 

(3. 23) 

A similar demonstration shows that this equation is 
valid for all values of a and (3. The operator 1", stands 
for the identity operator on the space L~, 10 is the 
identity operator on L5. 

Note that we can introduce a reduced channel space 
defined by 

Hr=:L5EBLiEBL~EBL~. (3.24) 

Acting on this space, the Eq. (3.23) is the component 
form of the first part of 

ir = st (E)s(E) = s(E)st (E) (3.25) 

where lr is the identity on Hr. The second equality here 
is obtained in the same way as the first. Clearly Eq. 
(3.25) is a one parameter family of operator relations 
on Ifr which are equivalent to the relation (3.4) on the 
channel space If. It shall turn out that the three-body 
time-delay operator will also have two forms-one on 
H and one on Hr. 

IV. DEFINITION OF TIME DELAY AND 
STATEMENT OF THE ~ROBLEM 

Let us now describe the definition of the time-delay 
operator. Consider the exact wavepacket given by 

lJIJt)=exp(-iHt)U~->t"" f",E.H"" lJI",(t)E.H. (4.1) 

This is the wavepacket that evolves from the asymptotic 
channel wavepacket f",. Likewise consider 

lJI8(t) = exp(- iHt)U~-)J;, fsE.H a, lJI8(t) E. H. 

If we recall that p = (x~ + y~)l /2 is independent of 0' 

= 1,2,3, then we can use the distance p to define the 
radius of a sphere in the six-dimensional space x"" y",. 
We will associate a projection operator P(R) on H with 
this sphere: 

P(R)f(x", y",) =f(x", y,,) if [x~ +~ [1/2 '" R 

(4.2) 

The inner product (lJI ",(t), P(R)lJI ,,(t)) is the likelihood of 
finding the state lJI '" inside the sphere of radius R at time 
t. Now if we form the integral 

r:~ (lJI ,,(t), P(R)lJI ",(i)) dt, (4.3) 

its physical interpretation is the fraction of time be­
tween - to and to that the state lJI" spends inside the 
sphere of radius R. If we perform the limit to - 00 then 
the integral represents the total time lJI" spends inside 
the sphere. In association with the integral above we 
can form the more general integral which gives the 
overlap within the sphere of two distinct states lJI" and 
lJI~. We define 

T!s(R, to) =: r:~ (lJI ,,(f), P(R)lJI8(t) dt. (4.4) 

In the notation for the complex number T~a we have in­
dicated some but not all the factors that it depends on. 
For example, the value of T!B will depend on f", and fs 
as well as R and to. In the circumstance a = (3 and f" 
= f~, T~B is real and has the interpretation we have 
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given for the expression (4.3). Our notation for T!e 
carries a superscript E in order to specify that the 
times associated with T~B relate to the exact wavefunc­
tions lJI (t). 

We may also write down similar definitions that per­
tain to the evolution of the asymptotic solutions in the 
absence of the intercluster potentials. For example, 
these wavepackets are given by 

<I?"(f)=exp(-iH"t)I~f",, f",E.H", <I?,,(t)E.H, (4.5) 

<I?8(t)=exp(-iHef)IJfs, faE.H B, <I?a(t)EH. (4.6) 

The absence of the intercluster potentials means that 
the corresponding evolution may be thought of as "free" 
since the interaction between the target and the incident 
wave has no effect on the evolution of the wavepacket. 
The "free" equivalent of the integral (4.3) is 

to -
rto (<I? ,,(f), P(R)<I? ",(t)) dt. (4.7) 

This gives the fraction of the time interval (- to, to) that 
the "free" system spends in the sphere. The numerical 
value of the "free" integral will differ from that of the 
integral for the exact wavepacket. This time difference 
is entirely due to the effect of the intercluster interac­
tion on the evolution of the wavepacket. As above we 
write down a general matrix element that has the form 
(4.7) as its diagonal element: 

T~B(R, to) =: Ii"ar:~ (<I?,,(t), P(R)<I?8)dt. (4.8) 

The Kronecker delta function appears in the definition 
(4. 8) of the free transit time for the following reason. 
In the 0' channel free scattering there is no interaction 
between the target cluster and the incident particle. 
Thus any scattering which begins in the a-channel must 
remain in the a-channel. Since the asymptotic forms 
<I? ",(t) and <I?8(t) are not orthogonal, the Kronecker delta 
is necessary to preserve the diagonality of the free 
scattering. Taking the difference of T~B and T~B gives 
us the time-delay for the time interval (- to, to) and a 
sphere of radius R. 

Now we would like to construct an operator whose ex­
pectation value gives us the time-difference described 
above. We define 

(4.9) 

For eachf" andfS the quantities T~B and T~B have 
unique values so that Q"B(R, to) is defined by Eq. (4.9). 
It is useful to have an explicit form for Q"s' This may 
be obtained as follows. One can write T~s as 

T~B(R, to) = Ii "a r:~ (exp(- iH ",t)I~f", P(R) exp(- iHel)Ilfs) dt 

f to ( t . - - t . - I =Ii"s -to I"exp(-zH",t)f""P(R)Is exp(-zHst)fs)dt 

= Ii"s I-:~ (f"" exp(iH "t)P ,,(R) exp( - iHilfS) dt 

(4.10) 

where the operator P,,(R) is 

P,,(R) =I"P(R)I~ : H" -H "'. (4.11) 

From the definition (4.11) it at once follows that P ",(R) 
is a bounded self-adjoint operator. It is however not a 
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projection operator since the idempotent property is not 
valid. This is seen from 

j5~(R) = I"P(R)I~IrxP(R)I~ ; H" -H" 

=I"P(R)P,,P(R)I! (4.12) 

where we have used I!I", = P '" which follows from the 
definitio..!! of I", Eq. (2.14). However, in the limit 
!i - "", P~(R) becomes the identity operator E" since 
P(R)-E and 

The last equality again fallows from the definition 
(2.14). 

(4.13) 

We continue with the explicit construction of Q "'s by 
treating T!s in a fashion parallel to that of T~B' The 
term T!a can be written as 

T!a(R, to) = J.:~ (exp(- iHt)U<,.-lfa, peR) exp(- iHt)Ui-Y;)dt 

= J to (U~-l exp(- iii ",t)f", , P(R) [fa<-l 
-to 

x exp(- iRBt)fB) dt 

= r:~ (f", e~p(+ijj"t)U~-ltP(R)U~-l 
xexp(-iHst)f;)rxdt. (4.14) 

In the second version of (4. 14) we have employed the 
intertwinning relation (2). In the third version we have 
employed the adjoint operation. The difference of Eq. 
(4.10) and Eq. (4.14) is 

(f"" Q"Il(R, toW) 

= Fto (f", exp(ijj",t)[U~-)tP(R)U~-l - OrxllP ,,(R)] 
- 0 

x exp(- ifillt)fB) dt. (4.15) 

This defines the operator Q "'1l(R, to). The expression 
above is defined for all f" E: H" and fa E: H Il since all the 
operators in the inner product on the right are bounded 
and the integral is over a finite time interval. So the 
operator Q as(R, to) given by 

Q"fl(R, to) = J.:~ exp(ijjat)[U~-)tP(R)U~-) - o"BP,,(R)1 

xexp(- ifiBt)dt (4.16) 

is a bounded operator for finite R, to. 

Eventually to obtain the physical time delay we 
will take the limit to - 00 and follow it by the limit R 
- 00. However, some of the interesting properties of 
the time-delay operator are already present in form 
(4.16). First, we see that Q"1l is the component form 
of an operator on the channel space if. Its channel 
structure is identical to that of the 5 matrix. The next 
property is that 

Q"Il(R,to)= Q~,,(R,to). (4.17) 

This follows directly from the structure of (4. 16). In 
fact, Eq. (4. 17) is just the component form of the self­
adjoint property for operators on if. Thus for any j 
E: H which describes the state of the three-body system 
in terms of the asymptotic channel wavefunctions the 
time-delay operator Q will have real matrix elements. 
Since Q represents an observable this must be the case. 
However, off-diagonal component forms of Q, i. e. , 
Q "fl' will not generally be real. 
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It is desirable to take the limits to - 00 and R - 00 in 
the definition of our operator Q "a(R, to). In the follow­
ing section we shall construct an operator Q "a defined 
by a kernel composed of generalized functions such that 

(4.18) 

The functions f" and fa need to be smooth enough so that 
the generalized functions appearing in the representa­
tion of Q"1l are well-defined. This restricted set of func­
tions, defined in Appendix A, for which Eq. (4.18) is 
valid are dense in the space if. 

One effect of taking the limit to - 00 in the representa­
tion (4.16) is that the Qrxs operators will now intertwine 
with the channel Hamiltonians. By changing the variable 
of integration in Eq. (4.16) it easily follows that 

(4.19) 

or, equivalently, 

R "Q "1l(R, 00) = Q "s(R, oO)HIl . (4.20) 

This property mirrors the intertwining relation (3.6) 
valid for the 5 matrix 5",s' 

Before proceeding further we pause to contrast our 
definition of the time-delay operator with those that 
exist in the current literature. The main novelty of Eq. 
(4.16) and the limit process in Eq. (4.18) is of courSe 
its multichannel character. However the type of limit 
in Eq. (4.18) is Simpler than that previously introduced 
by Smithl2 and also adopted by Jauch and Marchand6 and 
others. 7 These papers employ an average over R before 
the R - 00 limit is taken. This average is used to get rid 
of oscillatory terms in R. Here we shall fin~ that treat­
~g the behavior of the projection operators P 1l(R) and 
peR) carefully enough shows that these oscillating terms 
all vanish when evaluated between appropriately smooth 
wavepackets f" and fa'. 

Let us now resume the development of the problem. 
At this point we shall utilize the approach found in 
Jauch and Marchand's6 treatment of time-delay in the 
two-body case. Since the inverse of 5 exists one can 
find Q by determining SQ. An element of this product 
takes the form 

5r "Q "1l(R, to) 

= J_:~ 5r " exp(iR "t)[ U~-)t p(R)U1-1 
- o"IlP6(R)1 

x exp(- iRat) dt 

= J.:~ exp(iHrt)5r",[U<,.-)tP(R)U~-) - O"6P6(R)] 

x exp(- diat) dt. 

(4.21) 

(4.22) 

The first term in the square brackets may be Simplified 
by noting that 

3 3 o Sy",U;)t = ~ u;+)tu~-lU~-lt '" U;+)t(l- Pd ) = U;+lt. 
",=0 "=0 

(4.23) 

The second equality is the asymptotic completeness of 
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the U's and the third equality follows from orthogonality 
properties of bound and scattering states. So 

3 

o Sy",Q",a(R, to) 
01=0 

= ro exp(iHyt)U;+)t[ P(R)U~-) - U~-) Pa(R)] exp(- iii at) dt. 
-to 

(4.24) 

Our problem is now reduced to evaluating the right­
hand side Eq. (4. 24). Let us take matrix elements of 
Eq. (4.24) and let the to - 00. For y"* 0 and fN 0 one has 

(In ~ SYaQ",a(R, OO)/;)y 

= f_: (fn exp(iiiyt)u:+)t[P(R)U~-) - U~-)Pa(R)] 

(4.25) 

We now assume that Iy and I; are well enough behaved 
so we may interchange the order of integration in Eq. 
(4.25). Thus we can rewrite our equation in the follow­
ing form: 

(/y, t?o Sy",Q",a(R, OO)/;)y 

= f ly(Py)* <1_: exp[it(fJ; - X; - p~2 + X~)] dt} 

x(pyl u;+)t[P(R)U~-) - U~-)Pa(R)] Ip~/;(pB)dpydPB' 

(4.26) 

The integral in the curly brackets in 21T1i(P; - X; - Pa2 

+ X~) and physically enforces energy conservation be­
tween an asymptotic state in the {3 channel and one in 
the y channel. Since Eq. (4.26) holds for a dense set of 
functions Iy and I;, we can associate it with the following 
kernel in momentum space: 

(PY I ~ Sy",Q",a(R, 00) IPB) 
= 21T1i(P; - X;- PB

2 +x~)<pYI U:+)t[P(R)U~-) - U~-)Pa(R)] IpB), 
y>O, {3>0. (4.27) 

For values of the indices y and {3 where either one or 
both are zero, one can repeat an evaluation similar to 
the one above. We find that 

(pql ~ So ",Q ",a(R , 00)1 Ps) 
= 21T1i(P +? - Ps2 +x~)(pql u~+)t[P(R)U~-) - U~-)Pa(R)] Ips), 

{3 > 0, (4.28) 

(pql ~ So",Q"o(R, 00)lp1q1) 
= 21T1i(p2 +(? _ p12 _ (12)(pq I u~+)t[P(R)U~-) - u~-)p(R)]lp1q1). 

(4. 29) 

The remaining portions of the paper are concerned with 
evaluating the matrix elements appearing in these last 
three equations. 

V. DERIVATION OF THE TIME-DElAY RElATION 

The previous section has demonstrated that if we can 
evaluate the matrix element U;+)t[P(R)U~-) - U~-)Pa(R)], 
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then we know the product SQ. This is equivalent to 
knowing Q since S-1 exists. We now shall compute the 
on-shell values of the above matrix element. Let us 
define 

(5. 1) 

We note that the operator form of Eq. (2.18) may be 
written 

(5.2) 

The kernel associated with Ky is that givp.n by Eq. 
(2.19). Physically Ky contains all features of the wave­
function related to the scattered parts of the wavefunc­
tion. We note that Eq. (5.1) can be expanded as the sum 
of two terms, which we may treat separately: 

Xa(R) = P (R)(l; - K~-» - (IJ - Kri-» P a(R) (5. 3) 

= [P(R) - P aP(R)]lJ + [K~-)Pa(R) - P(R)Kri-)]. (5.4) 

Here we have used I; 1a = Pa. Now we observe that the 
first term in expression (5.4) for Xa(R) vanishes strong­
ly as R - 00. That this is so may be seen as follows. 

Let la be any function in H a' Then 

II [P(R) - PaP (R)]lJ/a II 
= II [P(R) - Pa(P(R) - E) - PaEJ!J/a II 
~ II (P(R) - Ps)IJ/a II + II Pa(P(R) - E}IYa II; (5.5) 

using Pal; = IJ and II Pall = 1, our inequality becomes 

~ 211 <P(R) - E)l;lall. (5.6) 

This last expression goes to zero since P(R) strongly 
converges to unity. Thus we need only compute the val­
ue of U;+)tYa(R), where Ya(R) is defined as 

Ya(R) =K~-)Pa(R) - P(R)Kri-). (5.7) 

A lengthy and detailed analysis is needed to evaluate 
the expectation values of U;+)tYa(R). Most of the terms 
entering the computation turn out to be zero. We shall 
deal with this complexity by placing in the appendices 
the evaluation of the zero terms. Thus the detail ex­
hibited in this section is somewhat more important 
since it leads directly to the desired matrix element 
values. For example we show in Appendix C that 
K:+)tYa(R) - 0 in the R - 00 limit. Thus our problem is 
simplified to computing 

lim(pyl U:+)t[P(R)U~-) - U~-)Pa(R)] Ips) 
R-~ 

(5.8) 

Our expres~ion for YIl(R) has two terms. We treat the 
operator K~-) PIl(R) first. Using the Eqs. (2. 19) and 
(2. 20) for K~->, we may write K~-) P Il(R) as 

(PrqYIK~-)pll(R) IPB) 
=! t (-<p q Ir<+) Ip") +1(q",)(p",-IH~+d IPa~ ) 

"~1 y r '1 "a 8 ,,- X~ _ p~2 + x~ - zO 

x (Pa I Ps(I}) I p4) d 3Pa 
p;. + q; - P ;2 + x~ - iO 

(5.9) 

We further expand this by expressing the singular, 
denominators in terms of their delta-function and prin­
cipal-value parts. We shall denote a principal-value in-

T.A. Osborn and D. Bolle 1539 



                                                                                                                                    

tegral by writing the denominator terms without the 
customary ± iO notation. Our expansion of Eq. (5.9) now 
reads 

(p,q, IK~-) Ps(R) I p~) '" (p,qy Iti Bi (R) I p~) (5.10) 

where the kernels Bi(R) are given by 

(pq IB (R)lp/)"'-f~(pq Ir(+)lpll)(P;;IPs(R)IP~) d 3p" y y i S ~i' , '1 as S p7:'2 + q-2 _ ~1I2 + 2 S, 
01_ , , Ys Xs 

(5.11) 

(PA,IB2(R) Ips> 

"'ft ¢.:'(qa)(Palij~+dlp;;) (f;;0s(R)IPB) d3pll (5 12) 
_j p2 _X2 _p"2+X2 1': +q2_~1I2+X2 s,' 

01_ a '" sSP, , Ps S 

(p,q, I B 3 (R) I p~) 

'" f E i7TO(p~ - X~ - p;;2 + X~)¢a(q",) 
X(p"IH~ilIPg)(P;IPs(R)lp~) d3p" (5.13) 

tJ;+q;-p;2+x1 s' 

(pA,IB4(R)lp~) 

"'-f E(p,q,IC;~+dlp~)i7TO(P;+q;_p;;2+X~) 
X(p;; IPs(R) IPa)d3p;;, (5.14) 

(PA,IB 5(R)!pD 

"'ff: ¢_",(q",)(PaIH~+d I p;) i7To(P-2 + q-2 _p-1I2 + 2) 
L;:!j p2 _ X2 _p-1I2 + X2 "B XB a_ a (k 13 / t3 

X(pBlpB(R)lp~ld3p;;, (5.15) 

(PAyIBs(R)IPa) 

'= f ~ i7To(P~ - X; - p;;2 + X~)¢ "(q,,,)(Pa IH~+d I p;;) 

Xi7TO(P;+q;-J5~2+X~)(p~ IPs(R)lp~)d3p;;. (5.16) 

_ It is now appropriate to examine the ~erator 
P(R)K~-). The kernel representation of P(R)K~-) is 

(p,q, I P(R)K~-) I PP 

f (PA,IP(R)IP;~;) +: / ( II "11'<+)1 ') 
= ]5;2 + q;2 _ p~2 + x;- iO &;'1 \ p,q, '1 ",B Ps 

¢a(q~)(P~IH~+d Ip~) )d3pll d3q" (5.17) 
+ p~LX;_p~2+X~-iO ' ,. 

As before, we expand this in terms of its principal-val­
ue and delta-function parts. We have 

(p,q, I P(R)K~-) I p~) '" \P,qy IE Ai (R) I p~), (5.18) 

where the operators Ai (R) are given by 

(p,q, IAI (R) 1 p~) 

'" -f ,WA,IP(R) Ip~q;) ~ (p"q"lc;(+) Ip/) d3pll d3q" 
g2+q;2-J5~2+X~ {;;/! " as S ,." 

(5.19) 

(PAy IA 2 (R) I p~> 
= j(P"chIP(R)IP;<h') ~ ¢",(q~)(f~IH~:dIPP d3P!:d3q!:. 
-+ J5;2+q;'2_p~2+x1 ~1 J5~Lx",-J5;l+x~ , , 

(5.20) 
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X(p~ IH~+d IPa) d 3p; d 3q;, 
(PA,IA 4(R) IPB) 

Xi7To(P;2 + q;2 - Pi"z + X~) d 3p; d 3q;, 
(Pyq,I A 5(R) IPa) 

"'/(PA Ip(R)lp"q") ~ ¢,,(q~)(p~IH~+dlpP 
, , , ~! p~2 - X~ - n + X~ 

Xi7TO(fi;2 + q;2 _ p'p,2 + X~) d3p;' d3q;, 

(5.21) 

(5.22) 

(5.23) 

We now proceed to evaluate the matrix element given 
in Eq. (5.8). We show in Appendix B that 

lim<p,II,(Bi(R)-Ai(R»lp~>=o, alli*2. (5.25) 
R-~ 

When this result is combined with Eq. (5. 8) we have 

1i~(p,1 u;+)t[P(R)U~-) - U6-)Ps(R)]lp~) 

= lim (p, I I,(B2(R) - A 2 (R» 1 Pa) (5.26) 
R-oo 

for y> O. When y = 0 this equation becomes 

1i~ (PAy I uri+)t[P(R)U~-) - U~-) Pe(R)]i PB> 

= lim (PA,IB2 (R) -A2 (R) IpD. 
R-~ 

(5.27) 

At this point we stress that we have to evaluate the 
above matrix element only for on-shell values of the 
momentum arguments. This on-shell requirement is a 
consequence of the delta function appearing in Eq. 
(4.27) and Eq. (4.28). 

We continue by considering the evaluation of the 
operator I,B2(R). Examining B 2(R) we see that it is the 
sum of three terms. Defining B 2a (R) by 

(p,q,IB 2a (R) IPB) 
- ()/ (p"IH~1Ip;;)(p;IPs(R)lp~) d3 II 

=¢a q" (lf2a-X'i,_p;;2+X~)(p;.+q;-J5;;2+X~) Ps, 

(5.28) 

then 
3 

B 2(R) = ~ B 2 ",(R). 
"'=1 

(5.29) 

We shall demonstrate in Appendix B that only the term 
I,Bh in the above sum contributes to the nonzero matrix 
elements. So in this section we examine only I,Bz,. 
Setting C\' = Y in Eq. (5. 28) gives us 

(p,q, I B 2,(R) 1 p~) 

- ()/ (p"fi~~) IPS'> (p;; I PB(R) Ipfl) i3 II 

- 2ns¢, q, p;+(;;_p;;2+X~ (p~+P;;)(PB-P;;) cps· 
(5.30) 
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We now use a property of ParR) established in Appendix 
A, namely, for f(Pa) a smooth function inN a and dif­
ferentiable in I Pal the following limiting relation is 
valid: 

limf (Pa I ParR) I Pff)f(pil) d3p'B = - ~ (11. f(P'BPa)\ I . 
R~ro Pa-PB dP a Pa 'j p"=p a a 

(5.31) 

In obtaining the form of Eq. (5.30) we have exploited 
the on-shell condition p; - X; = p~2 - X~ to write the first 
denominator solely in terms of the {3 momentum. The 
distinctive feature of this term which prevents it from 
cancelling against the corresponding term I,A.2(R) is the 
fact that the singular surface occurring at Pa = P'B chang­
es the character of the R - 00 limit. Without such a 
singularity ParR) - Ell. If this were the case then B 2r(R) 
- A2y(R) would go to zero. 

We are permitted to use Eq. (5.31) in evaluating the 
R - 00 limit in Eq. (5.30), since the portion of the in­
tegrand excluding (P'B IPa(R) Ip~)/P~- P'B is a smooth 
function of P'B. This is a consequence of our assump­
tions in Sec. II about the physical amplitude (Prlf/;~)lp;>, 
namely it is differentiable function of its arguments. 
The remaining ingredient of the integrand in Eq. (5.30) 
is the denominator p;, +q; - PB 2 + X~. We need only es­
timate its behavior in the neighborhood of p;2 =p~2. So 
one has that 

p; + q; - p~2 + X~ = q; + X; ~ X;. 

Thus for IP~2 - P'B 21 < X; we have the estimate 

p;+q;_p'B2+X~>0, allqr. 

Employing Eq. (5.31) in Eq. (5.30) now gives us 

lim (Prqr I B2y(R) Ipp= - 2na<Pr(qr) ddp" 
R-~ B 

where p; = P'BP~. If we use 

d P'B I 1 
dP'B (p~+pnpB p"=p' = 4N2 , 

a a 

(5. 32a) 

(5. 32b) 

(5.33) 

our expression for the right-hand side of Eq. (5. 32c) 
becomes 

In order to find IyB2r(R) we must integrate this last set 
of terms with J /f!y(qy)* d3qr. Since qJ, is ;1. unit normalized 
boundstate wavefunction, one has at once that 

lim (pyl fyB2y(R) I p~) 
R~ro 

(5.35) 

This completes the evaluation of fyB2y(R). 
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Let us now study the companion terms of IyB2y(R) that 
occur in Eq. (5.26), namely I,A.2(R). As in the case of 
B 2(R) we can decompose A 2 (R) into a sum of three terms. 
From the form (5.20) for A 2(R) we can define 

where A 2o,(R) is given by 

(pyqyIA2",(R) Ip~) 

(5.36) 

~ f (PAyl peR) Ip;q;) <p",(q~)(p~IH~·i Ips) d3p" d3q" 
~ (p~2 _ X~ - p~2 +X~) ("/5;2 + Ii; 2 - p{/ +X~) 1 r· 

Again we demonstrate in Appendix B that 

lim 6 (py I fy(B2o:(R) -A2",(R) I Pe> = o. 
R-oo 01.7:.1' 

(5.37) 

(5.38) 

So here we need consider only the term A 2r(R). Using 
the on-shell condition p; - X; = p~2 - x~, we may write Eq. 
(5.37) as 

(PAr IA2y(R) I p~) 
~ f (Pr<lrIP(R)lp;q;> <Pr(qn(g:IH;B)I~> 
~ 2n, P~ _ P, (p; +Pr)(P~ + (1;2 - P, + x~) 

xd3p; d3q;. (5.39) 

We now quote another feature of the operator peR) 
demonstrated in Appendix A. For fEHo andf(p'B,q'B) 
differentiable in the I P'B I variable we have the limiting 
relation 

lim f (pa<lB I peR) I p[{q;;) f(p" q") d3p" d3 " 

P _pIt a, a a qa 
R~ro a Il 

(5.40) 

In the neighborhood of p; = Pr the last denominator in 
Eq. (5.39) never vanishes. Thus we are justified in 
using relation (5.40) to evaluate Eq. (5. 39). The limit 
that Eq. (5.39) takes is 

lim(PrqrI A 2r(R) Ips) 
R~ro 

~ ~(P;' IHiB) Ip~)P; ) I 
~2nr<Pr(qr)dP" P (P"+P )(p"2_ji2+q"'2+X2) N_ r y r r 7 , r Y P,-Pr 

(5.41) 

where p~ =P;Pr. Of course the value of Pr is on-shell. 
If we write out the derivative term and perform the inte­
gration with respect to J /f!(q)* d3q7' then Eq. (5.41) 
becomes 

(5.42) 

By combining Eq. (5.42) with Eq. (5.35) we can de­
termine f r[B 2 (R) - A 2 (R»). We have 

lim(Pr I f r (B2(R) - A 2(R)) I pD 
R~ro 

T.A. Osborn and D. Bolie 1541 



                                                                                                                                    

(5.43) 

The sum of the first two terms is just the total energy 
derivative since E = p~2/2n8 - X~ = p;/2ny - y;. So we can 
simplify Eq. (5.43) to read 

lim (py I Iy(B2 (R) - A 2(R» I p~) 
R~~ 

d ( If!<+) I ') (n8 ny
)( IH<+)I'> ( ) = - dE py y8 P8 - 2p~2 + 2P~ py y8 P8' 5. 44 

If we use this result together with Eq. (5. 26) and Eq. 
(4. 27), we obtain part of our desired solution: 

lim (PY I ~ SraQ "'8(R, oc) I p~\ 
R .. co a_O / 

=(PY\ to Sy",Q"'8Ip~) 
-2 5(P-2 2 p-,2 2)[ ~( IH<+)I ') - 7T y - Xy - 8 + X8 - dE py y8 P8 

-( ;:? + ;;;) (py IH;~) I p~) ] . (5.45) 

This equation is valid for all y" O. The case with y = 0 
must be treated separately since the number of degrees 
of freedom in the final state is five instead of two as in 
Eq. (5.45). 

It is at this stage of solution that it is profitable to 
introduce the reduced matrix elements discussed in Sec. 
III. As noted before Q is an operator that maps Ii into 
if. Also from Eqs. (4.27), (4.28), and (4.29) we see 
that Q has the same energy conserving delta functions 
that characterize S. This means we can define reduced 
Q-matrix elements in the same manner that we have 
used to construct the reduced S matrices. For example, 
take a" 0, f3 '> 0; then in analogy of Eq. (3.13) and Eq. 
(3.14), we have 

I I 5(E-E') ~ I I~ 
(p", Q"'8 pD = (n",P",n8Pf)1I2 (p" q"8(E) P~). (5.46) 

In a like manner the remaining reduced q ,,8(E)'8 are de~ 
fined by the same process that we employed to construct 
the s",8(E). Furthermore, the general q(E) operator 
maps lir into fir just as the operator s(E) does. In this 
new notation Eq. (5.45) may be expressed as 

(pyl to Sy"Q"8\Pa)= (n:~n~~;~/2 (pyl ~o sr",(E)q"8(E) IPa) 
(5.47) 

where 

(1\ \ to sr" (E)q "8(E) Ip~) 

= - 27T(PyllyPen8)1/2 [~~ (py IH;a) I Pe) 

( ---1!L ny)( IH<+)I ')~ 
+ 2p~2 + 2P~ py y8 P8 J . (5.48) 

In this equation it is understood that all the momenta on 
the right-hand side are on-shell and thus determined by 
knowing E. Let us form the energy derivative of the 
reduced sY8(E) defined by Eq. (3.14). We obtain 
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d A I I ~ dE (Py sr8(E) P8) 

'" - 27Ti(pynyp8n8)1/2 [d~ (P y IH;~) Ipa> 

(5.49) 

These last two equations allow us to write 

(Pr\ to Sy,,(E)q"8(E) \P8)= - i d~(pYI sY8(E) Ip~), y> O. 

(5. 50) 

Stated in operator form this is simply 

3 . d 
~ sy",(E)q "'8(E) = - z dE sr8(E), (5.51) 

valid for y'> O. 

The next step in our analysis is to extend the result 
given in Eq. (5. 51) to the case y '" O. The details of the 
computation in this case are quite different than those 
described above since the final state has five degrees of 
freedom. The on-shell requirement here takes the form 
15; + q;, = p~2 - X~. So we need to evaluate the following on­
shell matrix element 

lim (pyqy I U~+ )t[P(R) U~-) - U~-) P 8(R)] I P8> 
R~oo 

= lim (PAr I y 8(R) I Pe>· 
R~oo 

(5.52) 

Again many of the terms in Y8(R) do not contribute to 
the solution. In Appendix B it is shown that 

lj~ ~Ar It (Bi(R) - A;(R» Ip~)", O. (5.53) 

In both of the above equations it is understood that the 
momentum arguments in the ket on the left and the bra 
on the right are those given by the on-shell condition. 
Let us first find the contribution to Eq. (5.52) coming 
from Z1.1Bi(R). Using definitions Eqs. (5.11), (5.12), 
and (5.13) we can write 

(p q 
I
t B.(R) \p') = f (PrqrlBW ~~>(p~ IP8(R) Ipa> d 3p". 

r r ,8 p~ + q _ '1;;112 + x2 8 
;·1 r r 1'8 8 

(5.54) 

Although 86;) contains singularities, only the exhibi~.ed 
denominator is singular in the neighborhood where P 8(R) 
acquires support in the limit R - cO. Using the on-shell 
condition, Eq. (5. 54) becomes 

~AYI~1Bi(R) Ipe) 
=2n f (PArIBJii)IPtl"> (P;IP8(R)IPC>d3p" 

8 (p~+P~) N-P~ 8' 
(5. 55) 

Using the limiting result Eq. (5.31) we find that 

1i~~rqYIEBi(R)lp~ ) 
2 d ( 18 <+) I 11\ P; ) I 

=- n8dP;; PAy 08 PBI P~(Pe+P~) pii"pil 

= - 2n8(2~~ d~~ (Pyqy 18 J;) I p~> + 4~82 (PAy 18 J;) I P~~ . 

(5.56) 
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In the first of these two equations P; =P;P~. In going to 
the last form we have employed Eq. (5.33). 

It remains to evaluateL:t=l Ai (R). Combining Eqs. 
(5.19), (5.20), and (5.21) one has 

(PAyIE Ai(R) Ip~) 
= (pq Ip-(R)lp"q") PyqYOB PB d 3p"d3q" f ( " "IB(+)I ') 

y y y y p;2+q;2_P62+X~ y y' 

(5.57) 

In accordance with the angle convention introduced in 
Eq. (3.15) we define a generalized momentum-like 
variable suitable for the radius coordinate in the six­
dimensional space p, q, 

K=ft=(p~+(f;,,)1/2, a=I,2,3. (5.58) 

In the coordinate set associated with K the point p"" q", 
has the representation (K, W "" P ,,, q "')' If we set g2 

= p;/ - x1 = JJ;, + q;, then the integrand of Eq. (5. 57) has a 
term of the structure (pyqyl P(R) I p;q;)/(K" - K). For 
integrals of this type we show in Appendix A that for 
sufficiently smooth f E H 

lim f (pe<Ia~P(~lpiiqii)f(Pii,q8)d3piid3q; 
R-ro K-K" 

=- £1~,,[er r;(K JI

,Wa,Pa,Q8)] li"=i . (5.59) 

Employing Eq. (5. 59) to evaluate Eq. (5. 57) gives us 

~~ (pyq,IE Ai(R) Ip~) 
= (: G(I~') 5/Z(K"WY{)iJyl§6ii)IPB>11 

dK" ~ K (K" +K) J i"=i 

1 (- ~ ~ I (+) I rId - ~ ~ I (+) I ') 
= --"2 Kwyp,qy BOB Pa) + -;::; ~(KWyPyqy BOB Pa· 

K 2K dK 

(5.60) 

In this equation we have written the bra portion of B~~) 
in the variables KWrPyqy instead of the original coor­
dinate system P~Y' Here as in the treatment of 
L:t=lBi(R) the on-shell requirementp;+q;=ps2- x1 is 
possible only for initial scattering energies E = p~2 - x1 
which are positive. The S matrix sOB(E) is of course 
zero for negative scattering energies, E < O. 

Now it is appropriate to combine Eqs. (5.60) and 
(5.56). utilizing Eq. (5. 53), this leads to 

(5.61) 

We note in the above expression that the first derivative 
term is the derivative with respect to the energy of the 
ket I Pa) while the second derivative is with respect to 
the energy of the bra (KwypJIr I. The sum of the first 
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two terms is then the total energy derivative of the on­
shell breakup amplitude (PAr IB~8) IPs). 

At this stage we introduce the reduced matrix ele­
ment description. Recalling Eq. (3.18) we see that we 
need to define 

(p~YI ~ So",QQ8Ip8) 

= ( )~~7p-E? p')1I2/wypyqYltso",(E)q"'B(E)lp~). 
/l-1ly yqy nB a \' "'=0 

(5.62) 

Because of Eq. (4.28) we can write using Eq. (5.61) 

(WYPrQy I to So ",(E)q "'8(E) /P8) 

2 ( )114 ( ,)112 [£1 ( 18(+) I ') =- rr /lrny Pyqr nBPa LdE prqr 08 P8 

+(2~2 + i) (PyqrIB~~) Ip8~ (5.63) 

where the magnitudes of the momenta in the bra and the 
ket of 8~8) are related to E by the on-shell condition. 

Let us conSider the matrix element of s08(E). If we 
form the energy derivative of Eq. (3.19) putting a = y, 
we get 

d ~ ~ I I ~ dE (wyPrqr sOB(E) Pi:) 

= - 2rri(/l ynr)11 4Pr qr(n8ps)1 /2 [d~ (Prqr IB~~) I p~) 

+(2~~2 +~) (Pyqr IB6~) Ips)] . (5.64) 

This result substituted into Eq. (5.63) yields 

(WrPr qr I ~ so",(E)q (liB (E) I Pa) = - i :E (wrP/ir 1so8(E) Ip~). 
(5.65) 

So we have established the validity of Eq. (5. 51) for 
all values of y. 

In all the foregOing derivations we effectively took 
(3 '" O. In a similar way, however, one expects that the 
relation (5.51) is also valid for (3=O. The solution of 
the time-delay problem will be completed if we use the 
unitarity relation Eq. (3.23) in order to move the S 
matrix from the left of relation (5. 51) to the right. 
Specifically, we have 

to s~(E) to sy",(E)q ",8 (E) = to (to S~6(E)Sr",(E))q",a(E) 
3 

= 6 1i1i ",l",q",a(E) =q6a(E). (5.66) ",=0 

Thus Eq. (5. 51) becomes 

3 d 
q68(E) = - i 6 s~(E) dE sY8(E). 

r=O 
(5.67) 

This is our principal result. Equation (5.67) is an 
operator relation that maps L1- L~. If it is viewed as a 
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relation on the space Hr then it has a simpler appear­
ance, namely 

t d ~ ~ 
q(E) = - is (E) dE s(E) : Hr - Hr. (5.68) 

We recall that the operator we began with Q(R, to) was 
a bounded symmetric operator on if [see Eq. (4. 17)1. 
Here it is easy to see that q(E) retains the symmetry 
property. We first note 

qt(E)=+iC~ st(E»)S(E). (5.69) 

However, if we take the derivative of Eq. (3. 25)-the 
unitarity relation for s(E)-we have 

0= C~ st(E») s(E) + st (E) ;~ s(E). (5.70) 

Thus 

l(E) = - ist(E) d~ s(E) =q(E). (5.71) 

So one expects that q(E) is a self-adjoint operator acting 
on the space Hr. 
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APPENDIX A 

This appendix studies the nature of projection opera­
tors on an n-dimensional space. Particularly, we in­
vestigate the behavior of the projection operators when 
acting on the types of generalized function encountered 
in this problem. Our general method of attack is to ob­
tain momentum-space representations of the projec­
tions. These representations are always expressed in 
terms of simple Bessel functions. We determine the ef­
fect of the operators on generalized functions by using 
a combination of explicit calculation and the Riemann­
Lebesque lemma. It is the detailed results obtained in 
this appendix which allows us to discard the average 
limit in R used in previous works6,12 on time delay. 

Throughout the remainder of this appendix we as­
sume that our operators act on the following dense set 
of functions. For an n-dimensional space we assume 
the functions and their first n-derivatives belong to 
L 2 (JRn). We are interested in the R - 00 limit of the 
projection operators P(R). For a limit of this kind we 
establish convergence of our results in the weak sense. 

We shall first establish that 

lim (f', P(R)f) = (f' J) (AI) 
R~oo 

where f' and f are any functions in the above dense set. 
This is, of course, an immediate consequence of P(R) 
converging to the identity in the strong senSe. However 
our proof of (AI) allows us to state certain useful prop­
erties of the momentum space representations of P(R). 
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If we express (f', P(R)f) in momentum-space we have 
at once 

(f', P(R)f) = I f'(k')*(k' I P(R) Ik)f(k) d~(tk'. (A2) 

We have used P(R) as the symbol for the n-dimensional 
projection operator. Primarily we are interested here 
in the cases w~en Il = 6 or Il = 3. For n = 6 then P(R) is 
equivalent to P(R). The kernel for P(R) given in formula 
(A2) is 

(k' I P(R) 119=1 exp[i(k - n
k') . xl dnx. 

Ixl<R (21T) 
(A3) 

In order to evaluate this integral one may introduce an 
n-dimensional spherical coordinate system. A straight­
forward computation gives 

( 
R ) n/2 

(k'lp(R)lk)= 21Tlk-k'l I n /2(lk-k'lR) (A4) 

where J is the Bessel function of the first kind. 

We now want to study the R - co limit of the right-hand 
side of (A2). If we introduce the change of variables 
z =R(k - k'), we have after (A4) is substituted into (A2) 

ff'(k')*f~'+~) 1(~~)~:~1 I n/ 2(lzl)rllzldzrl
nk' (A5) 

where z = z/I z I. Since f possesses a derivative we may 
integrate (A5) by parts employing the identity 

1 !:L ( _n /2+1J (» _ -n /2J () z rlz z n /2-1 Z - - Z n /2 Z . (A6) 

Denoting 1 z 1 by z the surface term arising after the in-
tegration by parts is • 

- ~:)2:;2 In/2-1(Z)ff'(k')*f(k'+~) dZdnk'I::~. (A7) 

It may be easily seen that for 11;:· 3 this surface term 
vanishes. The structure of the integral over rink' is that 
of a convolution of two square integrable functions. The 
resulting function of z/R is absolutely integrable with 
respect to dnz. Thus the contribution to the surface term 
for z = 00 is zero. For z = 0 the term is trivaUy zero. 
For the case 11 < 3 one can prove the weak convergence 
(AI) without employing this integration by parts. 

So after one integration by parts (A5) takes the form 

f f'(k')* ~2n:)2n-;2 I n/2_1 (z) ~n - 2)f~' +~) 

+ z ~iz (k' + ~)Jdnk' dz dz. (A8) 

If we continue the partial integration J)/ times, where 
111 < n, then we have that (A5) may be written as 

f 
zn/2-1-m ~ 

f'(k')* (21T)n/2 I n/ 2_m(z) ~n-2)(n-4)'" (11-2111) 

(" z) mIdi f (, z)~ 1"'" ~ 
Xf\k +Ii + ~ a1z dz' k +Ii 'll\. dzdz. (A9) 

In formula (A9) the a l that appear are constants obtained 
from sequence of partial integrations. Since it is not 
necessary to know what they are we do not bother to 
write them out. 

In order to show (AI) consider the caSes of n even 
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and n odd separately. Start with n odd. Here take 
m =n/2 - i. Then, if we set x=z/R, (A9) becomes 

ff'(k,)*(~)1/2 ~ sinRx [(n- 2)! !f(k' +x) 
1T (21T)n X 

n /2.1/2 " J 
" , d f(k + x) dnk' d~ d + Lt a,x d' x x. 
'=1 x 

(AIO) 

We now consider the R - 00 limit of (AIO). By applying 
the Riemann-Lebesque lemmal3 to (AIO) we see that 
only the x = 0 point contributes to the value of the limit. 
So the set of terms with derivatives all vanish. We are 
left with just the first term. Since an n-dimensional 
unit sphere has a surface area 

f 
~ 21Tn/ 2 

dx = r(n/2) , 

we have that the R - 00 value of (AIO) is just 

J f'(k')*f(k')d"k' = (f',j). 

(All) 

(AI2) 

This establishes the validity of (AI). A parallel argu­
ment works for n even. 

Let us now turn to the evaluation of the singular 
kernel (k'i P(R) I k)/(k2 - k,2). The divisor here, which 
vanishes in the domain of integration, is given a well­
defined sense by the definition of the singular integral 
as a principal value integral. We shall prove 

Property I: 

~i~ f f' (k')* (k' ~i~~,~ k) f(k) d"k' d"k 

• 
=/f'(k,)*~~(k,)(n.1)/2f(k,k:)J d"k'. 

dk ~ k k + k k=k' 
(AI3) 

In our three- body problem the case n = 6 is of most 
interest to us; however, n = 3 is also useful in the study 
of the two- body problem. 

Introduce the coordinate z = R (k - k'); then 

(AI4) 

where Bk,z is the angle between vector k' and z. Using 
the form (A4) for the projection operator, the integral 
on the left of (AI3) is 

/
f'(k')* f(k' +z/R) I n/2(Z) dnk'dnz. 

(z/R)[ (z/R)+ 2k' cos Bk,z] (21TZ)n /2 

(AI5) 

Our method of evaluating (AI5) is based on the observa­
tion that we can reduce this problem to the previous 
problem, i. e., the demonstration of (At). Let us in­
troduce an n-dimensional spherical coordinate system 
to describe the vector z/R. We choose the z axis of 
this coordinate system parallel to k'. Denoting the 
coordinates by {(z/R), B10 B2, ... , Bn_l } we have that 
BI = Bk,z. We note that if we perform the integration over 
dz first the denominator vanishes only when the BI 
integration is carried out. So we are motivated to 
write (AI 5 ) as 

j f'(k')* In/2(Z) F (k')d"zdnk' 
(27TZ)n/2 z/R , 

where F z / R is defined as 
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(AI6) 

I 11 sinn
-
3Bl 

Fz / R (k') ="2 .1 d COSBI (z/R)(z/R + 2k' cosB l ) 

XfZ/R(k',cosB l ), (A17) 

fZ/R(k', cosB l ) 

= r;~~2) fo ~ sinn
-3 B2dB2· .. ;:2~ dBn_tf(k' + ~). (AlB) 

Examination of these formula indicate that F z / R is the 
average value of the function f(k' + z/R}{k2 - k,2r l 

summed over the surface of a sphere centered at k' 
with radius z/R. The f(k', cosB l ) is the nonsingular part 
of the average and integral (A17) is the integral over 
the singular part. 

We shall show that Fz/R(k') is continuous in z/R. 
That Fz / R is integrable with respect to dnz follows from 
(AlB) and the fact that f(k' + z/ R) is integrable with 
respect to dnz. Thus we shall be justified in using (AI) 
to conclude that 

(A19) 

Let us investigate the behavior of F z / R(k') as z/R - O. 
If we define 

(A20) 

then (A17) becomes 

, _.! ~lz/R+z2/2k'R2 ( _ _ Z_2 __ R2x2 ~)(n-3)/2 
Fz/R(k ) - 2 2kz 2 _? 1 4k,2R2 Z2 + k' -z/R_" /2k'K"" 

- dx Xf(k',x)- . 
x 

(A2l) 

This principal value integral here is of the general form 

_l_l b 
h(x)dx 

b+a.." x 

=_1_ (bh(x)-h(O)dx+h(O) 1bdX a>O, b>O 
b+aJ.." x b+a _Q x' 

(A22) 

where h is a differentiable function. On the right of 
(A22) we have written the integral by adding and sub­
stracting 

We need to find the value of (A22) when a - 0 and b - O. 
Since the integrand of the first integral on the left of 
of (A22) is continuous, we may use the mean value the­
orem to write 

-1-1 b h(x) dx jh(Xl) - h(O)\ h(O) ln~ (A23) 
b +a.." x" Xl J b +a a 

where XI is some point in the interval (b, - a). As the 
interval size goes to zero the factor in the square 
brackets becomes the derivative of h at X = O. The sec­
ond factor is just a constant times h(O). 
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If we apply formula (A23) to (A21), we obtain 

F (k') = n-2 ~f(k') 1- df(k',k') 
o 4 k '2 + 2k' dk' 

= ~r,(.!) ("-1) /2 f(k, k')] \ 
dk~ k' k + k' k=k" 

(A24) 

When this result is substituted into (A19) we obtain 
(A13). In the text we require the result of (k' 1 P(R) 119/ 
(k - k'). This is obtained from (A13) just by setting 
f(k) = (k' + k)g(k) , so the denominator in (k +k') in (A24) 
is now absent. 

We turn to the next important property of the P(R) 
that we have used in our derivation. Choose n to be even 
and the n-dimensional vector k may be represented as 
the pair of vectors (p, q) where p and q are (n/2)-dimen­
sional vectors. Let us determine the effect of 
(k'i P(R) 1 k)/(P - P'). This problem is trivally related 
to that of determining (k' 1 P(R) 1 19/(P2 - p,2), so we 
shall solve this last problem. We need to calculate the 
R - 00 limit of 

f f'(k')*f(k) R"/2 p2 _ p'2 (27T 1 k _ k' 1 )"/2 J" /2( I k - k' I R) d"kd"k'. 

(A25) 

Introducing the variables 

z =R(k- k'), x=R(p- p'), y =R(q - q'), 

where x and yare (n/2)-dimensional vectors, one has 

z=(X2+y2)1/2, p2_p'2=~~+2P'COS8p,x) 

where 8p'x is the angle between p' and x. So expression 
(A25) may be written 

(A26) 

The structure of this integral is similar in nature to 
that evaluated in (A19)-(A24) so we may utilize the 
same technique to show that 

Properly II: 

lim f f' (k')* (k' 1 P(R~ 1 k) f(k) d"k' d"k 
R-ro p-p' 

= f f'(k')* :p[(%,) ("_2)/j(PP',q')] \p=p,d"k', (A27) 

We wish now to deduce a related property for the 
operators Pa(R). Namely we establish 

Property III: 

1i~ f f' (Pa) (p~ 1 ~:~~~pa) f(Pa) d 3Pa d3Pa 

= /f'(P'a) d~a[~~)f(PaP~~ \ps=pa d
3
Pa· 

That III is a consequence of II is seen as follows. 
Recall that 

(A28) 

(Pal J\(R) I Pa) = J iJia(q'a)*(Paq'a I P(R) I Paqa) iJia(qa) d3qa d3q a' 

(A29) 

In (A27) setf(Pa,qa)=f(Pa)iJi(qa) andf'(Ps,qa)=f'(P'a)iJi(qa); 
then (A28) follows at once. 
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Property IV: 

1i~ (j o('Pa2 - pg2)(pg I P a(R) I Pa) d3pg 

- J O(K2 - K"2) (pyqy I P(R) I p~q~) d3q~ d3p~) = 0 (A30) 

K-2 -2 -2 - 2 2 'Yhere =Py+qy=N - Xa. The physical meaning of this 
property Can be understood by looking at expression 
(4.10) for the free transit time. The meaning of the 
term on the left is the free transit time for a planewave 
in channel [3 having an energy K2 = Pe2 - X~. The second 
expression in Eq. (A30) is the free transit time for an 
incident state composed of three free particles having 
energy K2. Then (A30) claims these free transit times 
are the same in the limit R - 00. 

After a prolonged examination we are unable to give 
a general proof of this property. Thus we are forced 
to add it as an ansatz to our list assumptions detailed at 
the end of Sec. II. The problem in the proof is that the 
integral expression for (pB'1 Pa(R) 1 P'a) involves Bessel 
functions of complicated arguments and this makes an 
explicit evaluation of the integral unusually difficult. 
We note that in the two-dimensional static coupled 
channel problem that Celenza and Toboman14 studied 
that they required the free transit time to be indepen­
dent of the channel. 

The role of Property IV in our demonstration of Eq. 
(5. 67) is restricted to showing various collections of 
terms, like Eq. (B1) are zero. 

Property V: 

lim (j O(p~2 _ p~2)(p~ I P ",(R) I p~\)d3p~ 
R_ro 

(A31) 

where Pa2 
- x~ = p~ - X~. This property is a conse­

quence of Property IV obtained by allowing [3 to take on 
its various different nonzero values. 

APPENDIX B 

We collect in this appendix a number of the results 
claimed valid in Sec. V. Let us consider the different 
problems in the same order that they arise in Sec. V. 
We first examine the validity of 

(B1) 

for on-shell values of py and P'a, i. e. , P; - X; = Pi/ - X~. 
Most of the relations contained in Eq. (B1) are true 
for trivial reasons. For example, if i * 2, 3, then the 
integrands appearing in the definitions (5. 11), (5.14), 
(5.15), (5.16), (5.19), (5.22), (5.23), and (5.24) have 
smooth behaviors in the regions where the momentum 
space representations of P(R) and P ",(R) are singular. 
Thus we can use P(R) - E and P a(R) - E "" When this 
relation is employed Eq. (B1) is shown valid for i1'2,3. 

We turn to a more complicated case i=3. We define 
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component forms of B 3(R) and A 3(R) given by 
3 

B3(R)= ~ B 3a (R), 
01=1 

(PAy 1 B 3a(R) 1 p~> = irr f 5( tJ2c. - X~ - pI{2 + x~) 

x p,,(qa)(PaIH~lp~')(pelf\(R)IPB> d 3p" 
p~+qy_pI{2+X~ a 

and 

(B2) 

(B3) 

(B4) 

x <t>a(q~)(P~IH~1Ip~>d3p;d3q;. (B5) 

First, let us investigate the case Q"4- y. Then the de­
nominator in (B3) takes the form 

p;+q; - p;;2 +X~=~+q~- Pa +X~=~ +X~ > O. (B6) 

The basic behavior of (pI{ I Pa(R) I pB) is that it is a con­
volution dependent on the difference pI{ - p~. As R - 00 

this convolution becomes a delta function when acting 
on sufficient smooth functions. The exception to this 
situation is ~hen P;; is forced to always be equal to 
P~; then (Pe I Pa(R) I p~> has a constant value depending on 
Rand f3. In the case under study here Q"4- Y and the delta 
function in Eq. (B3) does not force P;; =N, so we have 

lim (Pyqy 1 B 3a (R) 1 pB> 
R~~ 

= irrlP" (q")(p,, IH ~+J 1 p~> 5(~ - X~ - p~2 + X~). (B7) 

The vectors p"q" are determined by PA,. 

Turning to A 3,,(R) given by Eq. (B5), the denominator 
appearing there assumes the form 

p;2 +q;2 _ p~2 + X~= p~2 + q~2 _ p~2 + X~ = q~2 + X~ >0. (B8) 

As in the case above the delta ~nction in Eq. (B5) does 
not force p,=p; or qy=q;, so P(R)-E here. Thus for 
Eq. (B5) we obtain the limit 

lim(pyqyIA 3",(R) Ip~> 
R~~ 

= irrlP",(q",)(p", IH~+J 1 p~> 5(Pa - X~ - p~2 + X~), (B9) 

so A 3",(R) - B 3",(R) - 0 as R - 00. 

Consider the remaining term in A 3, B3-that for a = y. 
Here one has for I,B3y(R) 

(py 1 I,B3y(R) 1 p~> 
. J 1 12 3 j' -2 2 -,,2 2 = lrr lP,(qy) d qy 5(Py - Xy - Pa + Xa) 

x(py IH~~) IP~/(Pe 1 P a(R) Ip~> d3Pe 
= irr(py IH;~) 1 p~> J 5(p~2 - pI{2)(p;; 1 Pa(R) 1 p~> d3p;;. (BIO) 

For I,A3y(R) we have 

(py 1 I,A3y(R) 1 Pe> 

1547 

=irr J (j lPy(qy)*(pyqyl peR) 1 p;q;>lP,(q;') d3q y d3q;) 

x 5(p;2 - p;)(p; IH;~) 1 P~> d3p;' 

= irr(py IH;~) I p~> J (py I Py(R) I p;> o(p;2 - p;) d3p;. (B11) 
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In Appendix A we discuss the relationship 

lim (J (pyIPy(R) Ip;>5(P;2 - P;)d3py 
R~~ 

- J (Pe I Pa(R) I p~> O(P8'2 - p~2) d3pl{) = 0 (B12) 

where g - X; = PI} - X~. With the result of Eq. (B12) we 
obtain that I,B3y(R) - I,A3y(R) vanishes as R - 00. So 
altogether we have shown that Eq. (Bl) is correct. 

The next result, employed in Sec. V, that one needs 
to prove is 

lim(pYlly(B2",(R)-A2,,(R»lp~> =0, a"4-y, (B13) 
R~~ 

where B 2",(R) is given by Eq. (5.28) and A 2,,(R) is given 
by Eq. (5.37). Consider B 2",(R) first. The integral in 
Eq. (5.28) is well defined if the denominators do not 
simultaneously vanish. That the singularities are al­
ways separate can be demonstrated by attempting to set 
p~ - X~ equal to p; + q;. Using P; + q; = p~ + ;]2", this equality 
is equivalent to - X~ = q;, which cannot be sa~isfied for 
any value of qy. Secondly, we note that (Pe I P a(R) I p~> 
- 03(p;; - p~), unless it is divided by a term of the type 
p;; - p~. Such a term could in principle come from either 
of the two denominators in (5.28). If the second de­
nominator is to behave like Pe - P;;, we require 

P-2 + q-2 =p-,2 _ X2 =p-2 _ X2 y y a a y y' 

Again this is impossible since it is equivalent to q; 
(B14) 

= - X;. So the second denominator will not effect the be­
havior of the R - 00 limit. The first denominator will 
behave as Pe - P;; if 

(B15) 

This condition may be stated as a condition on qy since 
p", is a function of the on-shell vector py and the vector 
qy. So if qy is such that (B15) is not satisfied, 

lim (p,.qy I B 2 ,,(R) 1 p8) 
R~~ 

_ p,,(qa) (p",IH~+JIPe> 
- P~-X~-P82+X~ g+q;-P82+X~' 

(B16) 

In the case where (B15) is satisfied, then we must use 
Eq. (5.31) to evaluate the integral in Eq. (5.28). The 
result which we do not bother to write out will clearly 
be finite. 

Let us now turn to the evaluation of A 2 ,,(R). Again if 
(B15) is not satisfied we can show the peR) - E in Eq. 
(5.37), so that we have 

lim (pyqy I A 2 ,,(R) I Pe> 
R~~ 

(B17) 

When (B15) is true then we need to employ Eq. (5.40) to 
evaluate the integral in (5.37). The result is a finite 
constant. Thus 

lim (PAy I B 2 ,,(R) 1 Pe> = lim (pyqy IA 2",(R) I pD (B18) 
R .. oo R-oo 

for qy such that (B15) is not satisfied. However, ih 
passing to the form (B13) we need to integrate (B18) by 
J lP,.(qy) d3qy. The set of pOints in qy such that (B15) is 
true are of measure zero with respect to q;dqy, so the 
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exceptional points satisfying (B15) do not contribute to 
the d3qr integration. So we may conclude that relation 
(B13) is true. 

We conclude this section by examining the case y = O. 
Here the on-shell condition takes the form 15; +q;, =15;/ 
- X~. Referring to Sec. V we see that we have to prove 
relation (5.53). Looking at the Bj(R) terms first we note 
that their sum may be expressed as 

(Prqr/ ~ Bi(R) Ip~) 
= I (Prqr IB~;) I P8/irrr>(p~2 - p;;2)(p; I Pa(R) I Pa> d 3ps'· 

(B19) 

Because Pa(R) becomes diagonal in p; and p~ we can 
write this as 

(PAri ~Bj(R)lp~) 
= irr(Prqr 186;) I p~> J o(p~2 - p;;2)(p;; I P a(R) I PB> d 3p;;. 

(B20) 

If we turn to the related terms in A/(R) their on-shell 
matrix elements are 

(PAri ~AI(R) lp~) 
= J (PAr I P(R) I p;q;>(p;q/IB ~;) Ip~> 

xirrr>(p;2 + q;2 - 'Pi + X~) d3q; d3p;. (B21) 

Since P(R) becomes diagonal in the five-dimensional 
angle variables w,JJ./ir' we may refashion Eq. (B21) as 

(Prqrl ~AI(R) Ip~) 
= irr(Prqr IBri;) I Pa> I r>(K2 - K"2)(Prqr I P(R) I p;q;> 

(B22) 

As a result of the following relation for our projection 
operators, the terms (B20) cancel those of (B22): 

lim (j r>(p;/ - p;;2)(p;; I P e(R) I pD d3N 
R-ro 

- I r>(K2 -1(1I2)(PArIP(R) Ip;q:> d 3q; d 3p;> =0 (B23) 

where 1(2 = p; + q; = P B2 - X~ in this relation. 

APPENDIX C 

In this appendix we prove that the on-shell matrix 
elements of the operator K;+)tYs(R) vanish in the R - 00 

limit. We stress that the analysis we present below only 
allows us to conclude that the on-shell matrix element 
vanishes. In fact, it is quite likely that the operator 
K;+)tYs(R) does not vanish (in any norm) as R - 00. The 
matrix element we need to evaluate is 

M IK;+)tYs(R) I p~> = J (p~ IK;+)t I pq)(pq I Ya(R) I PB> d3p d 3q, 

(Cl) 

where the initial and final momentum are related by 

])~2-x;=pr/-x~=j{D2. (C2) 

Using Eq. (2. 19) for the kernel of K;+)t and Eq. (5. 7) for 
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the kernel of Ya(R), our matrix element assumes the 
form 

f d3Pd3q (~'Bl;)'P~>*. 
i7+q -P~+X~-zO 

x (/ d3Pa' (pq~BJ8~IPB/~P;IPa(R)IP~> 
p2 + q2 _ p; 2 + X~ - iO 

_ fd 3Pll d3 II (pqIP(R)lp"ql>(p"q"IBJe)IPa> ) (C3) 
q 15"2 + q"2 - p~2 + X~ - iO . 

We must show that this expression becomes zero as 
R - 00. We recall that the Bci;) and B ri;) have according to 
Eq. (2.20) additional singular denominators which are 
related to the various two cluster kinds of asymptotic 
motion that the three-body system can produce. It turns 
out that the contribution to (C3) from the explicitly ex­
hibited singularities vanishes. The contribution from 
the additional primary singularities in Eq. (2.20) also 
separately vanishes. Here we shall only bother to write 
down in detail the contribution to (C3) from the exhibited 
singular denominators. 

One may evaluate expression (C3} by expanding the 
singular denominators into delta function plus principal­
value parts. Thus we have three types of terms. First 
we encounter those terms having the product of two 
delta functions in each factor. These terms become 
zero as R - 00 as an immediate consequence of Property 
IV of the projection operators. Likewise it is easy to 
show that the terms involving the product of two princi­
pal-value factors are zero. For such terms we may use 
the delta-function properties of our projection operators 
and the argument employed by Jauch and Marchand15 to 
show that the result is zero. Thus the nonzero terms 
that remain are of a mixed type involving one principal­
value term times a delta-function term. The cancella­
tions between these remaining terms is surprisingly 
complex. These terms are 

f d3Pd3q~:qJl3~~~2P£>:; (j d3p;(pqIBJ;)lp;;> 

x (p;; I Pa(R) Ip8>irrr>(p +q2 - ]);2 +x~) - f d 3
pll d3q" 

x(pq I P(R) Ip"q">irrr>(j5"2 +q,,2 - 1582 + X~)(p"qIlIBri;) IPB» 

+ f d3p d3q(pq 186;) I p~>*irrr>(j)2 + q2 - 15~2 + x;) 
x (fd3pll (pq IBJa) I PB/(p; I P a(R) I pa> 

a ]52 +([2 - '15;;2 +X~ 

f 3 " 3 ,,(pqIP(R)IP"qll><Pllq"IBJe)[pa» 
- d pdq 'J::"2 -,,2 p-/2 2 . 

f/ +q - e + Xe 
(C4) 

We now eliminate the delta functions by performing the 
integrals over the relevant variable. After this (C4) 
becomes 

. f d 3p" d5i (p; I Pa(R) I p~> (2na(P8
2 

+ X~)2 
lIT a p; _ P8 2(p; +PB) 

X(,j15;2 - X~K IB~~) I p;>(Vp;2 - x~K IB~;) I P~)*) 
-irr f K5dKd5id5K"j{04(K"K"IBJ;)IPa> 
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x (KKI PjR) ~f{OK") (Kil§Ji~IPP*) 
K-~ 2(K+J?l) 

+i7T jd3p " d5Kf{04(K K IB<-> IpO)* (Ps I Ps(R) Ips) 
s ° Oy y Ps - Pe 

X(2ns(f{OKIBJa> Ipg») _ i7TfK,,5dK" d5i" d5i<. 
2(Ps+Ps) 

X(KoK IB~;> 1 p~)*j{v4(KoK 1 peR) IK"K"> 

X (K"i<.: IBJr IP6». 
2(K" +lfl) 

(C5) 

In expression (C5) our convention for the five-dimen­
sional angle differential is given by the definition d3p d3(j 
=K5 dj'( d5K. We take the limit R - 00 and use Properties 
I and II of the projection operators to show that (C5) 
becomes 

+ 17T d5K- (2n )P8 P8 -X8) (vp-"2_ 2iIB<->lpo>* . j d ( "( -,,2 2 2 
2 dps 8 Ps(N + Pe) 8 X8 oy y 

X(';PS2 - X~j( IB6~> IPePs» I - i
2
7T jf{04 d5j( 

Pj3=Pa 

- A d [i(K") 5/2(K-"K
A

IB<->1 O>*J X(~KIB<+> 1 p')--=- --=- _ Oy py 
08 8 dK" ~ K" +J?l 

(C6) 
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It is now a straightforward although somewhat IGn~t::y 
algebraic task to compute all the derivative terms in 
(C6). The result one gets is that all of the terms cancel 
giving us zero for the evaluation of (C6). 
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It is shown how a scalar fUnction V(IR + ~~~J a,l) of a sum of n + I vectors can be expanded 
as a multiple Cartesian tensor series in the vectors a i . This expansion is a rearrangement of the 
multiple Taylor series expansion of such a function. In order to prove the fundamental theorem, Eq. 
(3.1) below, generalized Cartesian Legendre polynomials are defined. The theorem is applied to the 
eigenfunctions of the Laplace operator and to inverse powers. The expansions of the latter type of 
function leads to forms involving generalized hypergeometric functions in several variables. As a 
special caSe, the Cartesian form of the muitipole expansion of the electrostatic potential between two 
linear molecules is derived. A number of sum rules for hypergeometric functions and addition 
formulas for (standard and modified) spherical Bessel functions are proved using a reduction property 
of the generalized Legendre polynomials. The case of the expansion of a tensorial function is also 
briefly discussed. 

1. INTRODUCTION 

In many problems of physics, for example the calcu­
lation of the nonspherical intermolecular potential be­
tween two or more molecules as a sum over spherical 
potentials between force centers in the molecules 1 and 
in the theory of heavy-ion transfer reactions,2 it is 
necessary to have explicit expressions for scalar func­
tions of the form 

(1.1) 

in terms of the vectors a j. A standard Taylor series 
expansion of (1. 1) is 

(1. 2) 

where R = I R I, the symbol 8" means q-fold contraction 
of nearest Cartesian indices, and the (aj)m j are tensors 
of rank m j: 

(1. 3) 

This is not very useful, since it does not arrange the 
terms in irreducible tensors. Indeed, the tensor (1. 3) 
is reducible for all m j > 1. It would be much more use­
ful to rearrange (1. 2) in such a way that the irreducible 
Cartesian tensors 3,4 

(1. 4) 

appear explicitly. Here E (m) is the 2mth rank tensor 
which projects out the irreducible part of any mth rank 
tensor. 3,4 

In this article, this rearrangement is given in Sec. 3. 
In Sec. 2, generalized Cartesian Legendre polynomials 
are defined and some properties of these which are 
needed later on are proved. In later sections a number 
of applications is considered in some detail. 

2. GENERALIZED LEGENDRE POLYNOMIALS 

As is well known, a scalar function of two unit vectors 
U and v can be expanded in terms of Legendre poly-

nomials (see Ref. 5 for the Cartesian tensor form): 

P1(u,v)=(2l)! 2-/(1!)-2[u](1) 8 1 [v](Z). (2.1) 

It would, therefore, seem natural to try to find a gen­
eralization of (2. 1) for the problem posed in the intro­
duction. To this end the following CarteSian tensors 
are defined first: 

8(l1' 12, .. , ,In)=q(lu12''' .,In)(41T)"lI dulu]</I)"'lu]<Inl, 

(2.2) 

where the normalization factor q(lv 12 , ••• , In) is given by 

(2.3) 

Generalized Cartesian Legendre polynomials may then 
be defined by 

P (u;' u)=lu](/n)ru ](In-u .. ·lU]Ul) 
ll,12 ,.u,ln l' -"2' " ., n n n-l 1 

(2.4) 

It should be noted at this point that the 8(l11 ... ,In) 
are, for n> 3, not the most general Cartesian tensors 
of the symmetry 11 ,12 , ••• ,In' It is, therefore, not 
trivial that the functions defined by Eq. (2.4) are ade­
quate for the problem at hand. That this is the case is 
proved in the next section. In the rest of this section, 
some properties of the generalized Legendre functions 
are considered. 

Since the integral (2.2) is nonzero only if II + 12 + ... 
+ in is even, the functions (2.4) are only defined for such 
sets of indices. In particular, it is easily seen that 

P I/Ul) = 0/1'0' (2.5) 

where op," is the Kronecker delta. For n=2, Eq. (2.4) 
reduces to 

(2.6) 

as can easily be seen from the formula 5,6 

(41T)-1 r dU[U](/ll[U] (11)= [z1 1/(211 +1)!I]E(/1 ). (2.7) 
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For n = 3, the S(11, 12, 13) must be proportional to the 
Cartesian (3 - j)-tensors defined by Coope,7 since these 
are unique. With the formula 6 

J ~ [~](j ) [~](' )[~]<Z) du u 1 U 2 U 3 = P.(lI' 12, 13) T(ll, 12, 13), (2. 8) 

where T(ll' 12 , 13) is a (3 - j)-tensor and P.(lI' 12, 13) is a 
numerical coefficient given by 6 

P.(lI' 12, 13)= (47T)11!12!13! {(11 + 12 + 13 + I)! ![W1 + 12 -13)]! 

x [WI -12 + 13)] ! [t(-11 + 12+ 13) !}-1 (2.9) 

[11 + 12 + 13 even and 11,12,13 satisfy III -121 "" 13 "" 11 + 12, 
otherwise p.(11,l2' 13) = 0], it is found that 

S(ll' 12 , 13) = (47T)"1 P.(l1' 12, 13) q(ll' 12, 13) T(ll' 12, 13), 

(2.10) 

From this and the Cartesian (3 - j)-reduction of a 
product of two irreducible tensors, 5 it follows im­
mediately that 

) [A] (/1) [A] (/2 ) " ( ) '3 [~] <r ) q(ll' 12 U U = L1 S 11,12,13 0 U 3. 
'3 

(2.11) 

This can also be proved directly by multiplying both 
sides with a [u] ('3) and integrating over the angles of it 
using Eqs. (2.2) and (2.7). Combination of Eqs. (2.11) 
and (2.2) yields the useful relation 

(2.12) 

and, finally, combining (2. 11) and (2.12) it is found by 
induction that 

(1 1 1 )[ ~]('1)[~](j2) ... [~](/n) 
q II 2"'" 'n U U U 

= 6 S(71' 12"", I n, L) 0L [ii](L), 
L 

(2.13) 

which is the generalization of the Clebsch-Gordan re­
duction for unit vectors. 

Another important relation may be derived from Eq. 
(2.12), namely a reduction formula for the generalized 
Legendre polynomials. If two of the arguments, say 
u1 and~, are equal, then the result 

(2.14) 

may easily be derived with Y, , /' given by 
l' 2' 

Y 'I' ':l d' = (47T )-2[ P. (11, 12, 1,)]2 q(ll' 12 , 1') rt(11, 12 , 1'), 
(2.15) 

where rt(ll> 12, 13) is the complete contraction of 
T(11l12' 13); in the present case (11 + 12 + 13 even) it is 
given as 7 

rt(ll' 12, 13) = T(11, 12, 13) (,)/1+/2+'3 T(13, 12, 1
1

) 

=(11 +12+13+ I)! (l1 +12-13)!(11-12+13)! 

(2.16) 
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3. THE FUNDAMENTAL THEOREM 

The basic result can now be stated; 

X (V2 )(r;';-L) /2 

X i~1 (a: i m~o [m i !(21 i +2m/+ I)! !]-I(~a~V2)m~V(R). 
(3.1) 

Here the argument V in the generalized Legendre poly­
nomial is a symbolic notation, defined formally as in 
Eq. (2.4) with one of the unit vectors replaced by V. In 
the follOwing, a proof of Eq. (3.1) is given for a special 
class of functions V(R), namely those which have a 
Fourier transform. Since Eq. (3.1) is only a rear­
rangement of Eq. (1. 1), this result is of considerably 
wider applicability. 

Proof of Eq. (3.1). Let V(k) be the Fourier transform 
of V(R): 

V(k) = J dR exp(- ik' R) V(R). (3.2) 

Then the Fourier transform of the left-hand side of 
Eq. (3. 1) is 

J dR exp( - ik . R) V (I R + t a i I) = i~ exp(ik· a/)V(k). 

(3.3) 

Using the expansion of exp(ik' a) in spherical Bessel 
functions 6 

~ 

exp(z'k 0 a) = L: q(l) i' j ,(ka) [k] (l) 8' [~] (I), 

,=0 
(3.4) 

Eq. (3.3) can be rewritten as 

rl exp(ik ·a.) V(k)= L 
;=1 ' ll' ... • 1 n 

(3.5) 

which, using Eqs. (2.13) and (2.4) may be seen to be 
equal to 

(3.6) 

x m~o (- 1(/( ~a~k2)m/ [m /! (21 1 + 2m 1 + 1)! ! ]-1) V(k), 

where the power series of the spherical Bessel functions 
have also been inserted. The inverse Fourier transform 
of Eq. (3.6) is obtained by making the substitutions 

(3.7) 

and is seen to be equal to Eq. (3.1). QED 

Since V(R) is a scalar function, Eq. (3.1) can be 
simplified further by noting that V2 can be replaced by 
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the operator D2 defined by 

-1 d
2 

D2 =R dR 2 R, (3.8) 

and the operator ['\7 J(L) occurring in the generalized 
Legendre polynomial can be eliminated by means of the 
identity 

where Dl stands for R-1(d/dR). Equation (3.1) then 
reduces to 

(3.9) 

V (I R + ~ a i I) = :z::; Pll •...• In,L (~1' ... ,~'" R)RLDf 
[1 •... ' In,L 

xD~r:;lrL)/2 n [a:IWI.(ai)]V(R). 
i=l , 

(3.10) 

Here the operator W rea) is defined by 

~ 

Wl(a)= L [m! (21 + 2m + I)! ! J-l (~a2D2)m 
m::::O 

= [(21 + 1)! ! ]-1 6 [m! (l + %)m]-l (ta2D2 )m 
m=O 

= [(21 + I)!! ]-1 oF1(l + %;~a2D2)' (3.11) 

where (P). is Pochhammer's symbol, (P).= r(p + q)/r(p), 
and OFI is a generalized hypergeometric function. 

4. SPECIAL CASES 

Since the functions 

jo(aR) = (aR)-1 sin(aR), yo(aR) = - (aRtl cos(aR), 

Jo(aR) = (aR)-1 sinh(aR), yo(aR) = (aRt l cosh(aR) 

(4.1) 

are eigenfunctions of the Laplace operator D 2 , the first 
two with eigenvalue - a 2

, the last two with eigenvalue 
0'2, the result of the previous section is particularly 
simple when applied to these. Using some of the stan­
dard properties 8 of the normal and modified spherical 
Bessel functions, the results may be summarized in the 
following formulas: 

(4.2) 

(4.3) 

Here the symbols 'i P denote the sum over the 1 j and L 
with the generalized Legendre polynomial as weight 
factor as in Eq. (3.10). The j/(z) and YI(z) are spherical 
Bessel functions of the first and second kinds, respec­
tively, while the J/(z) and y I(Z) are modified spherical 
Bessel functions of the first and second kinds. [In the 
notation of Ref. 8, J/(Z)=(7T/2z)1/211+1/2(Z) and Y1(z) 
= (7T/2z)1/21_ 1_1/ 2(Z).] For n = 1, the results (4.2) and 
(4.3) are standard. 8 
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For the calculation of the nonspherical potential be­
tween two molecules, 1 two functions which may easily 
be derived from the above may be of importance, name­
ly the Yukawa potential (aR)-1 exp(- aR) and the ex­
ponential potential exp(- aR). For the Yukawa potential 
it follows immediately that 

(4.4) 

The result for the exponential potential follows by 
applying the operator 1 + aD/DO' to both sides of Eq, 
(4.4). The result may be simplified by making use of 
the recursion relations of the modified spherical Bessel 
functions. 8 

A second special case of great importance for the 
problem of calculating nonspherical potentials is the 
case of an inverse power of R (Lennard-Jones type po­
tentials). Setting VCR) =R"s and using the formulas 

(4.5) 

and 

(4.6) 

the result finally obtained may be written in the form 

Here the Xi are the ratios a;JR and the function F(n) is 
a generalized n-variable hypergeometric function defined 
by 

(M=m 1 + 00 .+m"). 

(4.8) 

For n = 1 and n = 2, these functions are well-known. In­
deed, F(l lea, b;c;z) is the Gauss hypergeometric func­
tion 8,9 F(a, b;c;z) and for n = 2, F(2 lea, b;c l1 C2;Z1' Z2) is 
Appell's generalized hypergeometric function F4 of two 
variables. 9,10 The functions with more than two vari­
ables have been much less studied, but see Ref. 10 for 
some results. 

Of most importance here is the question of the con­
vergence of the multiple power series (4.8). As a gen­
eralization of Horn's result 9 for F 4' it is easily seen 
that (4.8) converges if 

" 6 Z1/2<1. 
i=l I 

(4.9) 
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This means that the functions occurring in Eq. (4.7) are 
well-defined only if 

(4.10) 

If n = 1, this will always be the case if a1 *R by inter­
changing, if necessary, the names of the two vectors. 
For a1 =R, there will, in general, be a singularity. The 
nature of this singularity can be derived for the case s 
= integer from the explicit form of the Gauss hyper­
geometric function in terms of elementary functions, see 
Appendix A. 

A special case of great interest of Eq. (4.7) is s = 1, 
since it will show up in problems concerning electro­
static or gravitational potentials. Since ts - t = 0 for 
this case, Eq. (4.7) makes sense only if L = Z 1 i' The 
generalized hypergeometric function F(n) occurring in 
Eq. (4.7) has then its first index [a in Eq. (4.8)] equal 
to zero, so that it is equal to 1 for aU x j' Further, the 
generalized Legendre polynomial reduces in the case 
L = Z 'i' since it follows from Eqs. (2.2) and (2.7) that 

S(lu ... ,ln' Zli) = q(lu ... , In)E(/;li). (4.11) 

The generalized multipole expansion is then 

IR+ t a
i
l-1 

= L [aJ<l1) ... [an]<ln)0/;l i [Rf/;l i ) 
i=l '1 ..... , In 

(4.12) 

The special case n = 2 may be used to obtain the elec­
trostatic potential between two linear molecules as 

V
m
(;1';2,R)= L [;J<l1) [;2]<l2) 0 11+ 12 [R]<l1+ 12) 

'1' '2 
(4.13) 

where 1-1 and 1-2 are unit vectors along the axes of the 
molecules and R is the vector jOining their centers of 
mass. The !l: i) are the multipole moments of molecule 
i defined by 

(4.14) 

where the integral is extended over the length of mole­
cule i, which has the charge density p/x) per unit length, 
and the variable x is chosen in such a way that x = 0 at 
the center of mass. These multipole moments with 
respect to the center of mass may differ from the ones 
defined with respect to another point, e. g., the geo­
metrical center, for I ?- 2 (for neutral molecules). Spe­
cial cases of Eq. (4.13) have already been used in con­
nection with the calculation of kinetic theory collision 
integrals for linear molecules and symmetric tops 11 

and in connection with the phase transition in solid 
orthohydrogen. 12 Equation (4.13), when rewritten in 
terms of spherical harmonics (see Ref. 5 for the con­
nection with the irreducible Cartesian tensors) is identi­
cal to the well-known results of Carlson and Rush­
brooke 13 and Buehler and Hirschfelder 14 for the case 
of nonoverlapping charge distributions. 

Another, rather trivial, case for which Eq. (4.7) may 

1553 J. Math. Phys., Vol. 16, No.8, August 1975 

be evaluated directly is the case s = - 2m, m = 0,1,2, "', 
i. e., the expansion of a positive, even power. In this 
case t(Z l i + L) should be less than m and for such 
values of the lj and L, the second index in F(n) [b in Eq. 
(4.8)] is a negative integer, so that F(n) reduces to a 
polynomial in the ~. 

5. REDUCTION FORMULAS AND SUM RULES 

If two of the vectors a j are parallel, the fundamental 
theorem (3.10) may be written in two separate ways. 
Either the formula is used for n vectors aj' two of which 
(say a 1 and It..!) are parallel, so that the generalized 
Legendre polynomial reduces via Eq. (2.14) to a sum 
involving only n - 1 vectors, or the theorem is directly 
applied for n - 1 vectors, the first one being a1 + It..!, 
the rest the set a3 , ••• , an' In this way, reduction formu­
las and sum rules for the coefficient functions may be 
derived. In the following, the special cases of the 
previous section will be considered. 

First, consider jo' If a1 = 3.2 , Eq. (4.2) reduces, 
using Eq. (2.14), to (suppressing the argument) 

jo!')= L 
'1' '2' I' 

'3' ... ' 'n,L 

YI I I' P I' I I L (au a3, ••• , an' R) 
l' 2' , 3'''°0' n' 

(_1)(/;7=1 I i+ L )/2 ITn . (~a)' ( R) J 1 U j JL a . 
i=1 j 

(5.1) 

On the other hand, writing Eq. (4.2) directly for n - 1 
vectors a1 + It..!, a3 , ••• , an gives 

jo(')= L 
l', '3'000' 'n,L 

, n • 
(-1)<1 +/;1=3 lj+L )/2 j ,(aa + aa )IT j (aa)j (aR). 

I 1 2 1=3 1 j j L 

(5.2) 

Equating these results yields the addition theorems 

jl'} j12} 
(z +z)= L Y ,(_1)Op I2- 1')/2 J' (z) (z) 

Y 1 2 I I 11' 12 ,1 11 1 Y 2 , 
I' 1, 2 '2 

(5.3) 

where the analogous result for Yo has also been included. 
Equation (4.3) gives, in a similar way, rise to the 
addition theorems 

Addition theorems of this type are well-known, es­
pecially for l'=O. 8 [Note that 'V 12.0=611.12(211 + 1).] 

Similar expressions may be ou(ained for the gen­
eralized hypergeometric functions by applying the above 
procedure to the inverse power expansions. These are, 
in general, rather complicated and are therefore given 
in Appendix B. Here two special cases will be men­
tioned, one involving the Gauss hypergeometric function 
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and one involving Appell's F 4 • These relations are in 
the form of generating functions: 

(1 + xts 

~ 

= L (- 2x)t [(2l- 1)!! ]-1 (tS)1 F(h - t, ts + l;l + i;~) 
1=0 

(IXI<l), (5.5) 

and 

(1 + Xl + x2)"s = L 
llt '2,L 

(5,6) 

6. EXPANSION OF A TENSORIAL FUNCTION 

The results of the foregoing sections may be directly 
applied to the problem of the calculation of the non­
spherical potential between two molecules. 1 For some 
other problems, the same type of expansion is needed 
for a tensorial function, e. g., in the heavy-ion transfer 
reaction problem. 2 In this case the function is of the 
form 

~ z= lb](tl8 t lR]U)f (R), 
t=O t 

(6.1) 

where b is a fixed vector. This expression has to be 
evaluated for R replaced by R + Z; 7=1 a j ; since the coef­
ficient functions ft(R) are scalar, they may be expanded 
as in the previous sections, so that the problem left is 
the expansion of [R](t). Here the following equality holds: 

(6.2) 

where the summation is restricted so that Z; 7=1 m j '" t. 
The product of Eq. (6.2) with the expansion of ft(R) 
leads to a double series involving products of two ir­
reducible tensors built from the same vector; these 
may be reduced to single irreducible tensors by means 
of Eq. (2.11). The resulting expansion does not, in 
general, contain only the generalized Legendre poly­
nomials but more complicated tensorial contractions as 
well. Since these general expressions are very com­
plicated, these will not be given here. The very special 
cases of the Dirac delta functions o(b + R) and orb + R + a) 
have been treated by Elbaz et al. 15 in a similar fashion. 

DISCUSSION 

In this section some applications of the formalism 
described before will be discussed. In the first place, 
analytic expressions for nonspherical potentials derived 
by the method of summing spherical potentials between 
force-centers in the molecules 1 may be obtained. This 
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is, of course, more satisfactory for many purposes 
than are numerical methods. Also, if the magnitudes of 
the vectors a j are small compared to R, a perturbation 
series to any order is easily derived. This is of im­
portance for the calculation of equilibrium and non­
equilibrium properties of polyatomic fluids and liquid 
crystals. In these applications the number of vectors 
a j will be one (atom-molecule interaction) or two 
(molecule-molecule interaction) if the molecules are 
rigid. For nonrigid molecules, more than two vectors 
are necessary since the equilibrium position of the 
center of force and its instantaneous deviation from this 
position have to be described. Of course, the potential 
so-obtained then has to be averaged over the vibration 
periods of the moelcules. These questions are treated 
in more detail in a separate publication. 

Another possible application is, as already mentioned, 
in the field of heavy-ion transfer reactions. 2 The gen­
eral method outlined in Sec. 6 may be easier to apply 
than the delta function methods proposed by Elbaz 
et al. 15 and by Anni and Taffara. 2 

Other applications of this method of expansion, which 
can also be regarded as a Cartesian tensor generaliza­
tion of the method of invariant expansions, 16 will be 
found in any field of physics where expressions of the 
form (1. 1) show up. 

APPENDIX A: REDUCTION OF EQ. (4.7) FOR 
s = INTEGER. n = 1 

In case n = 1, Eq. (4.7) becomes 

III + x; I-s = i: Pia· R)(- 2X)1 [(21-1)!! ]-1 (tS)1 
1=0 

(A1) 

If s is an integer, the hypergeometric function occurring 
here always reduces to an elementary function. First, 
the relation 8,9 

F(ts - t, ts + 1; 1 + t~) = (1 _ X2)"S+2 

XF(l + 2 - ts, f- ts; 1 +i;0) 

(A2) 

is noted and the fact that F reduces to a polynomial of 
degree m in x2 if one of the first two indices equals 
- m (m = 0,1,2, "'). Therefore, Eq. (A2) gives for 
s = 2m + 3 (the case s = 1 is treated in the text): 

F(m + 1, m + 1 + t 1 + i; x2) 

= (1- x2)"2m-l f (- m)" (1 + t -m)nl(l + i)n]-l x2n. 
n=0 

(A3) 

This covers the case for s equal to an odd integer. 

For s = 2m + 2, two cases can be distinguished. If 
1 + 1 - m is negative or zero, Eq. (A2) can again be used 
to find a form similar to Eq. (A3). This, however, is 
only possible for low values of 1. Of more use is the 
general relation B between the hypergeometric function 
occurring in Eq. (A1) and the associated Legendre func-
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tions of the second kind, QT. This relation is, for the 
case at hand, 

F(m + 1 + 1, m + i; 1 + i; x2) = r(l + i)( - l)m 

X [(Z +m)! 7Tl/2(1_ ~)mxl+l]-l 

xQT(1 + x2/2x). (A4) 

These QT may always be expressed in terms of ele­
mentary functions by means of the recursion relations 

QT(z)=(z2_1)m/2 dd:~1 (z), (A5) 

(l+1)QI+l(Z)=(2Z+1)zQI(z)-ZQ/-l(Z) (1=1,2,"') 

(A6) 

APPENDIX B: GENERAL SUM RULES FOR THE 
FUNCTION F(n) 

Two types of sum rules for the functions F (n) follow 
from Eq. (4.7). If two of the vectors a i are parallel 
(say a l and ~) it is found that 

L Y1l,12,z' (2X1)ll (2x2 ) 12 [(211 + 1)!! (212 + 1)! !]-1 (21' + 1)!! 
11,/2 

rs + l '+ t Zi+ L]/2; l'+i, ls+i, ..• , L ;.s 

In+ i; (Xl +X2)2,x;, ... ,x~). (Bl) 

In case one of the ai' say aI' is parallel to R, another 
re lation is found: 

x ( rs - 1 + f: I, -Z~ /2) L /.2' J (1'+11-L )/2 
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1 3 l 3 l 3. 2 2 2 ) 1+2, 2+2"'" n+2,XUX2, ... ,x" 

xl" + i; x;(1 +Xlt2, x~(1 +X1)-2, ... , x~(1 +X1)-2). 

(B2) 

Equation (5.5) of the text results from Eq. (B2) by 
taking n = 1. Equation (5.6) follows from Eq. (B1) for 
n = 2 and subsequent use of Eq. (5.5), or, equivalently, 
from Eq. (B2) for n = 2 and again subsequent use of Eqo 
(5.5). Many more sum rules may be derived from 
repeated applications of Eqs. (Bl) and (B2). 
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We consider the Brill-Deser decomposition of the perturbations of a flat spacetime with compact Cauchy 
hypersurfaces. We propose a generalization of the Brill-Deser splitting which may be applied to the 
perturbations of arbitrary vacuum spacetimes with compact Cauchy slices. We split the space of perturbations 
of any allowed Cauchy data set into three subspaces which, with suitable inner product, are mutually 
orthogonal. Two of these subspaces comprise the solution set of the perturbed constraint equations, and one of 
these two subspaces represents pure gauge perturbations. Some possible applications of these spliltings to the 
study of the vacuum perturbation equations and to the linearization stability problem for the Einstein equations 
are briefly discussed. 

1. INTRODUCTION 

Brill and Deser l have defined a useful orthogonal 
decomposition of the perturbations of a flat spacetime 
with compact Cauchy hypersurfaces. Their splitting 
corresponds, in the compact case, to the Arnowitt, 
Deser, and Misner2 splitting of the perturbations of 
Minkowski space, In this paper we propose a generali­
zation of the Brill-Deser decomposition which applies 
to the perturbations of arbitrary vacuum spacetimes 
with compact Cauchy surfaces. Restricted to the flat 
case our decomposition reduces to the Brill-Deser 
decomposition, 

To generalize the Brill-Deser result, we must first 
abstract the essential features of their splitting, They 
introduce a suitable inner product and split the space of 
perturbed Cauchy data into three mutually orthogonal 
subspaces, Two of these subspaces comprise the solu­
tion set of the linearized constraint equations, One of 
these two subspaces consists of pure gauge perturba­
tions (which always satisfy the perturbed constraintsL 
The second contains all solutions of the perturbed con­
straints which are orthogonal to the gauge perturbations, 
Gauge perturbations are physically trivial since they 
merely represent deformations of the hypersurface 
within the background spacetime, 

We consider the space of Cauchy data for an arbitrary 
compact three-manifold and the constraint subset of 
this space. The tangent space at any point of the con­
straint subset represents possible perturbations of the 
Cauchy data represented by that point. USing a conve­
nient £2 inner product, we split each such tangent space 
into three mutually orthogonal subspaces, We first split 
each tangent space into the solution set of the perturbed 
constraint equations and an orthogonal complement. We 
next refine the splitting by decomposing the kernel of 
the perturbed constraints into the subspace of pure 
gauge perturbations and its orthogonal complemenL 
Finally we specialize our results to the flat case and 
recover the Brill-Deser decomposition, In the conclu­
sion we discuss the application of our results to the 
study of the vacuum perturbation equations. 

The splittings defined here may prove useful in study­
ing the geometry of the constraint subset and in under­
standing the linearization stability problem for the 
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vacuum Einstein equations, Fischer and Marsden3 have 
recently derived conditions upon the Cauchy data which, 
if satisfied, ensure that: 

(i) the constraint subset is a smooth submanifold on a 
neighborhood of the given point and 

(ii) all solutions of the linearized constraints are 
tangent to the constraint submanifold at the given point, 

When the Fischer-Marsden conditions fail to hold, 
the linearized constraints admit spurious solutions 
which are not tangent to any curve of exact solutions of 
the constraint equations. We shall refer to those Cauchy 
data which satisfy the Fischer-Marsden conditions as 
the regular points of the constraint subset. The remain­
ing points of the constraint subset will be called the ir­
regular points, 

In a recent paper4 it was shown that Cauchy data for 
a vacuum spacetime admitting one or more Killing 
vector fields is always an irregular point of the con­
straint subset, It was also shown that an irregular point 
always admits a Cauchy development with one or more 
Killing vector fields, The number of independent Killing 
vectors which occur was shown to equal the dimension of 
the kernel of a certain linear map (the adjoint map) de­
fined by Marsden and Fischer, The regular points of 
the constraint subset have an injective adjoint map. An 
interesting feature of the splitting defined here is that 
it has a different character at irregular points from that 
at regular points, Certain elliptic equations which must 
be solved in effecting the decomposition admit unique 
solutions only at regular points, At irregular points the 
solutions are no longer unique but the splitting itself 
remains unique, Some possible applications of our de­
composition to the linearization stability problem are 
discussed in the conclusion, 

2. NOTATION AND BASIC EQUATIONS 

Let M be a compact, oriented, C~ three-manifold 
without boundary and define the following spaces of c~ 
tensor fields over M: 

C ~ = space of scalar fields ove r M, 

Xl = space of vector fields over M, 

!fJ == space of Riemannian metrics of AI, 
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52 (52*)= space of symmetric, covariant second rank 
tensors (tensor densities) over M, 

5 2(5/)= space of symmetric, contravariant second 
rank tensors (tensor densities) over M. 

In addition write P =111 x 5 * Z .. T *111 for the gravitational 
phase space of Cauchy data for M. The constraint subset 
C c P is defined by 

(2.1) 

where 

<l> :l11x5/-C~XXl; (g,'IT)- (H(g,'IT),5(g,'IT» (2.2) 

with 

H(g, 'IT) = (detg)-I['lTIi 'ITi} - t(gi}'lTIJ)2] -R(g), 

(2.3) 

in which R(g) is the curvature scalar of g. The vertical 
bar signifies covariant differentiation with respect to g. 

Let T (g •• ) P .. 5 2 X 5 * Z be the tangent space at a point 
(g, 'IT) E P and define the inner product ( , ) by 

«h,p), (h' ,p'»= jMd3x (detg)I/2 «h,p), (h' ,p'», (2.4) 

where (h,p) and (h' ,p') E 52X5/ and in which 

«h,p), (h' ,p' »= [hi} h~J+ (detg)-1 pIJP~J) E C" . (2.5) 

Similarly write 

«C,X), (C' ,X'»= fIJ d3x (detg)1/2 «C,X), (C' ,X'», 

where (C,X) and (C',X')EC~XXI and in which 

«C,X), (C' ,X'»= Co C' +XIX'j EC~. 

The derivative D<l> (g, 7T) of <l> at a point (g, 7T) EC 
= <l>-1(0) is given by3.4 

D<l>(g, 7T): 5 zx 5 /-C~ XXI; 

(h,p) - {(detg)-I[ - H7T' 'IT - i(trw)2)trh 

+ 2 (7T' P - itr7Ttrp) 

+ 2(7T X 7T - i(tr7T)7T)' h) 

- {Mh - ~(trh) - [Ric(g) - k R(g)]· h}; 

(detg)-1/2[2pIJ I J + 7T,Jk(hl
jlk 

+h\u -hjk
ll )]}, 

(2.6) 

(2.7) 

(2.8) 

where 0 signifies contraction (e. g., 7T' h = 7T1J h lJ ) and tr 
signifies trace (trh = giihlj)' Also 'lTX 7T= 7T1k7TkJ, 50h 
= hi} I IJ, ~ (trh) = (trh)1 I I I and Ric (g) is the Ricci tensor 
of g. The adjoint map D<l> (g, 'IT)* defined through 

«C, X), D<l> (g, 7T)' (h,p»= (D<l> (g, 'IT)* • (C,X), (h,p» 

(2.9) 

is given explicitly by3.4 

D<l>(g,7T)* :C~XXl- 5zx5/; 

1557 

(C,X) - {(detg)-I[ - H7T' 7T - i(tr7T)2)gC 

+ 2 (7TX 7T - h(trw»* C] 

- [HessC - gt:J.C - (Ric (g) - ig R (g» C] 
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(2.10) 

+ (detg)-1/2(Lx 7T)*; 

2C(7T - i(tr7T)g-l) - (Lxg)-I(detg)I/2}, 

where HessC=Clii , Lx=Lie derivative with respect to 
X, -1 indicates the contravariant form of a tensor [(Lxg)-1 
= Xi IJ + XJI I] and * indicates the covariant form of a 
tensor [(Lx 7T)* = (7TIJ~)lk -Xllk~J - XJlk1l"tl. This nota­
tion differs somewhat from that of Ref. 4. The previous 
expression for the adjoint may be obtained from that 
here by reexpressing the first slot in contravariant den­
sity form and the second slot in covariant tensor form. 
The expressions given here for D<l>(g,7T) and D<l>(g,7T)* 
are complete only at points of the constraint subset. At 
arbitrary points there are additional terms proportional 
to H(g, rr) and 5 (g, rr) which vanish at C. Our notation, 
with only minor modifications, is the same as that of 
Fischer and Marsden. 3 

3. THE FIRST SPLITTING 

In this section we establish the orthogonal 
decomposition 

T(g •• )111 x 5 * 2 .. 52X 5 *2 =kerD<l> (g, rr)EEl range D<l> (g, rr)* 

(3.1 ) 

for any point (g,rr)EC. The orthogonality of the two sub­
spaces is straightforward to check. If (Il ,p) E ker D<l> (g, 7T) 
and (C,X)ECooXXt, then 

«h,p), D<l>(g, rr)*' (C ,X»= (D<l> (g, rr)' (h,p), (C ,X»= o. 
(3.2) 

To show that an arbitrary tangent vector (h,p) may be 
uniquely split as 

(h,p)= (h,p) + D<l>(g,rr)* 0 (C,X) (3.3) 

with (ii,pk~kerD<l>(g,7T), we use elliptic theory as in 
Berger and Ebin5 and Fischer and Marsden. 3 Applying 
D<l> (g, 7T) to Eq. (3.3), we obtain 

D<l>(g,rr)· (h,p)=D<l>(g,rr)' [D<l>(g,rr}*' (C,X», (3.4) 

which are partial differential equations for C and X. 
Fischer and Marsden proved that O! (g, rr) 
== Dif> (g, rr)' D<l> (g, rr)* is elliptic by showing that D<I> (g, rr)* 
has injective symbol and applying Theorem (4.4) of 
Berger and Ebin. 5 Therefore, from Theorem (4.3) of 
Berger and Ebin, we have the orthogonal decomposition 

C ~ XXI = range O!(g, 7T) EEl kerO!(g, rr) 
(3.5) 

= range O!(g, rr)EEl ker Dq, (g, 7T)* • 

The last equality follows from the observation that if 
(C,X)Ekera(g,7T), then 

0= «C,X),D<l>(g, 7T)' [D<l>(g, 7T)*' (C, X» 
(3.6) 

= (D<l> (g, 7T)*' (C,X), D<l> (g, rr)*' (C,X», 

which implies that Dq, (g, rr)* • (C,X)= O. Thus kerO!(g, rr) 
=kerDq,(g,7T)*. 

The regular points of C are precisely those at which 
D<l>(g,7T)* is injective. Therefore, at regular pOints of 
C, Eq. (3.5) reduces to 

(3.7) 
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Thus a solution of Eqo (304) always exists and, since 
Q' (g, 7T) is inj ective, is unique. 

At an irregular point of C a solution of Eq. (3.4) still 
exists provided the source term D4> (g, 7T) 0 (h,p) lies in 
the space orthogonal to kerD4>(g,7T)* [and thus in the 
rang~ ~ a(g, 7T)]0 To see that this is always the case, 
let (C,X) EkerDq,(g, 7T)* and compute 

«C,X),D4>(g, 7T)' (h,p»= (D4>(g, 7T)*' (C,X), (h,p))=O. 

(3 0 8) 

However, the solution (C,X) of Eq. (3 04) is not unique 
since one may always add any element of the kernel of 
D4> (g, 1T)*. Nevertheless, the splitting 

(h,p)= (ii,p)+D4>(g,7T)* 0 (C,X) (3 0 9) 

is unique Since, of course, Dq,(g,7T)* annihilates any 
element of its kerneL Our fist splitting is thus a fairly 
immediate consequence of the Fischer-Marsden result 
for a(g,7T) and the Berger-Ebin analysis. 

It is important to remember that, although the de­
composition is defined even at irregular points of C, its 
geometrical significance is different from that at regu­
lar pOints. At an irregular point C may not be a smooth 
submanifold of ;11 x 5/. But even if it is, its tangent 
space is only a subset of ker D4> (g, 7T). 3 

It may be useful here to recall how consideration of 
the operator c;(g,7T)=D4>(g,7T)·D4>(g,7T)* arose in the 
Fischer-Marsden analysiS. Part of their linearization 
stability theorem consists of showing that D4>(g, 7T) is 
surjective if and only if D4>(g, 1T)* is injective. Upon 
deriving Eq. (305) they conclude at once that if D4>(g, 7T)* 
is injective, then D4>(g,7T) is surjective since, in fact, 
it maps the range of its adjoint onto C ~ x Xl. If, how­
ever, the adjoint has nontrivial kernel, then D4> (g, rr) is 
not surjective since, in fact, it cannot map to any non­
zero element in the kernel of W (g, 7T)* 0 To see this, 
assume (C,X) E' kerDq, (g, 7T)* and suppose a tangent 
vector (h,p) exists for which 

(C,X)=D4>(g,rr)o (h,p), 

Then 

«C,X), (C,X»= «C,X),D4>(g,rr)' (h,p» 

= (D4> (g, rr)* 0 (C ,X), (h,p)} 

=0, 

which forces C=X=O. 

4. GAUGE PERTURBATIONS AND A REFINED 
SPLITTING 

(3.10 ) 

(3.11 ) 

We now refine the decomposition of the previous 
section by splitting the kernel of D4>(g,1T) into two ortho­
gonal subspaces. To explain this refinement, we first 
recall some results obtained in ReL 4. There it was 
shown that if (4)X is a vector field on a Cauchy develop­
ment of the initial data (g', rr') EO C, then (4) X induces at 
each Cauchy surface of the development a tangent vector 
(h,p) (4) representing the infinitesimal diffeomorphism 
generated by (4)X. Furthermore, this gauge perturbation 
of the Cauchy data (g,1T) of the hypersurface may be 
simply expressed in terms of the adjoint map D4> (g, rr)*. 
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If C = nit (4) X = N-l «4) X _ gli N (4) X ) and XO j -..t _ 
(4) It • 0 I j glj - j-

= X, are respectIvely the normal and tangential pro-
jections of (4)X at the hypersurface (M g 7T) then the 
• 0 " , 

Induced tangent vector (h p)( = (h pO) EO T ;11 x 5 2 
. . b ' 4)X' (g, r) * 
IS gIven y 

«detg)-1/2 P*, - (detg)l /2 h-l )= D4> (g, 1T)* • (C ,X), 
(4.1) 

where P* =Pij, 'h-l=h1j and, as we have mentioned, the 
notation here differs slightly from that of Ref. 4. 

It is convenient to define an alternative form of the 
adjoint in which the first slot is replaced by its contra­
variant density form and the second slot by its covariant 
tensor form. Thus, if (h,p) are given as in Eqo (4.1), 
write 

(p,-h)=D4>(g,rr)t.(C,X). (4.2) 

This equation is equivalent to 

(h,p)= (~"al)D4>(g,7T)t. (C,X)=y(g,rr)' (C,X), (4.3) 

where, for convenience, we regard (Iz p) and 
D4>(g,rr)t. (C,X) as two component cOI~mn vectors. 

The aim is now to split the kernel of Dq, (g, rr) into the 
range of <1 -~) W (g, rr)t and an orthogonal subspace. For 
this to be meaningful it is of course necessary that the 
range of y(g,rr)= <1-;;)D4>(g,rr)t be contained in the 
kernel of Dq, (g, rr). The proof is a straightforward 
computation. 

Theorem 4.1: If (g,rr)EC, then range 
. y(g,rr)ckerD4>(g,rr). 

Proof: Let (C,X) be any element of C~ XXl and 
o 0 

evaluate D4> (g, 7T) 0 (y(g, 1T) ° (C,xl] using the explicit 
expressions given by Eqs. (2.8), (2.10), (4.1), and 
(4.3). The result is 

D4>(g,rr) ° [y(g,7T)' (C,X)] 
= {2C1i01 (g, rr) + C(OI (g, rr»ll + Xi I j H (g, 1l) 

+ Xl (H(g, rr) )'1 ; 

CllH(g, rr) + oj (g, rr )[2C(detg )-1/2 (rri j - to I J trrr)] 

+ (X*ol(g, 7T»'k -XllkOR(g, rr)}=O 

(4.4) 

since 01 (g,7T)= 2 (detg)-1/2 rrli" and H(g,1T) vanish for 
any (g, rr) EC. 

To identify the subspace within kerD4> (g, n) which is 
orthogonal to the range of y(g ,n). let (h,p)E:kerD<I>(g,7T) 
and require, for arbitrary (C,X) E Coo xXI, that 

{(/l,p),y(g, rr)° (C,X»=Oo (4.5) 

This is equivalent to 

0= {(p, - ii\, D4> (g, 7T)* 0 (C,x» (4.6) 

= (D4> (g, 7T) ° (p, - li)t, (C ,X» 
in which we have defined (, )t by 

(p, _ h)t = «detg)-1/2 p*, - (detg)l /2 Ii-l), (4.7) 

~h~e, as before, p* =Plj, 'h-1 = hlJ 0 Thus a vector 
(h,p) EkerD4>(g,rr) is orthogonal to the range of y(g,rr) 
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provided that 

D<I> (g, 1T)' (p, - h)t == 0. 

We now attempt to split an arbitrary vector 
(ii,p)EkerD<I>(g,1T) as 

(ii,p)= (h,p) + (Cl ~)D<I>(g, 1T)t. (C,X) 
with 

D<I> (g, 1T)' (p, - h)t = 0. 

Equation (4.9) is equivalent to 

(p, - h\ = (p, -n)t + [D<I> (g, 1T)t. (C,X)]t 
_ 0 0 

= Cp, -h)t +D<I>(g, 1T)*' (C,X), 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

where the last equality follows from the definitions of 
(, )t and D<I>(g,1T)t. Applying D<I>(g,1T) and USing Eq. 
(4.10), we obtain 

_ 0 0 

D<I> (g, 1T)' (p, - h)t =D<l> (g, 1T)' [D<I> (g, 1T)* • (C,X»), 

(4.12) 

which are partial differential equations for (C,X). How­
ever, the operator O'(g,1T)=D<I>(g,rr)' D<I>(g,1T)* is the 
same as that treated in Sec. III. Therefore, at regular 
points of ( the solution to Eq. (4.12) exists and is 
unique. For irregular points one shows, just as before, 
that the source term D<I> (g, 1T)' (]i, - li)t is orthogonal to 
kerD<I>(g,1T)* so that a solution of Eq. (4.12) still exists. 
Again the solution (C,X) fails to be unique as one may 
add any element of kerD<I> (g, 'IT)*. Nevertheless, the de­
composition (4.9) is unique since D<I> (g, 1T)t, which is 
just another form of the adjoint, annihilates any element 
of kerD<I>(g,1T)*. 

To summarize the results of the preceding sections, 
we introduce the notation 

(4.13 ) 

which is natural since, from its definition, y (g, 1T)* is 
the L2 adjoint of y(g, 1T). Thus the splitting defined in 
this section may be written 

kerD<I> (g, 1T) = rangey(g, 1T)(B (kery(g, 1T)* n kerD<I> (g, 1T». 

(4.14) 

Combining this result with that of the previous section, 
we obtain 

Theorem 4. 2: If (g, 1T) E C, the tangent space 
T (g, F),M X S * 2 may be expressed as the direct sum of 
three mutually orthogonal subspaces: 

T (g,~/n x 5 * 2== rangeD<I> (g, 1T)* (B rangey(g, 1T) 

(B (kery(g, 1T)* n kerD<I> (g, 1T». 
At a regular point of C the last two spaces form the 
tangent space of C at (g,1T). The second member [range 
y(g,1T») contains all vectors representing pure gauge 
perturbations of (g, rr). The last member represents 
deformations of (g,1T) towards Cauchy data for vacuum 
spacetimes distinct from that determined by (g, 1T). 

5. THE BRIll-OESER DECOMPOSITION 

In this section we specialize the results of the pre-
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vious sections to recover the Brill-Oeser decomposi­
tion of perturbations at a point with 'IT = a and g flaL We 
must assume, of course, that M admits a flat metric. 

If 1T= ° and g is flat, we have from Eqs. (2.8) and 
(2.10) 

D<I>(g,O). (h,p)={-h l/
li + (trh)d l ;2(detg)-1/2p l i lJ } 

(5.1) 

and 

D<I>(g,O)*' (C,X) 

={ - Cllj + gli Clkk
; - (detg)l/2 (XII) + Xi II )}. (5.2) 

Therefore, 

y(g,O). (C,X)= cg ~)D<I>(g,O)t. (C,X) 
o 0 0 o]} -{X +X . - fdetg)I/2[CliJ _gIJC ,1> - Iii iii' \' Ik 

(5.3) 

and 

y(g,o}*, (h,p) 

= {- (detg)-1/2[PIJ Iii - (trp )1111); - 2hli Ii}' (5.4) 

Thus any tangent vector (h,p) may be expressed as 

hI! =h1i + XIIi +Xill - (CII} -gljDoC), 

pli =piJ _ (detg)I/2 (CI ii _ gii DoC) _ (detg)I/2(XIIJ + Xi Ii), 

(5.5) 

in which (ii,p) obey 

and 

h- Ii -p- Ii-O Ii - Ii -

~(trh)= Do (trp) = 0. 

(5.6) 

(5.7) 

Since M is compact, Eqs. (5.7) imply that trk = 0' and 
trp = (detg)I/2 /3, where 0' and /3 are constants. Since Ii 
and p are both transverse, we may therefore write 

-h - TT 1 ii = hii + "3giJ 0' (5.8) 
pi! = pj TT + t (detg) 1/2 gii f3, 

where TT Signifies transverse and traceless. Equa­
tions (5.5) and (5.8) are equivalent to the splitting de­
fined by Brill and Oeser. 

6. DISCUSSION 

Given Cauchy data (g,'IT)EC, one may choose a (time 
dependent) lapse function and shift vector field and inte­
grate the Einstein evolution equations to determine a 
Ricci-flat metric (4)g on (-f,f)xM. In particular, one 
gets a curve (g(t), 'IT(t))EC with (g, 1T)= (g(O), 'IT(O» and 
t E (-f,t). The Cauchy problem for the corresponding 
linearized equations is similar. One chooses initial data 
(h,p) E T (g •• I,M xS/ obeying D<I>(g, 'IT)' (h,p)=O and 
specifies a (time dependent) perturbation of the lapse 
function and shift vector field. Integration of the per- . 
turbed evolution equations gives (h(t), p(t» E TCK(t"FW),M 

x5* 2 with (h,p)= (h(0), p(O» and tE (-f,f). Since the 
linearized constraints are preserved by the linearized 
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evolution equations, the perturbations obey 

(h (f), p (t)) E ker D<I> (g(t), 7T (t» 

for ali. t E (-E,E). 

(6.1) 

Now consider applying the decomposition theorems 
derived here to a solution of the perturbation equations. 
Since Oz(t), p(t» satisfies Eqo (6 0 1), we may split the 
perturbations as in Eq. (4 0 14): 

Oz (I) ,p (I)) = (h (t), p (t» + y{g(t), 7T(t»· (C (t), X(t» (6.2) 

wi"!:h 

(h(1) , pen) E (kery(g(t), 7T(t»)* n kerD<I>(g(t), 7T(t))). 

Both terms are uniquely determined at each instant 
[even though C(t) and X(t) may not be]. 

(6.3) 

We claim that (h(t), pet»~ are unchanged by an arbitra­
ry gauge transformation whereas both (C(t),X(t» and 
the perturbed lapse and shift functions are in general 
changed by a gauge transformationo As shown in Ref. 
4, any vector field (4)X' on «-E,E)XM, (4)g) induces, 
on the Cauchy surface (M,g(t),7T(t)), the gauge perturba­
tion (h' (I),p' (t)= y(g(t), 7T(t))· (0 (f),X' (t)), where C' (l) 
and X/(t) are the normal and tangential projections of 
(4) X' at that hypersurface. It follows, from the unique­
ness of the decomposition, that the gauge transformed 
perturbations split according to 

(17 (I) + h' (I), p (I) + p' (I» 

= (h (I), p(t» + y(g(t), 7T(t» 0 (C(t) + c' (t), X(t) +X' (t)) (604) 

with no change in (h(f), P(t)). Thus (fi(t), pet)) have a 
unique time development, independent of the choice of 
gauge, whereas the orthogonal term [E rangey(g(t) , 7T (l»] 
and the perturbations of the lapse and shift functions are 
gauge dependenL 

One may apply the decompositions defined here to the 
linearization stability problem for the vacuum Einstein 
equations precisely as Brill and Deser did for the 
special case of a flat spacetime. As explained in the 
Introduction, any vacuum spacetime (with compact 
Cauchy slices) which admits a Killing vector field fails 
to be linearization stable. For these cases some solu­
tions of the perturbation equations should be excluded 
since they do not approximate any curve of exact solu­
tions. In a subsequent paper (the sequel to ReL 4) we 
shall derive the additional (nonlinear) restrictions upon 
the perturbations which are necessary to exclude spuri­
ous per'curbation solutions 0 These restrictions are 
equivalent to demanding that the conserved quantity as­
sociated with each linearly independent Killing vector 
fieLd must be constrained to vanisho 
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Each such conserved quantity may be evaluated on 
any spacelike hypersurface through the spacetime and 
is expressible as the integral (over that hypersurface) 
of a function quadratic in the perturbationso When con­
strained to vanish these integrals impose nontrivial 
restrictions upon the perturbed Cauchy datao The con­
servation laws ensure that these new constraints are 
independent of the choice of initial surface at which they 
are imposed. 

An important feature of these conserved integrals is 
that they are necessarily gauge invariant (since other­
wise they could not be conserved). Therefore, if one 
should apply the decomposition (6.2) to the perturba­
tions, he would find that the conserved integrals are 
cyclic in the gauge dependent terms and thus, when re­
quired to vanish, impose restrictions only upon the 
gauge invariant contributions (h(f) , pet)). This result 
would be a natural generalization of that due to Brill 
and Deser for flat spacetimes o 

Since the new constraints are nonlinear restrictions 
upon the perturbed Cauchy data, the set of perturbations 
which satisfy them is not likely to form a vector space. 
Thus the allowed solutions of the perturbation equations 
would not obey a superposition principle even though the 
perturbation equations themselves are linear. This ob­
servation suggests that the constraint subset C could 
not be a smooth submanifold of P on any neighborhood 
of an irregular poinio If C were smooth at an irregular 
point, its tangent space would coincide with the set of 
allowed perturbations whereas the latter does not seem 
to form a vector space o The decompositions defined in 
this paper may prove useful in giving a more precise 
characterization of the geometry of the constraint sub­
set near its irregular pOintso 
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The diagonalizability of the hydrodynamic matrix in the case that one of the variables is odd under time 
reversal is investigated. The implications for a normal mode analysis and for the spectral density elements 
are considered. 

1. INTRODUCTION 

The macroscopic description of nonequilibrium pro­
cesses in fluids is normally based on conservation 
equations such as those for total mass and for individual 
species and on conservation equations for momentum 
and for energy. One obtains, following what are now 
well established procedures (see, for example, Landau 
and Lifshitz I) a set of coupled nonlinear equations 

iJ - - -aTAj(r, t) = f( {A l(r, f), V'AI(r, f), ...... }), j = 1· .. (m + n) 

(1) 

w~re th~Alr,.D indicate field variables, e. g., 
T(r, t)P(r, f), v(r, t), etc., V' denotes the gradient opera­
tor, the ... represents more complex terms, m + n is the 
number of variables required to specify the state of the 
system, and m is the number of thermodynamic vari­
ables. The solution of these equations, in one form or 
another, forms the basis for the analysis of many 
physical problems of interest. 

We shall be concerned with the set of equations ob­
tained from Eq. (1) by linearizing in the small devia­
tions a j(r, t) =A/i=; f) -A/equil). We write the resulting 
linearized equations as 

iJ - -at ~(r, t) = M~(r, t), (2) 

where ~ is a vector whose components are the air, t) 
and M denotes a matrix whose entries express the 
coupling between the variables A j(i=; f). Equation (2) may 
then be spacially decoupled by a suitable Fourier trans­
form giving a set of equations for each Fourier com­
ponent as in 

iJ - ;:'Ii-at ~(k, t) = M(kJ ~(k, t). (3) 

Although there are alternatives, one commonly finds 
the a j(k, t) via a normal mode decomposition. 2 In order 
to carry this out, we first find the eigenvecto!'.s V I and 
eigenvalues A, of the hydrodynamic matrix M(k), i. e. , 
we obtain the matrix V which diagonalizes M as in 

V-IMV=A 

where A = diag{A I ... A, ... } and Y is a matrix whose 
columns are the eigenvectors VI' Given this, one can 
then write - -~(k, f) = Vx.(k, t), 

where y is a matrix whose columns are the normal 
modes Y f (k, f) defined by 

( 4) 
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..... ~ At y,(k, t) =y ,(k, 0) e I ( 5) 

If the aj(i=; t) are taken to be random fluctuations in an 
isotropiC fluid, then the system may be characterized, 
using Onsager's assumption concerning the regreSSion 
of fluctuations, by the correlation matrix elements 

Rjl(r, t) = (a/;' +;; t' + t)at(r', t'»), 

where ( ... ) denotes the appropriate average. Alterna­
tively, on invoking the Weiner-Khinchin theorem, one 
can characterize the process by the spectral density 
matrix elements SJl(k, w) given by the Fourier-Laplace 
transform of the correlation Rjl(r, t), To facilitate the 
analysis of the spectral density matrix elements, the 
normal mode decomposition of the preceding paragraph 
may be employed. One writes Sjl(k, w) as 

S jl(k, w) = (kBTV /27T) Re:6 I ZL!(A,+ iw) 

where ZL is an element of the "constituent" matrix ~' 
defined by~' = Qx.(k). Here Q= V,{Vi l

)" where V, is 
the fth column of y, (ViI)' is the fth row of y-l, and 
X(k) is the Fourier transform of the one-time correlation 
(variance) matrix with elements 

(6) 

Clearly, both the eigenvalues and eigenvectors of the 
Fourier transformed hydrodynamic matrix M(k) are re­
quired in the analyses described in the preceding 
paragraphs. The inherent symmetry of the hydrody­
namic matrix has been used recently to establish the 
distribution of the eigenvalues AI in the complex plane. 3,4 

This is of some Significance since the number of com­
plex eigenvalues gives the number of peaks in the 
spectral function which have their maximum at w -40. 
The same analysis has also allowed progress in es­
tablishing the relation between the diagonalizing 
matrices y-I and y in the cases where the Af are all 
distinct. However, heretofore the question of diago­
nalizability of the hydrodynamic matrix when not all AI 
are distinct has not been widely investigated. 5 It is this 
question and the implications of the results that shall be 
our concern here. Since the results referred to above 
for A!, V, and V-l will be of some aSSistance, we shall 
briefly review their development using this as an op­
portunity to introduce required notation. 

2. SYMMETRY OF THE HYDRODYNAMIC MATRIX 

The development 3,4 begins with rewriting the Fourier 
transformed hydrodynamic equations of Eq. (2) in terms 
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of statistically independent normalized variables 
~(i~, t) as 

il - -at f?(k, l) = ~ ~(k, t), 

where the elements of the column vector Ii satisfy 

(B /k, t) J3i(k, t) = 6 j /. 

Since the J3 j(k, t) are related to the a J(k, t) by 

f?(i~, t) = QX-1 
/2 .o:(k, t), 

(7) 

( 8) 

where Q is an arbitrary unitary matrix and A-1 /
2 is 

given by the positive definite variance matrix X defined 
by Eq. (6), it is easy to show that -

(9) 

The transformed hydrodynamic matrix K , thus obtained 
can be shown, on invoking the principle of microscopic 
reversibility, to have the symmetry 

(10) 

Here, ~, the signature matrix for time reversal, is 
diagonal with n ordered entries of plus 1 for the even 
thermodynamic variables and m, minus 1 entries, for 
odd variables arising from, say, the velocity field. 

If we restrict ourselves to the case where m = 1, we 
may, without loss of generality, choose the unitary 
matrix U to be such that K has the form 

a1 • 0 b] K= 0 an bn , (11) 

- b1 - bn an +1 

where the elements of K are real. A matrix which has 
been transformed to thestructure displayed in Eq. (11) 
we shall refer to as the bordered diagonal form (BDF) 
of ~ denoted by ~BDF. 

Given Eq. (11), it can be readily seen that the charac­
teristic polynomial of ~BDF, i. e., of~, can be written 
as 

I I n+l ~ 2 n ) ) 
P(A)= ~-A!. = HI (ai-A)+j~ bj lL (ai-A, (12 

from which it is easy to establish (see Ref. 4): 

Lemma 1: For a matrix K of dimension n + 1 with 
symmetry Kt = EKE, where E is diagonal with the first 
n entries uility anctfue last minus one, there is a mini­
mum of n - 1 real roots, and these n - 1 real roots 
11.1 •• , A

n
_1 are distributed as a i < Ai < a i+ 1 for all 

1 ,,;i ,,;n - 1, where the a i are the elements of ~BDF. 

3. DIAGONALIZABILITY 

The hydrodynamic matrix K with symmetry as given 
by Eq. (10) can readily be shown to be nonnormal. To 
see this, we write, from Eq. (10), 

KKt= EKtKE, 

where we have used the fact that EE = I. Thus (KKt)jj 
=EJiEjj (~t~)ij so that in general KKt ;~t~. Hence the 
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matrix K cannot be diagonalized by a unitary trans­
formation, it can only be brought to the nearly diagonal 
form as displayed in Eq. (11). 

When all eigenvalues of K are distinct, one can, how­
ever, diagonalize ~ by a s&nilarity transformation 6 

(13) 

and as was shown in Ref. 4 the diagonalizing matrix W 
has the symmetry 

Wt=W-1E. (14) 

However, suppose not all eigenvalues are distinct. It 
is easy to show that in such cases not all K matrices 
can be brought to diagonal form by a similarity trans­
formation. For example consider the real matrix of 
Eq. (15), 

which has the symmetry required by Eq. (10) for E 
= diag{ 1, - I}. The eigenvalues of this matrix are -
degenerate when 

(15) 

and one finds that under these conditions that K cannot 
be brought to diagonal form by a similarity transforma­
tion. [One might remark here that the condition of Eq. 
(16) corresponds to the point of crossover from two 
complex roots 11.1 = \~ to the real domain at A1 = '-2J. 
Since K is clearly not, in general, diagonalizable by a 
Similarity transformation, we turn to the problem of 
investigating in a general way the situations where ~ 
is nondiagonlizable. 

Although not all matrices can be brought to diagonal 
form as in Eq. (4), all matrices can, by an appropriate 
Similarity transformation, Y, be brought to a form 
where the right-hand side ofEq. (17) is in a lower 
triangular form with the eigenvalues of ~ along the 
diagonal: 

YKy-1=T. (17) 

Without loss of generality we can require that Y be such 
that T=AJCF ' the Jordan canonical form 7 (JCF), where 
l1J CF is in block diagonal form as 

b. 0 l 
.~J 

(18) 

The Ai are elementary Jordan '-i-blocks. If ~ is 
diagonalizable, all these blocks are 1 x 1, the entry 
being '-" but if ~ is not diagonalizable, one or more of 
the ~i are of the form 

[

'-i OJ 1 
A.= 0 . 

, ~ 0 .. : 1 '-, 

(19) 
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Since an arbitrary matrix can be brought to diagonal 
form by a similarity transformation iff its JCF is 
diagonal, B the question of diagonalizability can be 
answered by examining the JCF. 

4. DEGENERACY AND NONDIAGONALIZABILITY 

We now proceed to discover precisely those cases in 
which the JCF of the ~ matrix of Eq. (11) is not diagonaL 
If all the eigenvalues of K are distinct, then, as in­
dicated earlier, the matrix is diagonalizable, and there­
fore the nondiagonalizability problem arises only when 
a degeneracy occurs in the roots of K. If any of the b i 
are zero in the BDF of K, then clearly the corre­
sponding a j is an eigenvalue and the ith basis vector an 
eigenvector. Thus degeneracies in roots which occur in 
this manner will not prevent diagonalization. For this 
reason we assume that all the b i are nonzero (this is 
equivalent to reordering the basis vectors so that, with 
respect to the reordered basis, K becomes the matrix 
direct sum of a diagonal matrix and a matrix of the 
same symmetry as K with all b's nonzero). We shall 
henceforth concern ourselves only with that partition of 
the hydrodynamic matrix which, when unitarily trans­
formed as in Eq. (9), assumes the bordered diagonal 
form where all b i *0, i. e., the K matrix is the fully 
coupled partition (FCP). We will suppress the notation 
FCP except where confusion could result (in which case 
we will use KFCP) and will normally use just the 
notation ~ for these fully coupled matrices. 

A. All aj distinct 

Lemma 2: A K matrix of dimension'" 4 for which all 
the a i (i = 1, "';-n) of ~BD F are distinct is diagonalizable 
iff all its eigenvalues are distinct. 

The proof is rather lengthy, involving tedious but 
straightforward manipulations, and hence is relegated 
to the Appendix. 

Lemma 2 allows us to attack the case in which all a i 
(i = 1, ... , n) are distinct and the dimension of the ~ 
matrix is arbitrary. The reason is that from Lemma 1 
we know that there are at least n - 1 real eigenvalues 
and that if the dimension of the ~ matrix, (n + 1), is ~ 5, 
there is at least one eigenvalue of multiplicity one and 
hence that there is at least one eigenspace of dimension 
equal to the multiplicity of the eigenvalue. utilizing 
these facts, we can prove (see Appendix) the following 
theorem. 

Theorem 1: A ~ matrix in which the a j of ~BDF are 
distinct (i = 1, ... ,n) is diagonalizable iff all its eigen­
values are distinct. 

The matrix defined by Eqs. (15) and (16) provides a 
ready illustration of a case in which the eigenvalues are 
not all distinct and hence the K matrix is not diago­
nalizable. For K matrices of higher dimension, degen­
eracy and nondiagonalizability can arise in more ways 
than that indicated by this simple example, and we shall 
return to this point in subsection C to follow. 

B. Not all aj distinct 

In general it is possible that not all of the a j (i = 1, ... 
n) in ~BDF are distinct. In this case it is possible to 
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reduce the problem to one very similar to that treated 
in Theorem 1 by using the following lemma. 

Lemma 3: If there are p distinct a i (i = 1, ... ,n) in 
K BDF , each occurring n i times, then a j is an eigenvalue 
of K of order precisely n i - 1 and there exist exactly 
n i ~ 1 linearly independent eigenvectors in its eigenspace. 

Since the proof of this lemma introduces a useful 
factorization of the characteristic polynomial, we give 
it in detail at this pOint. 

Proof: From Eq. (12) 

Thus if 

then the factor (a j 
- x) occurs n i - 1 times in P(X); 

ch(~) 

~ (aj-x)J, 
j'1 

(20) 
We denote the last factor in Eq. 

/>+1 P P 

Q(X) = i~1 (a i 
- x) + k c~ Hi (a i 

- x). 

[We note, that for cases where all the a i (i = 1, ... ,n) 
of KBDF are distinct, Q(X) is in fact the characteristic 
poiYnomial P(x) of~.] Since c~ *0, it is easy to see that 
no a i is a root of Q(X). Thus (a i - x) occurs precisely 
nj - 1 times as a factor of ch(~). 

Now let {e J i=1 •...• n+l be the basis with respect to 
which the hydrodynamic matrix assumes the BDF. Then 
the set of n j - 1 vectors 

{e - b b-1
. e}. = ([i 

Ii Ii 'i+J 'i+j ):::1 ..... nf·l 

is easily seen to consist of eigenvectors of K of eigen­
value a i • The set {ez)u ([j is, of course, linearly in-
dependent. QED 

It is now possible to classify the roots of ch(~) as 
follows. 

Definition: A root of K will be classified as a type I 
root Xli where it is a root of Q(X) and will be called a 
type II root, X ~I, otherwise. 

It will be recalled that in the proof of Lemma 3 we 
established that the sets {Xli} and {Xl/} were disjoint. One 
can prove (see the Appendix) the following theorem. 

Theorem 2: The hydrodynamic matrix is diagonable iff 
the type I roots of ~ are distinct. 

C. Dimension of the elementary Jordan blocks 

One can now delineate precisely the possible forms 
for the JCF of K. From Theorem 2 (and Theorem 1 
which is just a special case of Theorem 2) we know that 
the hydrodynamic matrix is nondiagonalizable only when 
there is a degeneracy in the type I roots. The obvious 
question is thus in what manner can such degeneracies 
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> 
~ 
OJ 
c: 

l! 

FIG. 1. Trajectories in parameter space of a 2-dimensional 
K matrix. 

arise? The analysis of this question is carried out in 
the course of the proof of Theorem 2 [see Eq. (A4)] 
and the results are as follows: 

V> 
OJ 
c: 
<0 

a. 

(i) For certain regions of the parameter space de­
fining K, two of the roots of K are complex. For points 
in this -region there are no degeneracies in type I roots. 

(ii) In the remaining region of parameter space all the 
roots of Q(A) are real and there are p + 1 such roots. 
Degeneracy in type I roots and hence nondiagonalizability 
of the hydrodynamic matrix will occur iff there are 
less than p + 1 of them which are distinct. The com­
binations are limited to p distinct roots with one two­
fold degeneracy, p - 1 distinct roots with two twofold 
degeneracies, and p - 1 distinct roots with one threefold 
degeneracy. 

The implications of these results in terms of the JCF 
can be stated as a corollary to Theorem 2. 

Corollary: The JCF of a nondiagonalizable ~ matrix 
may contain; one 2 x 2 Jordan block, two 2 x 2 Jordan 
blocks, or one 3 x 3 Jordan block, depending on whether 
there is one double degeneracy in the roots of Q(A), two 
double degeneracies in the roots of Q(\), or one triple 
degeneracy in the roots of Q(\). 

D. Hypersurface of nondiagonalizability 

The preceeding section has specified the cases in 
which the hydrodynamic matrix is not diagonalizable. 
Although there are only three such cases, they may 
arise in a number of ways. To illustrate, let us con­
sider the two-dimensional matrix of Eq. (15). We may 
completely specify a given matrix of this form by a point 
in IR3 (see Fig. 1) where the coordinates will refer to 
the values of aI' a2, and b respectively. The two con­
ditions of Eq. (16) then determine two intersecting 
planes in IR3

, such that any point on either of these 
planes corresponds to a nondiagonalizable matrix. Apart 
from those which lie in one of the planes or those which 
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pass through the origin, all straight lines in IR3 will 
intersect the surface of nondiagonalizability only twice. 
However, the variation of some physical parameter is 
unlikely to lead to a straight line trajectory in IR3

, 

rather one might expect some more complicated trajec­
tory such as that shown in Fig. 1. In such a case one 
cannot state, a priori, how many times non­
diagonalizability will arise. 

Let us now consider a matrix of arbitrary dimension. 
For Simplicity we will assume that all the a j (i= 1, ... , n) 
are distinct as the more general case can be reduced to 
one akin to it. We may suppose that we have 11 + 1 ex­
preSSions for the eigenvalues in terms of the 2n + 1 
parameters aI' ... ,an+l , bl , ... , bn as: 

Aj=A/a p ... , bn)· 

The conditions Aj=A" i *J, define occurrences of 
degeneracies in Q(A) and hence occurrences of non­
diagonalizability. The constraint 

Aj-Aj=O (21) 

always has a solution in terms of the parameters, 
namely all parameters zero. This is, however, in­
compatible with the restriction that all the a j are dis­
tinct. Nontrivial solutions for (21) will be on a hyper­
surface of dimension 2n in the parameter space and the 
union of all these hypersurfaces defines the region of 
nondiagonalizability in parameter space. Clearly the 
number of such points is continuously infinite. It appears 
that we cannot really say anything more about the shape 
of the surface without knowledge of the functions \1' The 
intersection of part of an arbitrary trajectory with this 
hypersurface is illustrated in Fig. 2. 

5. CONSEQUENCES OF NONDIAGONALIZABILITY 

We have established that the elementary Jordan 
blocks for the hydrodynamic matrix in Eq. (11) can be 
either lXI, 2 x 2, or 3x3. With this knowledge it is 
possible to determine the effect of nondiagonalizability 
on the mode analysis and on the spectral density matrix 
elements. We shall begin the analysis in terms of the 
Fourier components Cl!j(k, t) of an arbitrary set of state 
variables CI! j(;' t) since the JC F is independent of the 
repre sentation. 

real part of 
complex roots 

real roots 

O degeneracies 
in type I roots ---------------0 ______ 

------ ~ ~ ~ -~--O--O-------
-:::::::.O~ ~O-

"" 
Arbitrary Trajectory 

in Parameter Space 

FIG. 2. Degeneracies in type I roots for an arbitrary trajec­
tory in n + I-dimensional parameter space. 
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A. Mode analysis 

When the hydrodynamic matrix is diagonalizable, we 
can write the QlI(k, t) in terms of the normal modes, 

(22) 

as 
_ "+1 

Qlj(k, t)= L: VijYj(k)exp(~jf). 
j.l 

(23) 

-The set of variables, Y f(k, f), in terms of which the 
representation of the hydrodynamic matrix is diagonal, 
are related to the variables QI j(k, t) by 

(24) 

where ~-l is defined by Eq. (4). 

We will follow a similar procedure for the case in 
which hydrodynamic matrix is not diagonalizable. In 
these cases we have, rather than Eq. (4), that 

(25) 

where A JCF is the JCF of M. We will develop the analog 
of Eqs. (22) and (23) for the case in which A JCF has just 
one 2 x 2 elementary Jordan block. Let y bethe set of 
variables with respect to which M assumes this AJCF • 

Then (0 jot)y = AJCFY. Let us also suppose that the 
2 x 2 Jordan block occurs at the lower end of the diagonal. 
Then the first n "modes" are obviously just 

(26) 

However, since there are two entries in the last row 
of ~JCF' we have 

o 
at Y n+I = ~n+l Y"..1 + Y n = An Y"..1 + Y n' 

which gives 

y n+1 (i~, t) = [y n(k)t + y n+1 (k)] exp(Ant). 

Or, in terms of the {Q'I(l~: t)}, we have 
_ n _ _ 

Q' j(k, t) = Z; Vii Y j(k) exp(\ t) + C i(k, t) exp(~nt) 
J.l 

with C j(k, t) of degree one in t, where 

C l(i~, t) = V i.n+1 [y ik)t + Y n+l(k)]. 

(27) 

(28) 

(29) 

The only difference in Eqs. (26) and (27) from the 
usual normal modes, e. g., Eq. (22), is the presence, 
in the "Jordan mode" of Eq. (27), of a polynomial in t. 
In the case that the JCF of M contains a 3 x 3 block, the 
three associated y's will berespectively: an exponential 
in t; a product of a first degree polynomial in t times 
an exponential in t; and a product of a second degree 
polynomial in t times an exponential in t. 

B. Spectral density elements 

The spectral density matrix elements S n(k, w) are 
defined by the Fourier transform of the correlation 
matrix elements RJI(k, f), as 

Re f~ S i I(k, w) = --:;;-

where 

R j/(k, t) exp(iwt) df, 
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(30) 

t< 0, 
(31) 

t> o. 

When M is diagonalizable [Eq. (4)] one can, following 
Eq. (5), write the integrated form of Eq. (30) as 

Sjz(k, w)= k ~ [x.(k)]jq Vir Vf~ (A~; w2 ) . (32) 

When M is not diagonalizable, we have, rather than 
Eq. (4), the relation of Eq. (25), where A JFC is not 
diagonal and the utilization of Eqs. (30) and (31) is less 
straightforward. One begins by rewriting exp(- MTt) as 

(33) 

Since 

where the ~f are elementary Jordan blocks and ifl means 
direct sum. Since a maximum dimension of an ele­
mentary Jordan block is three, we need only the results 
that 

-)-[: J + - at exp( - ~t)l 

exp(- ~t) 

and 

- at exp( - ~t) 

exp(- ~t) 

o 

~a2t2 exp( - At) J 
- at exp( - ~t) 

exp(- ~t) 

where a is a constant of unit magnitude having units of 
time-I. The elements S j/(k, w) for the case in which 
bCF contains a 2 x 2 Jordan block and a 3x 3 Jordan 
block respectively, (the case of the occurrence of two 
2 x 2 blocks is not fundamentally different from that in 
which only one occurs and so has been omitted) can then 
be written as in (i) and (ii) below. 

(i) If ~CF has a 2 x 2 block: then 

where ~ = ~n = ~n+l is the degenerate root. 

(ii) If A JCF has a 3X 3 block: then 
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x B( VjfV,lAf + a( w2 
- A 2) 

f A~+ w 2 (w2 + A2f 

X (Vjn V~~I'1 + VJ,n+l V~~) 

+ . V V-I a2(A3 _3w2 A) ) 
(W2+A2)3 J,n+l n-l,l' 

where A = An_1 = An = An+l is the triply degenerate root. 

We note that the central maximum, at w = 0, is the 
same, in both cases, as that for the case in which M 
is diagonalizable. The additional contributions, at their 
maximum are of order (I/A)2 or (I/A)3 as opposed to the 
central one which is of order (l/A). Thus for values of 
A» 1 sec-1 these subsidiary contributions are negligible. 
However, for matrices for which A -1, these contribu­
tions could be significant. 

CONCLUDING REMARKS 

In the normal mode analysis of linearized hydrody­
namic equations the problem of nondiagonability of the 
fourier transformed hydrodynamic matrix has frequent­
ly been set aside. 5 However, for the case where only 
one of the variables in the coupled hydrodynamic equa­
tions is odd under time reversal,9 one may make the 
following statements: If two of the roots are complex, 
then the hydrodynamic matrix is certainly diagonable; 
if there are no complex roots, then only three types of 
degeneracy can bring about nondiagonalizability, al­
though these degeneracies can be encountered for many 
different parameterizations of the hydrodynamic matrix. 
As an illustration of one of the latter situations one may 
cite the case where all three roots 9 of the Fourier 
transformed hydrodynamic matrix of a simple fluid are 
real, i. e., one considers a case where a particular 
Fourier component of the sound mode is overdampeJ. 
If there are degenerate roots, then the hydrodynamic 
matrix will not be diagonalizableo Indeed at the point of 
crossover from the propagating to the nonpropagating 
components of the sound mode the hydrodynamic matrix 
is certainly nondiagonalizable [see, for example, Eq. 
(16)). Another example is the case of chemical relaxa­
tion in the presence of a radiation field, 10 where, since 
the hydrodynamic matrix is non-Hermitian, both real 
and complex roots must be considered-again at the 
point of crossover from real to complex roots the 
matrix will not be diagonalizable. Yet another instance 
is in the normal mode analysis of the classical Blmard 
problem, 11,12 where, for certain values of the param­
eters, two real roots may become degenerate as one 
passes to the overstable region. 

The time dependence of the "normal modes" in the 
case of nondiagonalizability is no longer a simple ex­
ponential but has an additional factor, a polynomial of 
order one or two (depending on the order of the 
degeneracy). The implications of this for the spectral 
density matrix elements have been considered here and 
indicate that there would be structure in the unshifted 
line which would not be present if the normal modes had 
their usual exponential time dependence. This structure 
may be pronounced when the magnitude of the degenerate 
eigenvalue is of order unity or smaller and certainly 
this will be realized for soft degenerate modes. 13 

1566 J. Math. Phys., Vol. 16, No.8, August 1975 

ACKNOWLEDGM ENTS 

The authors wish to thank H. Laue, K. Varadarajan, 
R. E. Burgess, and H. Lekkerkerker for useful dis­
cussions in the course of this work. The support of a 
National Research Council of Canada grant and a NATO 
grant (#806) is also acknowledged. 

APPENDIX 

A simple and elegant method of arriving at the JCF of 
a matrix is provided by the theory of finitely generated 
(FG) modules over a principal ideal domain (PID). For 
a reasonably elementary and very readable account of 
rings, modules, and their application to the computation 
of canonical forms, the reader is referred to Ref. 14. 
The basis of the present treatment is that we can regard 
the !S. matrix of Eq. (11) as a linear transformation, G, 

over the vector space <rn+l of complex (n + I)-tuples in 
the standard manner, We then make the underlying 
group of complex (n ± I)-tuples into a module over the 
ring <rCA) (the ring of polynomials with complex coef­
fiCients) using ex in the usual manner, 14 <rCA) is a PID, 
and hence we know that this module can be decomposed 
into a sum of cyclic submodules whose orders are poly­
nomials in A and which can be arranged such that the 
order of the ith submodule in the sum is divided by that 
of the (i - I)th. [The order of a cyclic submodule is the 
unique monic polynomial which generates the order 
ideal of the submodule in <rCA). 1 These polynomials, 
called the torsion invariants of the module, are unique 
up to multiplication by constants. Suppose that the 
torsion invariants of the module we have constructed 
ared i (i=l, ... ,s) 

(AI) 

Then one can show that the JCF of K has a Jordan A. .. -
- " block of size precisely P w 15 Thus, if one can obtain 

enough information about the torsion invariants of the 
module constructed, one can obtain the JCF of K. In the 
proof of the theorems we will need only one additional 
fact about the d i , namely 

s 
n d j = ch(K). 16 
i=l -

(A2) 

Before we proceed with the proof of Lemma 2, we 
need to know how, in practice, one goes about obtaining 
the d j • We state without proof that: 

If, given a matrix !S. of dimension n + 1, one can, by a 
sequence of elementary row and column operations, 
reduce the matrix (Vn+l -K) to diag(dv ... , dn+1) with 
dll d2 1 ••• I dn +

l
• then the nonconstant elements of the set 

{d j } are the torsion invariants of the module constructed 
using!S. in the procedure indicated above. I? 

Proof of Lemma 2 

What we actually will prove here is that the module 
constructed using a !S.BDF with a i (i = 1, ...• n) distinct 
has only one torsion invariant which is, therefore. by 
Eq. (A2), the characteristic polynomial of K. In view of 
the preceding discussion this is clearly equivalent to 
the statement of the lemma in the body of the text. We 
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already know that the statement is true for the 2 x 2 case 
so that we proceed to calculate the torsion invariants 
in the 3x3 and 4x4 cases. Let R; stand for row i, C i 
for column i, and - for transposition. 

(i) 3x 3 matrix: 

b1 

R3-(A-al l / b1l Rl 

• 
C2" (/J:l / bl lCl 

0 

C3"(A-a3l/bllCl 

0 

where 

o f(~) 

C 3+ (1 / b2 )(A-a2 lC2 l
b1 

• 0 R3+(f(Al/b11R2 

o 

0 0 

~ -a2 - b2 

- (b 2 /b1 )(:\. - a l ) f(:\.) 

o 

o 

o 

QED 

(ii) 4 x 4 matrix: FollO\ving a similar procedure, one 
may show that 

:\. - a1 

0 

0 

b1 

--
where 

1567 

0 

:\. - a2 

0 

b2 

0 

0 

~ -a3 

b3 

o 
o 

- b1 

-b2 

- b3 

:\. - a4 

o 
o 
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b~(:\. - a 1)(:\. - a2) 

- b
l
b

2
(a

l 
- a

3
) • 

QED 

As indicated in the text, we can now use the result of 
this lemma to prove Theorem 1. We will proceed to do 
so in the same way in which we proved the lemma, 
namely by showing that ch(K) is the only torsion in­
variant of the module we have constructedo 

Proof of Theorem 1 

Lemma 2 tells us that for the lowest possible di­
mensions of ~BDF the theorem is true. We proceed by 
induction. Suppose n + 1 ~ 5. 

Then by Lemma 1 ::J at least one root, ~o, of KBDF 
with multiplicity 1 =>::J v ~ <I: n+l QI (v) = :\.0 v. -

The n + 2 vectors B = {v, e +1' e1 , ••• , en} are linearly 
dependent where {ev ... ,en+l} is the basis for <l:n+l with 
respect to which ~ assumes the form ~BDF. 

• '. =] a first e j which is a linear combination of the 
preceeding vectors. It is clearly not en+1 ' 

The set B- {e j } is then a new basis for <1:'+1' 

Let (v) be the subspace generated by v. 

Then <1:"+1 ~[<l:n+l/(V)J EB (v) 

If a is the map induced on <l: n+1/(v) by QI, then the 
module structure on <I: .. 1/(v) via a is the same as that 
on <I:,.I/(V) via QI. Consider the following basis for 
<I:,.I/(V): -[ell, ... , [ei_J, [ehJ,·· ., [e n+1]}, where [ejl is 
the equivalence class of ej' The matrix ~ of a with 
respect to this basis is just K with the ith column and 
row removed. By hypothesis-:- therefore <l:n+J(v) has 
only one torsion invariant, ch(~). 

By our choice of ~o, ch(~) and (~ - :\.0) are relatively 
prime. It is known that the direct sum of two cyclic 
modules whose orders are relatively prime is also a 
cyclic mOdule of order the product of the orders of the 
summands. 18 

Therefo:..e, <l:n+l is a cyclic module of order 
(~ - :\.0) ch(K) = ch(K). This implies that ch(K) is the only 
torsion invariant Of <l:n+l' - QED 

We are now prepared to prove Theorem 2, our main 
result. Lemma 3 and a modified form of Theorem 1 are 
the tools required. The idea behind the proof is very 
similar to that of Theorem 1. We decompose <rn+l into 
cyclic modules of relatively prime order in order to 
calculate the torsion invariants of the module we have 
constructed. 

Proof of Theorem 2 

Referring to Lemma 3, we call e I. = e/. It is clear , 
that 

P p.,.! 
U <ri U {e i } 

i= 1 ;=1 

is a basis for <r n+1• Let <r:;:1 = (U~=1 <l:i ) the subspace 
generated by the union of the <ri. Then <l:n+l~ <I::;:1EB<l:n+J 
<r~~. 

A basis for the second summand is B= {[e i ], •• • , [e/>+l]}. 
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Proceeding as in the proof of Theorem 1, we see that 
a:: "..Ja:::;~ made into a module via Qi has the same struc­
ture as a:n+1/a::;:~ made into a module via the induced 
map a. Thus we can use the matrix of a with respect to 
B to investigate the torsion invariants of this summand. 
One can easily show that~, the matrix of a with respect 
to B, has the following form: 

o 

o 

- b
2 

• • • • • •• - bp 

This is not exactly in the same form as that of Theorem 
1. However, using exactly the same procedure as be­
fore, one can easily show that the results of Theorem 1 
hold equally well for this matrix. Thus the only torsion 
invariant for a:n+1/a::.~ is ch(!~) = q(X). 

Now the restriction of Qi to a::.~ has n - p eigenvectors 
while a::;;~ has dimension n - p. Thus, the restriction is 
diagonalizable and therefore a::.~ has as many torsion 
invariants as the largest integer in the set {nj - I}, call 
it K. Each of the last n i - 1 torsion invariants has 
(X - ail occurring as a linear factor. The last torsion 
invariant is just n~=l (X - aJ Thus a:~~1 
= a::.~,l m ... (fI a::'1'", where a:~~1" has the order 
n~=1 (X - ail = r(X). 

Lemma 3 tells us that a i is not a root of Q(X) and 
hence r(A), Q(X) are relatively prime. Therefore, 

a:red,.' _ a: n+1 a: red ,. 
n+1 - a:red i'fi n+1 

n+1 

is cyclic of order r(X) Q(X). Since the lower order tor­
sion invariants of a::.~ divide r(A), they also divide 
r(A) q(X). Therefore, the decomposition 

(A3) 

provides a torsion invariant decomposition of a::"..l' Pro­
ceeding to the JCF of Cl', since the orders of the first 
K - 1 summands in Eq. (A3) have only linear factors the 
Jordan blocks arising from them are 1 x 1. The only 
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Jordan blocks of dimension greater than one thus arise 
from the order of a::;;:~ .• ,. It is clear that this will occur 
only for a degeneracy in the roots of Q(X). Since the a i 

in (~) are distinct ch(R) has p - 1 distinct real roots, 
Xl' ... , A~l such that a1 < Al < a2 < ... < X~l < ap ' Since 
there are no equivalent restrictions on the remaining 
two type I roots, Ap, Ap+l> the following cases of 
degeneracy may arise. 

(i)Xp+1=Ap*X i, i=l, ... ,p-l, 

(ii)Xp+1=X i or Ap=Ai' Ap*Ap+v i=l, ... ,p-l, 

(iii)Xp+1=A i, Ap=Aj' Ap*Ap+1' i,j=l, ... ,p-l, 

(iv) Xp=Ap+1 =Ap i= 1, ... ,p-l. 

These are the only situations in which non-unit-sized 
Jordan blocks will arise. 

lL. Landau and Lifshitz, Fluid Mechanics (Addison-Wesley, 
Reading, Mass. 1959). 
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(1969) • 
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On the density of the Breit-Wigner functions 
W. L. Perry and C. D. Luning 

Department of Mathematics, Texas A&M University, College Station, Texas 77843 
(Received 19 June 1974) 

It is shown, for certain sequences {Ai l in the complex plane, that linear combinations of the 
Breit-Wigner functions {B i l approximate, in the mean square, any function in L 2 (0,00). 

Implications and numerical use of this result are discussed. 

I. INTRODUCTION 

As W. Klinkl has noted, it has been useful in certain 
problems of physics to approximate a function f: (0, "") 
- C by a superposition of Breit-Wigner (hereafter ab­
breviated B-W) functions B j defined by 

Bl·r) = 1/(x +A j ) i=l, 2, "', 

wherexER+=(O,""), AjEC-R-, R-=(-"",O]. 

(1) 

Each of the functions Bi is in L2(R+), the Hilbert space 
of Lebesgue square integrable functions with norm in­
duced by the inner product 

(2) 

In this paper, we consider the problem of approximating 
functionsfE L 2(R+) by linear combinations of B-W func­
tions. Straightforward calculations show that if {\}, i 
= 1, 2, .. " is a set of distinct scalars (as we will as­
sume in the remainder of the paper) the corresponding 
set {B;t of B-W functions is a linearly independent set. 
However, {B;} is not an orthogonal set. 1 

If one considers a finite set of B-W functions {Bt. . ", 
. B A and if f E span{ Bt. ... , B N}' then there are unique 
scalars cl , .. " eN such that 

N 

f=L c;Bi • 
i=l 

The coefficients {ct. ... , eN} are given by 

ci = (f, <Pi), i = 1, "', N, 

(3) 

(4) 

where {<Pl' ... , <P N} is a set of functions biorthogonal to 
{Bt. .•• , BN}; that is, (B;, <Pj) = IS/i' For this case Klinkl 
constructs functions, call them Yb ••. , YN such that 

C; = 10 ~f(X)Yi (x) dx, i = 1, .. " N. (5) 

If, however, we consider arbitrary functions f in L2(R+) 
and infinite sets of B-W functions {Bi; i = 1,2, ... } the 
above procedure breaks down. We note, first of all, that 
the functions Y / constructed by Klink are not in L2(R+) 
and thus the integral 

J ~ f(X)Yi(X) dx 
o 

(6) 

will not exist for all functions fin L 2 (R+). In Sec. II we 
show that for certain sequences {Al' Az, ..• }, span{Bt. B 2, 

... } is dense in L 2(R+) and thus any function f E L2(W) 
can be arbitrarily well approximated by linear combina­
tions of B-W functions. However, for these same se­
quences, we show that there is not a set {<Pi} of functions 
biorthogonal to {B;} and thus {Bi} cannot be a Schauder 

baSis for L 2(R+); that is, not every f in L 2(R+) can be 
represented 

f='LCiBi (7) 
i 

where the c/' s are unique. 

In Sec. III we consider best approximations of func­
tions f E L2(R+) by finite linear combinations of B-W 
functions. We show that for a given set of B-W func­
tions {Bt. .. " BN} there are infinitely many sets of func­
tions {<Pl, . ", <PN} biorthogonal to {Bl' "', BN}' However, 
there is a unique set {<pt. ... , <PN} such that for every 
f E L2(R+) the function 

N 

fN=L(f, <Pi)B; 
i=l 

is the best L2(R+) approximation to f by linear combina­
tions of {Bl' "', BN}' Since Klink's biorthogonal func­
tions are not in L2(R+), 2 they cannot coincide with this 
set {<p Jf of functions biorthogonal to the {B/}f that give 
the best L 2 (R+) approximation to J. 

Section IV and V concern, respectively, possible ef­
fects of error on the approximations and the problem of 
approximating functions of polynomial growth as x - + "". 
These latter results are applicable to cases where scat­
tering amplitudes grow like x2 in the energy. 

II. DENSITY OF THE BREIT-WIGNER FUNCTIONS 

The main result of this section may be stated as fol­
lows: If (a) the {A/} accumulate at a finite point in C - W, 
or (b) Ai=s+rPi wherer>O, Re(s) >0, Pt=O, Pi>O 
for i= 2,3, "', liml~~P/ = "", and 

i~-"" 
i=2Pi - , 

then span{B;} is dense in L2(R+). 

We remark that the conclusion follows in case (a) from 
a result of Ribaric3 and in case (b) from theorems of 
Lerch and Muntz. 4,5 Adaptation of these results to our 
problem is straightforward but the proof is included for 
completeness. 

Proof Case (a): Let F(A) be the Stieltjes transform of 
f E L2(R+), defined 

F(A) '= (~f(x) dx (8) 
)0 x +A 

which is analytic in C - R-. Since f is known, F is also 
known. Note that F(Xl ) = (f, B i). Let {<Pi} be an orthonor-
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mal sequence obtained from {Bj} (by the Gram-Schmidt 
process, say) 

I/!i = CUBl + c j2B2 + ... + cijBj, i = 1,2, .... 

Hence, 
j 

(f, I/!I) =~ cIRF(Ak ). 
R:l 

Now consider the sum 
~ 

6(f, I/!j)l/!i' 
j:l 

(9) 

(10) 

(11) 

By (9) each I/!j is a linear combination of Bj's. Sincej 
is in L2(R+), Bessel's inequality assures that the series 
in (11) converges to some function in L 2(R+). Call this 
function g. We now need to show thatj=g. 

Let G(A) be the Stieltjes transform of g. G(Xj) = F(X j ), 

i = 1, 2, .. " since g and j have the same Fourier coeffi­
cients. Indeed, making use of (10) we obtain - 1~ g(x) -
Cll F(Al ) = (f, I/!j) = (g, 1/!1) = Cll 0 X + Al dx = Cll G(Al) 

and inductively, having F(Xj) = G(X j), i = 1,2, .• " n -1, 
we obtain 

Cll F(Xl ) + ... + Cn_l,nF(Xn_tl + cnnF(Xn) 

= Cll G(X1) + ... + cn_l,nG(Xn_l) + cnnG(Xn) 

and hence 

Since the A; accumulate at a finite point in the region of 
analyticity of F and G, the identity theorem gives F =- G 
in C - R- and by the uniqueness of the Stieltjes trans­
form, j=g a. e. 

Prooj Case (b): The proof is exactly the same up to 
the point of application of the identity theorem, which 
cannot be used since the ~-;'s no longer must accumulate 
at a finite point. 

Leth=j-g. Wemustshowh=Oa.e. Sincejandg 
have the same Fourier coefficients, H(A), the Stieltjes 
transform of h, has the property that H(Aj) = 0, i = 1, 2, 
.. '. Moreover, since the Stieltjes transform is just 
an iterated Laplace transform, 6 we have 

fa ~ exp(- A;l)(L h)(t) dt = 0, i = 1,2, .. " (12) 

where L h is the Laplace transform of h. Since 
hE L2(R+), L h E L2(R+), 7 and so L h is in L(O, T) for 
all finite T. The result follows by applying Muntz's gen­
eralization of Lerch's theorem. 

Klink1 asks under what conditions it is possible to 
write 

(13) 

for jE L2(R+). A set of functions {CI'k} is said to be a 
Schauder basis in a normed vector space S with norm 
II . II if for every element I/! E S there is a unique sequence 
of scalars {ck } such that 

N 

lim III/! - ~ cRCI'k11 = o. (14) 
N ~ ~ k:l 
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Although spaniBj} is dense in L2(R+) for cases (a) and 
(b), we can show that the {b i } do not form a Schauder 
basis in L2(R+). The reason the Bj's fail to be a 
Schauder basis is that in the construction of partial 
sums, every time another term of the series is added on, 
the preceding coefficients in the sum change. 

Theorem: If {Aj} is as in case (a) or (b), then a se­
quence {<pj} biorthogonal to {Bi} does not exist in L2(R+). 

Proof; The proof is by contradiction. Suppose {<pj} is 
a sequence in L2(R+) biorthogonal to {Bj}. Since (<Pl, Bk ) 

= 0 for all k"? 2, 

<Pl E (span{Bk : k ~ 2W 
(1 denotes the orthogonal complement in Hilbert space) 
and obviously 

<Pi t/. span{ Bk : k "? 2}. 

However, spaniBk : k ~ 2} is dense in L2(R+) since the se­
quence I1n = An+l' n = 1, 2, .. " satisfies the conditions in 
case (a) or, respectively, case (b). This means <Pi 
E span{ Bk ; k"? 2} a contradiction. 

Corollary: If {Ai} is as in case (a) or (b) then {Bi} is 
not a Schauder basis. 

Proof; The proof is by contradiction. Suppose {B;} is 
a Schauder basis. If 

~ 

j=L cj(/)Bh (15) 
;:1 

then each mapping j - cj (/) is a continuous linear func­
tional on L2(R+). 8 Thus, for every i there is a unique 
<pj E L2(R+) such that 

(f, <Pj) = Cj(/). (16) 

By uniqueness of the expansion (15) 

(Bk' <Pi) = (\,j (17) 

as is easily seen by choosingj=Bk • Thus {<pj} is a se­
quence biorthogonal to {B j }, an impossibility due to the 
result of the last theorem. 

III. FINITE EXPANSIONS 

If a function j E L 2(R+) is to be approximated by a su­
perposition of a finite number of B-W functions B j = 1/ 
(x + Ai), i = 1, .. " N, then of course jN' the best approxi­
mation of j with respect to the L2(R+) norm, is the or­
thogonal proj ection of j onto span {Bl' •.. , BN}' In order 
to find a formula for jN, we recall that if A1 , ••• , AN are 
distinct, then the set of functions {Bj : i = 1, ... , N} is a 
linearly independent set. Thus the functions jN can be 
obtained by using the Gram-Schmidt orthonormaliza­
tion procedure to find an orthonormal basis {I/!l' .. " I/!N} 
for span{ Bl> .• " B N} 

N 

jN=L (f, I/!j)l/!j. (18) 
j:l 

As Klinkl indicates, it is sometimes desirable to 
write IN in terms of the functions {B j} instead of the or­
thonormalized functions {I/!j}. That is we would like to 
write 

W.L. Perry and C.D. Luning 1570 



                                                                                                                                    

(19) 

It follows from the Gram-Schmidt orthonormalization 
procedure that 

(20) 

substituting this expansion for IJiI into Eq. (18) and re­
combining the coefficients will give Eq. (19). 

However, as Klink1 observes, if ft=. span{E1, ... , EN} 
and if {¢b ..• , ¢N} is a set of functions biorthogonal to 
{Eb •• .,EN}, then 

(21) 

There are infinitely many different sets of functions 
{¢b ... , ¢ N} biorthogonal to {Eb •.• , EN}' In fact, since 
dim[span{EI : i= 1, •.. , N}]=N and dim[span{EI : i 
= 1, ... , N, i;O j}] =N - 1, for the function ¢} we can take 
any function, appropriately normalized, in the orthogo­
nal complement of span{ EI : i = 1, ... , N, i * j} with a 
component in the E j direction. 

Proposition 1: Given the set of distinct B-W functions 
{Bb ••• , EN}, then there is a unique9 set of L2(R+) func­
tions {¢b ... , ¢N} biorthogonal to {Eb ••• , EN} such that 
for every f E L2(R+) 

N 

fN=LJ (t, ¢I)EI. (22) 
1=1 

Proof: Let HN = span{En: n = 1, .•. , N} and for each 
j= 1, "', N let HN ,} =span{En: n= 1,'" ,N, n*j}. Since 
dim H N = N and dim H N ,j = N - 1, there is a unique func­
tion ¢ j E H N such that (Ek , ¢ j) = fJk,J> k = 1, ... , N. For 
this set of functions {¢b ... , ¢ N} and for any f E L2(R+) 
we have Eq. (22). The uniqueness follows from the fact 
that the coefficients C n in Eq. (19) are unique and that if 
¢ j "* ¢; then there is at least one function f E L 2(R+) such 
that (t, ¢j) *(t, ¢j). 

Given a set of B-W functions {Eb ••• , EN} we now 
give two ways of determining the unique biorthogonal set 
of Proposition 1. 

Method 1: Consider the matrix (Mu) where Ml,j 
= (EI, Ejl. As Klink1 observes 

N 

¢j=LN1,jE1, 
1=1 

where the matrix (N.) = (M i )-1. Even though (M i ,j)-1 
exists, the matrix (M I,j) may be ill- conditioned, espe­
cially if the Aj are close together. Thus if (M I) -1 is 
found numerically, a very significant error can be in­
troduced into the coefficients NI,j' 

Method 2: Take the ordered set E1, ••• , EN and per­
form the Gram-Schmidt orthogonalization procedure: 
Letting 1Ji1 = E1 and assuming IJib ••• , 1Ji1-1 are calculated, 
let 

_ ~-~ (Ek' !/Jk) . 
lJii-EI-U-(--) IJik' 

k=1 IJik, IJik 

then the last function IJiN is such that (EI , IJiN) = 0, i 
= 1, ... , N - 1, and (EN' IJiN) * O. Thus ¢N = !/IN/(EN, IJiN)' 
To find the function ¢j we reorder the functions {EJ so 
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that E j is last and then proceed as above. Of course, by 
judicious reordering, the amount of work involved can 
be greatly reduced. 

IV. EFFECT OF ERROR 

It was shown in Sec. II that for any fin L 2(R+), the 
series 

00 

L., (t, 1Ji1)1Ji1, 
1=1 

where {1Ji1} is an orthonormal sequence obtained from 
{B;}, converges in L 2(R+) to f. The construction was 
based upon the Stieltjes transform of f. 

Let us suppose that the Stieltjes transform of f is 
known with error (A). Call it F(A) + €(A). Further, let 
{EJ, n=l, 2," ',N, be the finite set of B-W functions 
with which we plan to approximate f in the best L2(R+) 
fashion. USing the main result, we have 

f::::: ~ (~ clj[F(Aj) + €(Aj) ])1Ji1 (23) 

where the ciJ and IJiI are defined as in (9). So we have 

f::::: ~(~ CiJF(Aj ») IJiI + ~(E [c1J€{Aj)))1Ji1 (24) 

and it is clear that determination of the behavior of the 
c;/s shows how the error E: is magnified in the approxi­
mation tof. 

To this end, recall that the Gram matrix10 

G (25) 

has a minimum eigenvalue m"" 0, and this number is 
called the measure of independence of E1, ' •• , EN' Thus 
the vanishing of the Gramian [=det(G)] is necessary and 
sufficient for the linear dependence of the E;'s. The re­
sult of interest here is that if m"" J1. and the EI's are 
orthogonalized as in (9), then 

I clJ I ~ 1/,fji 

for all i and j. The consequences of this result are given 
below. 

Note that the entries of G are given by 

1 A 
(EI, E j) =----= log--'l( )' i"* j, 

AI_ Ai Aj 

=arg(AI)/Im(Ai), i=j, AlciR, 

=l/AI, i=j, AIER. 

Let ~I = kA;, i = 1, 2, .• " N, k> 0, and B. be defined (26) 

BI(x) = l/(x + ~I)' x E R+. 

Th~n (13;, Ej ) = k-1(E;, Ej), the measure of independence 
of Eb "', EN is m/k and the orthogonalization coeffi­
cients clJ associated with the {.HI} are bounded: 

I eli I ~ ..f7i7Ii. (27) 
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This shows that the closer a set of Ai'S is pushed toward 
the origin (i. e., choosing k small) the smaller the or­
thogonalization coefficients. A numerical example with 
N = 3 is listed in Table 1. (Calculations done on Hewlett 
Packard HP9830). Note the iii dependence in the C i./ s. 

At first glance, it appears that to minimize error in 
the approximation in (24) one needs to merely push the 
Ai'S closer to the origin. However, E(Ai) will, in gen­
eral, increase as Ai - 0, since 

F(Aj) + E(Ai) = l~ !iXli dx. (28) 

Since j(x) is only assumed to be in L2(R+), when Ai is 
near zero the integrand in (28) can be nearly singular 
at the origin. Therefore, for a givenj the best choice 
of {Ai}, i = 1, 2, ... ,N, will most likely be close to the 
origin, but not so close that E(A i ) increase faster than 
the I e jj I decrease. The choice is problem dependent 
and no general choice criterion can be given. 

V. WEIGHT FUNCTIONS 

Since scattering amplitudes may not be square inte­
grable functions, but may grow at infinity like x 2

, we 
consider for each real number k the Hilbert space 

Hk ={f: 10 ~(x + l)k Ij(x) 12 dx < oo}, 

with inner product 

Ct~;;h = fa ~(x + l)"!(x)g(x) dx. 

L2(R+) is then Ho. 
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A B-W function B(x) = l/(x + A) is then in every space 
Hk for k < 1. 

If kl < k2" then clearly Hk2 C Hkl both algebraically and 
topologically. Moreover, since the functions of compact 
support are dense in every space Hk , we have as a vec­
tor space, Hk2 is dense in Hk10 

The work of the preceeding sections can be adapted 
to any of the spaces Hk , k < 1, by merely changing the 
inner product from Jo~j(x)g(x) dx to Jo~ (x + l)kj(x)g(x) dx 
this allows us to approximate scattering amplitudes with 
polynomial growth by B-W functions. 

tW.H. Klink, J. Math. Phys. 15. 565 (1974). 
2See Ref. 1, Sec. IV, for instance. 
3M. Ribaric, Arch. Ratl. Mech. Anal. 3, 45 (1959), 
4D. V. Widder, The Laplace Transform (Princeton V. P. , 
Princeton, N.J., 1941), p. 62, Corollary 6.2b. 

5D• V. Widder, An Introduction to Transform Theory (Aca­
demic, New York, 1971), pp. 147-148. 

6Ref. 5, pp. 125ff. 
7N. Dunford and J. Schwartz, Linear Operators (Wiley-Inter­
science, New York, 1958), Vol. I. p. 534. 

BC. Goffman and G. Pedrick, First Course in Functional 
Analysis (Prentice-Hall, Englewood Cliffs, N.J., 1965). 

9The biorthogonal set derived by Klink (see Ref. 1 above) is 
not the biorthogonal set derived here. As remarked in the in-
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tlR. Courant and D. Hilbert, Methods of Mathematical Physics 
(Wiley-Interscience, New York, 1953), Vol. I, pp. 61-63. 
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A nonlinear system of Euler-Lagrange equations. Reduction to 
the Korteweg-de Vries equation and periodic solutions 
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Swietokrzyska 2], Warszawa, Poland 
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The Euler-Lagrange equations, which correspond to a variational principle with a Lagrange function 
depending on arbitrary functions and their first order derivatives, are shown to be reducible to the 
Korteweg-de Vries equation under a small-but finite-amplitude approximation. Closed form 
periodic solutions to the Euler-Lagrange equations are found for a particular case, and the 
modulational stability of these solutions is discussed. Equations for waves in cold plasma are 
discussed as examples. 

1. INTRODUCTION 

A wide class of nonlinear partial differential equations 
of mathematical physics can be derived from a varia­
tional principle with a Lagrangian of the following type 
type l

: 

(1 ) 

where CPix' CPft are space and time derivatives, respec­
respectively. 

If we consider stationary solutions, i.e., ones de­
pending only on a variable e= kx - wt (k = const, w = 
= const) we can obtain from (1) an equivalent Hamilton 
system, which is autonomous and conservative as the 
independent variables x, t or their combination e do not 
appear explicitly. Thus the existence of an energy inO 
integral is assured and we would not expect to find any 
damped solutions. The most interesting features of 
autonomous, conservative systems are periodic solu­
tions, the trajectories of which usually fill up a subspace 
in a corresponding phase space whereas nonconservative 
systems have at most isolated periodic trajectories­
limit cycles. 

These properties of stationary solutions of the varia­
tional equations originating from (1) show that we are 
considering a nonlinear dispersive system. It is the dis­
persion that balances the nonlinearity effects resulting 
in formation of periodic solutions. In nonlinear dissipa­
tive systems the nonlinear steepening of waves is 
balanced by dissipative effects leading to shock waves 
and with both the dispersion and dissipation present we 
can expect stationary solutions in a form of shocks of an 
oscillating structure, 2 

It has been Shown, 3,4 that certain classes of nonlinear 
equations, under the weak nonlinearity and long wave­
length approximations can be reduced to either the 
Korteweg-de Vries equation 

nT+nnt +ontH=O 

or the Burgers equation 

nT + nnt - vnt< = 0 

depending on whether the system is dispersion or dis­
sipation dominated. It is shown in the present paper 
that, under similar assumptions, the system of equa­
tions originating from (1) can be reduced to the 
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Korteweg-de Vries (KdV) equation. By way of example, 
equations for waves in cold plasma are considered, 
which, in a different form, have been already reduced to 
the KdV equation. 3 This reduction is particularily re­
levant as the KdV equation has been solved, 5 

Some fairly general theorems concerning the existence 
of periodic solutions of conservative dynamic systems 
have been proved,6 but, for practical reasons, it is 
useful to look for periodic solutions in a closed form. 
Although the last problem has also been studied exten­
sively in classical mechanics,7 it seems that there 
remain some important cases to be solved. Here 
stationary periodic solutions of equations originating 
from (1) are found for the case of only one cP function 
and an arbitrary number of parameter functions n;, 
which appear in (1) only by themselves and without de­
rivatives, and potentials ai' the last appearing in (1) 
only through their derivatives, It is also assumed that 
the dependence of the Lagrangian (1) on all the deriva­
tives CPt> CPt> a 1x ' aft is quadratic. Again the equations 
for waves in cold plasma are discussed as example but 
it is worth noting that all the equations considered by 
WhithamB in his study of dispersive waves fall within 
this clase. 

The modulational stability of nonlinear dispersive 
waves, the theory of which in the Lagrangian formalism 
has been formulated by Whitham, 8 is also discussed 
here. The theory is specified for the case of a "quadrat­
ic" Lagrangian so that the existence of periodic station­
ary solutions in closed form is assured, 

Finally, a nondispersive case is discussed and a con­
dition for the equations to be hyperbolic is obtained, The 
condition might prove relevant for the stability theory 
of Ref. 8, 

2. REDUCTION TO THE KORTEWEG-DE VRIES (KdV) 
EQUATION 

A. Waves in cold plasma 

Let us first consider a Lagrangian 

L=n(Cit + t Ci;)+ G(n;cp, CPx' CPt) 

and the variational principle 

oJ J Ldx dl=O, 

(2) 

The corresponding Euler-Lagrangian (E-L) equations 
are 
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50': nt + (nO',)" = 0, (3) 

5n: at + ta~ + Gn=O, (4) 

6 cp: G"'tt+G"'xx-G",=O, (5) 

where 

G"'tt=(lOt aO~ ), etc. 

If we take n for density and a for a velocity potential 
u= a", then (3) is the continuity equation and (4), after 
differentiation with respect to x, yields the equation of 
motion. 

For ion-acoustic waves in cold collisionless_plasma 
we set G = - tcp~ + ncp - e'" where cP denotes now the elec­
trostatic potential, and the variational equations 
become2 

With cP == B (magnetic field intensity) and 

1 B2 1 2 G=--2 -"2B +nB 
n " 

(6) 

we obtain from (3)-(5) equations for hydro magnetic 
waves in cold plasma propagating across the magnetic 
field 2

: 

Su and Gardner" considered these equations as special 
cases of a different (in general) class of equations and 
they did not derive the equations from any variational 
prinCiple. 

Assume first, that G = G(n, cp), i. e., we drop the de­
pendence of G on the derivatives CP", CPt. Equation (5) 
yields now 

(8) 

Differentiating Eqso (4) and (5) and replacing CP" in (4) 
by the corresponding expression calculated by differen­
tiation of (8), we get 

(9) 

where u= ax, a2/n=Gnn -G;",/G",,,,. We assume that a2 

> 0. The set of Eqs. (9) is hyperbOlic and its character­
istic roots are A=n±a. This set is also homogeneous in 
derivatives and thus it can have stationary solutions in 
a form of steady states and jump discontinuities only. 
The set (9) is thus diSSipation-and dispersion free and 
we can see that it is the derivatives CPr' CPt in (2) that are 
responsible for the dispersion. If we linearize Eqs. (9) 
around a uniform state n=no, U=O, cP= CPo, we obtain 
a wave equation 

Utt -a~xx=O 

with a~=a2(no, CPo, 0). 

(10) 

The main step toward reduction to the Korteweg-de 
Vries equation is to introduce (after Gardner & 
Morikawa3

) the transformation 

(11) 
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where € denotes the amplitude of the initial disturbance 
and is assumed to be small compared with unity 0 The 
transformation (11) includes coordinate contraction and 
transformation to a waveframe so that the final equation 
shall describe slow changes of one of the waves governed 
by the wave equation (10). The exponent a> ° is to be 
determined so that there be no dependence on E in the 
final equation. 

We assume, that the function G(n. cP, CPr' CPt) and its 
derivatives Gn , G"" G <pr' G ",t can be Taylor-expanded 
around the uniform state n=no, cP= CPo' After the trans­
formation (11) has been applied to Eqso (3) and (4), the 
following equations are obtained: 

EnT + (u - ao)n{ + nu{ = 0, 

EU T + (u - ao)u, + Gn , = 0. 

(12) 

(13) 

Equation (13) shall yield the KdV equation, and Eqo (12) 
together with (5) will be used for elimination of u and cpo 

We also assume that the functions n, u, and cP have an 
asymptotic representation: 

n= no +En(l) +E2n(2) + ••• , 

U=EU(1) +E2U(2) +0 •• , (14) 

cP= CPo +Ecp{l) + E2 cp(2) + •••• 

Inserting the representation (14) into (12), we obtain 

involving a sequence of equations 

(El) noll?) - aon/l ) = 0, (15) 

(E2) n;l) + u (lIn?) - a oni2) + noll?) + n (l)ui l) = ° (16) 

Equation (5) can be written as 

",+1 0 G " 0 G +" 0 G G - ° (17) 
E aT ",t - aoE ~ ",t E ~ "" - '" - • 

Next, the functions G,,!, G"", and G", can be expanded o 

For G",,,, e.g., we have 

G =G Iln+~G (Iln)2+0 •• 
",,, "'x" ° 2 "'0nO 

+G l!.cP+~G (l!.cp)2+ooo 
(iJxllJO 2 IPxCO!PO 

+G Ilcp +~G (l!.cp)2+ooo 
IIJxIPxO x 2 f/JxllJxf/}xO x 

+G"''''''tOllcp + t G"''''''t'''to(IlCPt)2 +0 00, 
where l!.n= n - no= En(l) +E2n(2) + 00., 

G "'i"0 = (a 2G/a CP"o n) I etc. 
nEf'lo. IP-=lPo' 

Equation (17) yields now a recurrent set of equations 

(EO) G",o=O, 
(18) 

(El) Gmon(l) + G"",Ocp(l) =0, 

(E2) _ [G ",nOn (2) + G",,,,Ocp(2) + tG",nno(n(1»2+ tG",,,,,,,O(cp(1»2] 

+ E,,-l[tft (G "'>,,0 - G "'tno)] 
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The term of the order of E2",-1 has been left in (19) be­
cause the coefficient at E",-1 will ultimatily disappear so 
that with QI = ~ we shall obtain E

2a
-

1 = 1. 

A similar sequence of equations originates from (12): 

(20) 

(E2) U(1)+1"C1)I,(1)_au(2)G n(2)+G n(l)n(1)+G cP{2} 
~ ~ '( 0 ( nnO ( nnnO ( n ~o ( 

+ Gn~ ~Ocpil) cp(l) + E",-I[ Gn ~Xo - aoGn ~toJCP(~) = 0, (21) 

Equation (20) coincides with (15) [if we take account 
of (18)] to yield 

nOu (1) = aon (1) 

with proper boundary conditions assumed, e. g., u (I) 
= 0 and n(1) = 0 for ~ - 00. 

The equations formed of terms of the order of E2. 

i.eo, (16), (19), and (21), result now in a single 
equation 

2~n(l) + (2~+An(1))n(I) +E2",-IBn(1)-0 
no n~ ( (H - • 

(22) 

Taking QI = ~ and performing a linear transformation 
in (22) 

ao Ano (1) n=-+-n , 
no 2ao 

we arrive at the normal form of the Korteweg-de Vries 
equation 

n, + nn( + CnH (= 0, 

where C=Bno/2ao' 

B. Equations originating from L == L (n; <p, <Px, <Pt; 
<Xx, at) 

The compatibility condition for (29) 

detA=:O (31) 

is a second-degree algebraic equation for ao, so that 
we can assume that ao is known. The condition, in turn, 
that a o be real is a certain limitation on the class of 
possible constant states n = no, cP = CPo. 

The element of A depends only on constant param­
eters no, CPo, so that basing on (29) we can write 

Z(I) =n(1)yo (if z(1) _ 0 for ~ - - 00), (32) 

where Yo is an eigenvector of A with the component cor-
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In this more general case, the E-L equations are 

I'm: n((1)+ Ln=O, 

5cp: L~tt + L~xx=L~, (23) 

50!: L", t+L", ==0. t XX 

First, we introduce new variables 

so that 

(24) 

Now, we can apply the transformation (11) and use 
the representation (14), the expression for v being simi­
lar to that of u, although we have no simple interpreta­
tion for a as in the former case. Here, the parameter 
ao shall be determined from an algebraic equation ob­
tained in the first order of approximation. 

To lowest order we get 

(EO) LnO=O, L",o=O, 

which is equivalent to the condition that there exist con­
stant state solutions. 

The "first order" equations are 

(1) L n(1)+L m(1)+L u(1)+L v(l)=O (25) 
\E nnO n !,paY na,p nCXtO , 

L n(1)+L m(1)+L --1I(I)+L v(1)=O (26) 
"'nO fQ(S)O""" IPCXxu-- /pQ:tO , 

(L"'xno -aoL"'tno)n?) + (L",x~o -aOLat~o)cpil) 

+ (L", a o-aoLa a o}u?) + (La a 0 -aoLa "oW?)=O, 
x x t x x t t t 

(27) 

(28) 

From these equations, differentiating (25) and (26) with 
respect to ~ and using (28) to eliminate u (1) in favor of 
we get a linear system of algebraic equations for 

Az?) ==0, (29) 

with a symmetric matrix 

(30) 

j 

responding to n (1) normalized to unity. There exist 
three linearily independent eigenvectors of A: 

yO)_(l S2S 3- S JY3 SIS 3- S 2fJ2) = (r(l) y(1) y(I) 

° - 'P2fJ3 - s; , P2fJ3 - s; - .", 0"" au , 

(2)_(1 S;-PJY3 PlS 3- S IS 2) 
~ - , , , 

SJY3 - S2S 3 SJY3 - S2S 3 

(3) _ (1 S1S 2 - PlS 3 PJY2 - sf ) Yo - , , , 
S1 S 3 - P2S 2 SIS 3 - P2fJ2 

but we have no need to use any particular one so we 
shall write Yo= (Y.",Yo""Yau )' 

Walter Zielke 1575 



                                                                                                                                    

The "second order" equations, in turn, have the form 
(€2) Azi2) + Bfn(1)n?) + gni1 ) +€"'-lhng) - €2"'-ljnn~ = 00 

(33) 

L +a2L no:xo:x 0 natO!to 

L"nno L ""'x"'xO + a~L" "'t "'to 

L",x"''''''x -aoL"'t"'x"'xa 

Here z (2) = (n (2) , CfJ(2) ,u (2»), V (2) has been eliminated in 
favor of U(2), the matrix A multiplying z?) is simply 
(30), the matrix B is 

L "'xnnO - aoL "'tnnO L "'x" ,,0 - aoL "'t" ,,0 + a~(L "'x"'t O't - aoL "'t "'t O't) 

and the column vectors f,g ,j, and hare 

(~) (LnO't
oron 

) f= ~w , g= L""'tOrOw 

r6u L "'tnOr On + L O't "oro" + 2([ O'x"'t - aoL "'t O'tolr au 

~ 0 ) (pro,,) j= agL"t"t -2aoL"x"to+L"x"x ' h= -pron-qrau , 

o qro" 

withp=Ln" o-aoLn" 0, q=L" '" o-ao(L" '" o+L" '" 0) 2 x t xX tX xt 

+aoL"t"'t o 

At this point, it is enough to multiply (33) by an eigen­
vector of A (left and right eigenvector are the same be­
cause A is symmetric) to eliminate ZJ2) and obtain a 
single equation for n (1): 

roBfn{l)n?) + r(}l?"n~1) + €",-1rohng> - €2",-1rojnm = 00 

A crucial point here is that 

(34) 

roh =pronr o" - pro"ron - qro"r au +qr au r o", = 0, (35) 

so that there is no "dissipative" term ni~) and, by taking 
a = ~ in (34), we get the Korteweg-de Vries equation 

r ol?"n~l) + r oBfn (l)n?) - r ojni~l = 0, 

and the (constant) coefficients can be easily scaled out. 
It seems that it would not have been possible to obtain 
this result if the matrix A had not been symmetric. 

C. General case of L = L (n l , . .. ,nk; <PI, ... ,<PI, <PI x, 

... , 'PIx, <PI t,· .. , !..pIt; 0: 1 x,, .. , u mXt a 1 t, ... I cxmt ) 

The extension of the argument in Sec o 2b to cover this 
general case can be obtained automatically so that there 
is no need to discuss it in detail. 

The E-L equations are now 

6 as: L "'st + L",sx = 0, 

and we again introduce 

p=l, 0 0 • ,k, 

5=1, .•• ,m, 

It can be easily verified that the matrix analogous to A 
of Eq. (30) is again symmetric, but the equation detA 
= 0 is now of higher degree. 

Some idea of the changes the equations of Sec o 2b must 
undergo to hold for this case can be obtained from the 
form of an element of A; instead of Lnno in (30), we have 
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L L 0 •• L 
n 1" 10 n 1"20 n l"kO 

L L oo·L 
n2"10 n2"20 n2"kO 

3. PERIODIC SOLUTIONS 

A. Waves in cold plasma 

We consider again a Lagrangian similar to (2), 

L=n(at +ia;)+ G, 

but now we require that G be a second degree polynomial 
with respect to CfJr,CfJt , i.e., 

G = acp; + bCfJxCfJt + cCP~ + dCfJx + ecpx + f, 
with a, b, c, d, e, and f depending on n and CfJ. 

The cold plasma equations of Sec. 2 are certainly of 
the form discussed here but formerly we had no reason 
to restrict that much the class of equations under 
consideration. 

We look for stationary solutions, Le., solutions de­
pending only on 

e=kx - wt, k = const, w = const, 

and we shall use a notation du/de=u, etc. It can be 
easily verified, that the form of variational equations 
(3)- (5) should be the same after the e variable has been 
introduced as if we introduced this variable directly in 
the Lagrangian Lo Thus we now consider a variational 
principle 

6 J LdfJ=O, 

with 

and 

A=ak2 - bkw +cw2, H=dk - ew. 

The function a appears in the Lagrangian only through 
its derivatives, so 

QL 11..2 0
)_ t il & = n I/< a - w = p = cons 0 

This equation is analogous to the continuity equation (3). 
We can use it to eliminate Ct and consider, instead of 
L, a function 

R ""pO- - L =g+ A(p2+ H(p+ f=R(n, cp;p), 
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where 

p2 PW nw2 

g=2nk 2 +v+y' 

We are left now with two equations 

d (OR) oR 
dB olp -o(P=O, 

(36) 
oR_O 
on - • 

These equations imply that 

• oR t A", cP at;; - R = cons 

and after the definition of the R function has been taken 
into account we get 

'2 g+f+A ( ) cP = A r n, cP , (37) 

The second equation of Eqs. (36) can be used to calculate 
n in terms of cP 

oAr+oH vy +o(J+g) 
on on on' 

and this is enough to write an implicit form of the solu­
tion of (37). 

B+Bo= ( ~ J vY((pj 
Two simple zeros CPl and CP2 of the function r(cp) are re­
quired for the solution being periodic 

B. Equations originating from a Lagrangian with 
quadratic dependence on derivatives 

(38) 

We consider now E-L equation for a Lagrange function 
depending on an arbitrary number of functions, simi­
larily to (1), but now we aSsume a specific form of de­
pendence of the Lagrangian on the derivatives 

L = all CifxCijX + bj Ci jx cP x + cCP~ 

+dfiCiJtCijt +ejll/tcpt +jCP; 

+ gj Ci Ix CPt + hj Cift CPx + i jJ Cift Cijx 

+ jja lx + k j aft + lcpx + mCPt + n, (39) 

A summation convention has been assumed here, Ct jj Ci jx 

X CiJx ",2:4J =1 Ci jJ lljXlljX' etc" and all the coefficients 
ali' b pC, ••• are functions of nj and cp. 

An additional Simplification introduced in (39), as 
compared with (1), is that there is only one cP function 
left, This is to assure that all but one of the Lagrange 
equations can be eliminated, Then periodic solutions, 
in a closed form, to the single second order equation 
left (that corresponding to variations of cp) shall be 
obtained taking advantage of the quadratic dependence of 
the Lagrangian on the derivatives. 

It is easy to verify that correct "stationary" equations 
can be obtained by applying a substitution 
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directly to the Lagrangian (39) and writing the E-L 
equations for the variational principle 

oJ L(np Cp, (p, !xJ ) dB=O, (40) 

The Lagrangian in (40) is a quadratic form in (P and 

L=Ajjl':tjCt
J 
+ Bj&j(P+ CjQ; + D(p2 + E(P+n, 

where 

tAiJ = k2a jJ - kwijj + w2 d jJ , 

B j =k2b j + w2e j - kw(gj + hi), C j = kit - wko 

D=ck2+Aw2, E=kl- wm. 

The "stationary" E-L equations are 

ocp: -.!i ~ -~-O 
dB oCt ocp-' 

d 
oar: de 

oL 
=0, r=l, •• , ,m 

s= 1, ... ,k, 

(41 ) 

(42) 

(43) 

(44) 

Now we are going to get rid of the potential functions Cir 
going over to a new set of variables by means of a 
transformation 

OL 
Pr=o a

r 
' r= 1, ... ,m. 

This last transformation can be reversed to calculate 
the aT in terms of Pr 

, oR 
Cir=apr 9 r=l,.,. ,m, 

with 

R = R(B, no cP, (p,P r )= Ps&. - L, 
provided that 

We write "d., L instead of ~s, L to indicate that all the ~s 
have been expressed here by the new variables Ps. 

Equation (43) integrates simply to give 

and Eqs. (42) and (44) are now 

d (OR) oR 
dB atp -acp =0, 

aR 
-a-=O, s=l,o",ko 

ns 

The function R is a quadratic form in ep: 
R=Xtp2+y(p+Z, 

where 

X=MrsA;]Aj;BjBj - D, Y= - tArSA;]A;i[(PJ + Cj)Bj + 

+ (Pi + Cf)BJ ] - E 

and 
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Z=PJ(Pt+Cj)+Pt(PJ+Cj)-m, i,j,r,5=1, •• _,m. 

Eqo (46) has an integral 

• aR '2 
CPalp -R=Xcp -Z=A===const., 

so that 

.2 A+Z ) 
cP =-.x-=r(n., cP, 5 === 1, ... ,k. (48) 

This formula together with Eq. (47) yields an equation 
for eliminating ns: 

ax i:lY i:lZ 
-~r(n.,cp)±-~ -Vr(ns,cp) +-~=o, 5=1,0 . . ,k. (49) 
uns un. (Ins 

Once the ns are eliminated, 
to give a periodic solution 

Eq. (48) can be integrated 

f '" dcp 
B+ Bo= ~. 

v'nCP, 
(50) 

oscillating between two simple zeros of r(cp). 

All the functions ns = ns cp( B) are determined by Eq. 
(49) together with (50) and the ar can be readily calcu­
lated from Eq. (45): 

Cl'r=J tr[cp(8)]d8+ aro, r=1, o • • ,m, 

where 

4. QUASIPERIODIC SOLUTIONS AND MODULATIONAL 
STABILITY 

Whitham8 presented a method for describing slow 
variations of nonlinear dispersive waves and studying 
their stability. The method relied on a Lagrangian being 
known for the studied equations to be derived from a 
corresponding variational principle and the existence of 
a stationary periodic solution was also assumed o Here 
we are going to specify the Whitham's theory for the 
"quadratic" Lagrangian (39), of which we know that it 
gives origin to equations having periodic stationary 
solutions in a closed form. 

Let us consider E-L equations of a three function 
(n, cp, a) variational prinCiple 

(51) 

It is assumed that there exists a stationary solution of 
the E-L equations of (51) depending only on 

e = kx - wi, k, w = const, (52) 

and we look for a more general solution resulting from 
slow variations of this uniform wavetrain solution. The 
first step is to represent the solution in the form, e. g. , 
for cP 

with 

cp(x,t)=<I>(e,X, T,d, 

X=EX, T=Et, B=E-1E/(X,T), 

w(X,T)=-B t =-0p k(X,T)=Bx=exo 

(53) 

The phase function e = 8 (x, t) is introduced as a general­
ization of (52) and E is a parameter, which, at a later 
step, shall be taken small and an expansion shall be 
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used: 

<I> = <1>0 + E<I> (1) + E2<1> (2) + .... (54) 

Equations describing the more general "quasiperiodic," 
solutions sought can be obtained by introducing (53) 
directly to the Lagrangian of (51) and writing a three 
variable variational principle 

o.r J .{2< L(N,<I>,k<Pe +e<P x , - w<l>e +E<I>T,kAe +EAx + f3, 

-WAe+EAT -y)dXdTd8=O, (55) 

where, instead of a and n, we used 

a=A(e,X, T,e)+ ljJ(X, T), n=N(e,X, T,el, 

together with 

QI=E- 1-.£'(X,T), f3=-.£'x> y===--.£'p 

(56) 

The "pseudofrequencies" f3, y appeared here because we 
included ~I in (56) to obtain a more general solution as 
a is only a potential and we expect only its derivatives 
to be periodic in B to lowest order in E. The period has 
been taken to be 21T for the analogy to the sinusoidal 
waves of linear theory be preserved. 

If we define an average Lagrangian i as the inner in­
tegral of (55) and use expansions of the type of (54), 
then, to lowest order, we have 

of.r L(No,<I>o,k<l>oe, -w<l>oe,kAoe +f3, -wAoe-y)dXdT=O. 

(57) 

The variation of (55) with respect to N, <1>, and A results 
in E -L equations, which, to lowest order, have solu­
tions periodic in 8, characterized by amplitudes ffJ (X, T), 
<p°(X, T), AO(X, T), frequency w(X, T), wavevector k(X, T) 
and pseudofrequencies fl(X, T) and y(X, TL With these 
solutions substituted into (57) we can calculate L= 
=L (<I>°,Ao,w,k, fl, Y)o Then, taking variations in (57) 
with respect to ffJ,<p°,Aa, e(X, T), and -.£'(C, T), we ob­
tain equations 

Lila = 0, LAa= 0, (58) 

(59) 

together with equations arising from the definitions of 
w, k, f3, Y 

kT+Wx=O and f3T +yx=O. (60) 

The set of Eqs. (58)-(60) describes slow changes in the 
parameters of the lowest-order periodic solution of the 
original equations and if this is a hyperbolic set then any 
changes in these parameters can propagate and we ex­
pect the periodic solution to be stable. The term 
"modulational stability" is sometimes used for this type 
of stability 0 

The averaged Lagrangian has a simple form if the 
transformation to Hamilton variables is used 

aL aL 
n1=~' n2=~ 

eo eo 

and 

H(nl> n 2 , <P o;0, -.£')= il 1<1> eo + nzAea - L. 

As il2 does not depend on e, Ae is periodic and H is an 
energy integral, we have 
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Il2 =pro(X, T), H=A(X, T), 

L = 2~ f III dPO - H, (61) 

where i ... dpo denotes integration over one complete 
cycle lr Po' 

The Lagrangian discussed in Sec. 3b depends on a 
number of potentials CiJ ' j = 1, •.• ,m, and on more than 
one n function, so we shall have now a larger number of 
equations: 

LA=o; Lp = 0, rO 

a a 
a TL w - axL.=o, (62) 

and 

kT+wX=O, f3r +Yr =0, 
T " 

with r running over 1, ... ,m. 

In order to calculate the averaged Lagrangian L we 
repeat the entire procedure of Sec. 3b with a slight 
change involved by the pseudofrequencies f3r and Yr' It 
is understood, moreover, that all the "constant" are now 
functions of X and T and vary according to (62). For III 
of (61) we have then 

III = Bltl + 2Dvr+ E, 

where only E is now different from the one in Sec, 3b, 
and 

E= lk - wm + k2 f3l bl - W
2 y1e l + wk(h l Yj - f3lg l ). 

It is clear that this change in the definition of E involves 
also (slight) changes in the expression for r. 

The ultimate effectiveness of the method depends on 
the possibility of calculation of the integral (61) and this 
might be quite complicated in practical cases. 

5. THE NONDISPERSIVE CASE 

We obtained a dispersion-free system by omitting the 
cP" and CPt derivatives in the corresponding Lagrangian 
(see Ref. 8). Now, let us discuss a more general case 
of a Lagrangian (which is similar to the one discussed 
in Ref. 9) 

1579 J. Math. Phys., Vol. 16, No.8, August 1975 

involving the following Euler-Lagrange equations: 

onp: Lnp=O, p=l", "k 

a O!s: L" t + L '" x = 0, S = 1, •.. , m. 
st Sx 

Introducing new variables 

q21 = a lt , q2r-l = - L "Ix 

and using the (onp ) equations to find np = np(q,), we can 
write for the E -L equations 

L (0) + L (1) - 0 l- 1 2 
ill t qtX - <) -, \I (I (I, m ~ 

where 

L (0) (q,) =' L (np(q,); O!lx(ql)' q2l) - O!jx(q,)L "'Ix == L + Ci IA2H, 

L (1) (q,)=' - Q2Iq2l-!' 

An alternative form of the last equation is 

L (0) q + L (1) Q - ° n - 1 2m q, qn nt tllqrr nx ~ .' -, \I • \I ~ , 

and, as the matrix L~l) is symmetric, .the system is 
symmetric-hyperbolit~ if the matrix L (0) is positive 
defined, This last result might be of usq~~n the stability 
investigations described in Sec, 4, 
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This paper contains a general description of the theory of invariants under the adjoint action of a given 
finite-dimensional complex Lie algebra G. with special emphasis on polynomial and rational invariants. The 
familiar "Casimir" invariants are identified with the polynomial invariants in the enveloping algebra 21( G). 
More general structures (quotient fields) are required in order to investigate rational invariants. Some useful 
criteria for G having only polynomial or rational invariants are given. Moreover. in most of the physically 
relevant Lie algebras the exact computation of the maximal number of algebraically independent invariants 
turns out to be very easy. It reduces to finding the rank of a finite matrix. We apply the general method 
to some typical examples. 

1. INTRODUCTION 

The subject of polynomial invariants (for a given Lie 
algebra G) is strongly related to physics. As a matter 
of fact it was under the efforts of some relevant phy­
sicists (H. B. G. Casimir, G. Racah, ... ) that this sub­
ject began to grow up. H. B. G. Casimir in collaboration 
with B. L. van der Waerden first introduced the quad­
ratic invariant for semi simple Lie groups. Surprisingly 
enough, G. Racah 1 was able in the 1950's to give an 
explicit construction for the polynomial invariants in the 
case G semisimple. What are now called "Casimir in­
variants" originated in their work. 

While physicists2 own interest was centered in the 
semisimple case, because of the crucial role played by 
semisimple Lie groups in modern physics, the first 
general rigorous results obtained by the mathematicians 
(the name of C. Chevalley is particularly relevant here) 
also refered to the invariant elements in the enveloping 
algebra of semisimple Lie algebras. 

It is perhaps because of this coincidence that a 
groundless belief has developed in physical literature 
(in a more or less explicit form) in the sense that the 
only possible invariants for a general Lie algebra are 
of polynomial type. Sometimes the contrary is true, and 
such general operators as exponentials 2 and so on are 
called "Casimir invariants" without an explicit definition 
of the meaning of this term. 

In this paper we propose to identify the Casimir in­
variants as the polynomial invariants of G. Then we 
give simple examples showing the need for more general 
invariants. Thus, more general structures than the 
enveloping algebra are required. To our knowledge, the 
only well-defined structures of this type are the quotient 
fields. Section 3 is devoted to the description of rational 
invariants, and gives sufficient conditions for a given 
G having only polynomial and/or rational invariants. A 
simple formula is given which permits the exact com­
putation of the number of algebraically independent poly­
nomial and/or rational invariants. This formula reduces 
the problem to computing a matrix rank. We apply the 
general method to some physically relevant Lie algebras 
in Sec. 5. 

2. POLYNOMIAL INVARIANTS 
Henceforth G will denote any finite-dimensional Lie 

algebra over the field <C (complex numbers), with com-

mutation relations [A pA j] = 2: k C~jAk (i, j, k = 1, 2, ... ,n) 
in a given basis {AJ}r. In Sec. 4, G will be assumed to 
be algebraic. 

A. The enveloping algebra3 

We denote by S the symmetric algebra of G. It is 
isomorphic to <C[al , a2, ... ,an]' the usual polynomial ring 
in n commutative variables al , ... ,an' The set of all 
homogeneous polynomials in S of degree m will be de­
noted s(m). 

On the other hand we will consider il, the enveloping 
algebra of G, consisting of all (noncommutative, in 
general) polynomials in A l , ••• ,An' The linear subspace 
of il generated by the monomials A?A;2 ... A~n (rl + r 2 

+ ... + rn -'Sm) will be denoted by ~(m)' Given U E ~, we 
will refer to the integer d(u) == inf{p I u E ~(P J as the 
degree of u in ~. One obviously has 

U ~(m)=~' 
m~ 0 

B. The adjoint action 

This is defined to be the action of G on itself by the 
following derivations adA: A' E G- [A,A'] E G. In this 
paper, however, we are going to consider also the ad­
joint action of G on S and ~, as given by the following 
formulae for a basis {A); of G: 

) ) AdA . A (P) '" k a p S p=p(a ==P(al, ... ,anES _J J =L.JCnak-a-E, 
k,l a I 

(1) 

(2) 

and by linearity for any A E G. 

C. Polynomial invariants. Definition 

Because of its key role in that follows, we isolate the 
subsets: 

~[I={UE I[AJ,u]=O,,,j}c~, 

Sf ={p ES IA)P) = 0, "j}c s. 

They are the invariants in ~, S, respectively, under the 
adjoint action of G. 
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Definition 1; The elements in ~ I are called polynomial 
(or Casimir) invariants of G. 

Definition 2: Given a weight function ('" one-dimen­
sional representation) X : G- <1:, we say u E ~ is a X­
semi-invariant in if [A,ul=x(A)u, 1I AEG. We denote 
by ~{/2 the set of all X-semi-invariants in~. 

Definition 2': PES is said to be a X-semi-invariant in 
5 if A(p) = X(A)p, 1I A E G. Let us write S~/2 for the set 
of all X-semi-invariants in S. 

D. The canonical isomorphism ¢: S 4 ~ 

Let us consider the linear map ¢ .~ 5 - ~ defined by 
symmetrization as follows: 

where TIr stands for the permutation group of r objects. 

Lemma 13: (i) ¢ is a linear isomorphism. 

(ii) ¢ commutes with the adjoint action, i. e., ¢(A(P» 
= lA, ¢(p)l, 1I pc: S. 

(iii) Let ~(j)"'¢(S(j». Then ~(m)=!'f1~ ~(j). 

(iv) P1,=-s(m1>, P2,=-s(m2) ~ d(¢(P1P2»=m 1 +m2. More­
over, ¢(P1P2) - ¢(Pl) ¢(P2) '=- ~ (ml+m2-1)' 

It follows that the Abelian algebras 51, ~ I are linearly 
isomorphic. This can be strengthened 4 to read; 

Lemma 2; 51 and ~l are algebraically isomorphic. 5 

Thus the transcendence degrees of 51, ~ lover <I: are 
identical. In other words, the cardinal, T of a maximal 
set of algebraically independent elements in 51 is the 
same as for ~ I. Moreover, since the adjoint action on 5 
takes 5 (m) into 5 (m >, the elements in the maximal set can 
be chosen to be homogeneous. 

Lemma 3: Let {Pj}~ homogeneous algebraically in­
dependent in 51. Then {¢(P)t are algebraically in­
dependent in ~ I. 

Proof: Suppose that there exists a finite set Ie INr , 

(IN, natural numbers) and nonzero complex numbers 
XS 1' ••• osr [(8 u ... ,sr) '=- I, such that 

Let di(i = 1, ... , r) the degrees of the homogeneous 
polynomials P/i = 1, ... , r). Let Imax be the subset of I 
constituted by the elements (8 1"", sr) such that Z;~=lSidi 
is maximal in I. Then, by making use of Lemma 1 (iv), 
we have 

6 X ",(/1 ... pSr)_o 
51"'· 'Sr 'P 1 r-

lmax 

and, according to Lemma 1 (i), 

L X pSl ... pSr_o 
sl"" .sr 1 r - , 

1m ax 

which is a contradiction. QED 

We close this section with a crucial result relating 
T (the maximal number of algebraically independent 
CaSimir invariants) to the rank of the antisymmetric 
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matrix MG=((MG)jj) with (MG)iJ"'~k C~jak' We write 

r(G) '" sup rankM G' 
(a l f··· .an ) 

Then we have the following upper bound for T: 

Theorem 1: With the above notations T .,,: dimG - r( G) 
(3) 

Proof: Follows from Lemma 2 and a classical 
theorem 6 stating that the system of differential equa­
tions, 

(i = 1, ... , n), (4) 

has exactly n - r( G) functionally independent solutions. 
The polynomial solutions can be identified with elements 
in 51. QED 

Remark: Let {Pj}r a maximal set of homogeneous 
algebraically independent elements in 51 (see Lemma 3). 
Then {¢(Pj)}r is a maximal set of algebraically inde­
pendent Casimir invariants. 

E. Examples 

The essential feature we want to emphasize is the fact 
that, generally speaking, equality will not be accessible 
in (3), because of the existence of nonpolynomial solu­
tions. It is this simple remark 7 that invalidates the 
conclusion in Ref. 8. This is best understood by looking 
at some low-dimensional examples. 

Example 1: Let G be the Lie algebra of GL(2), 
dim G=4. 

[AU A 2l = [A2,A4 l=A2' [A3,AJ = lA4,AJ=A3' 

[A2,A3l=A I -A4 , [Al ,A4l=o, 

a2 - a3 0 

0 al - a4 

r( G) = generic rank 
a4 - a1 0 

- a2 a3 0 

=2 

Two independent (polynomial) solutions of the system (4) 
are 

PI (a) = al + a4 , P2(a) = a~ + a! + 2a2 a3 • 

With the aid of the canonical isomorphism ¢ we obtain 
the maximal set of algebraically independent polynomial 
invariants: 

Gl =Al +A4 , C2=A~+A!+A~3+A~2' 

In this case, equality is satisfied in (3). 

Example 2: (Dilatations and translations in the plane) 

[A 3,Al l=A1 , [A3,A2l=A2, [Al,A2l=o. 

Now r( G) = 2, and there is no polynomial solutions of 
system (4). However, there is a rational solution f(a) 
=al/~' 

Example 3: Let us consider now the three-dimensional 
Lie algebra: 

[A l ,A2l=o, [Al>A3l=Al +A2' [A2,A3l=A2· 
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We find r( G) = 2, and there is no rational solutions. The 
system (4) admits the solutionf(a) = a1/a2 -lna2 • 

Summarizing, we conclude that polynomial solutions 
of (4) (hence polynomial invariants in~) do not generally 
exhaust all possible solutions of that system. This 
suggests the following definition. 

Definition 3: We call f a formal invariant of G if it is 
a solution of (4). It seems to us that such definition is, 
from the point of view of the adjoint action, the most 
general definition of an invariant object. In the case f 
is a rational function of aI' ... ,an' we are going to see 
that f gives rise to an associated "rational" invariant 
(Sec. 3). Until now one has not been able to do so for 
general formal invariants. 

We note also that the exponential invariant proposed 
in Ref. 2 is not a formal invariant, in the sense of our 
definition 3. 

3. RATIONAL INVARIANTS 
A. The quotient field 9 

It is a well known fact that ~ is a Noetherian ring 
without zero divisors. Thus, one can construct its 
quotient field, denoted D(~), the elements of which are 
of the form uv-1 with u, v E ~ and v * 0. Given r 
=UV-1ED(~), it can be decomposed as r=ul-1v' with 
u', v' E ~ and u' * 0. Any pair of fractions r 1 , r2 E D(~) 
can be reduced to common denominator, so that one can 
define on D(~) all required operations to make D(~) a 
noncommutative field. 

Similarly the quotient field of S will be denoted by 
D(S). It is isomorphic to the field «:: (aI' ... , an) of 
rational functions in n commuting variables. 

B. The extended ajoint action 

For every r ll r 2 ED(~) we write lrll r 2] "'r1r 2 - r 2rl" 
For instance, if u, v E ~ and v * 0, we get [u, V-I] 
= - v-1[u, V lv-I. Therefore, we are able to extend the 
adjoint action of G to the quotient fields D(~), D(S) as 
follows: 

h=h(a)ED(S) ~A)h)= 6 c;,a k oah ED(S), 
k.' a, 

rED(~) ~ [Aj,r]"'Ajr-rAjED(~). 

Let us write D(S)I",{h ED(S) IAj(h)=O, "j}, D(~)I 
"'{rED(~)I[Ai'rl=o,,, j} 

( 1') 

(2') 

Definition 4: The elements in D(~(Y will be called the 
rational invariants of G. We notice that D(~)I contains 
D(~ I), the quotient field of ~ I. Consequently, all poly­
nomial invariants are included in D(~)I. Another useful 
remark is that given u, v E ~ (v *0), a necessary con­
dition for uv-1 E D(~IY is [u, vl = 0. 

The next two propositions are concerned with the 
structure of D(S)I, D(~)I. 

Proposition 1: With the above conventions: 

(i) hED(S)I ~ h=Pl /P2' where PI' P2ES[/2 for 
some weight A. 

(ii) There exists a maximal algebraically independent 
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set {hI"'" hr } in D(SY such that hl=P/qp with homo­
geneous Pi' q I ESV2, for some Ai (i = 1, 2, ... ,r). 

Proof: (i) Let PI' P2 E «::[a1, ... ,aJ relatively prime 
polynomials such that h = P1/P2. If hE D(SV, then 

Therefore, 

A)P1)/P1 =A)P2)/P2 E «::. 
On the other hand, if Pu P2 E S~/2, then obviously h '" fi l / 

/)2 E D(S)I. 

(ii) Let gl' ... ,gr a maximal algebraically independent 
set in D(S)i. We write f.ii=P;!ql with Pi' qi Ai-semi-in­
variants in S (i= 1, ... ,r). Let Pi = 'i,'fdo pi k

) and let qj 
= Z; ~:o q in the decomposition in homogeneous terms. 
The adjoint action on 5 takes 5 (m) into itself. Therefore, 
p)k) and q;n (k = 0, ... , d i , 1 =0, ... , c i) are Aj-semi-
invariants (A i th~ weight of P j and q i) (i = 1, ... ,r). The 
elements hj'·k)=q;ll/p;k) (i=l, ... ,r, l=O, ... ,c i ; 

k = 0, ... , d i ) are in D(S)i. Moreover, 

1 + ... + 
\,C' hl,.di)· 
61;0 i 

Then gi' ... ,f.ir are algebraically dependent on h;C.k), i 
=1, ... ,r, l=O, ... ,c i , k=O, ... ,d i , and we can choose 
a maximal algebraically independent set among the 
hi,·k). 

Proposition 2: (i) P ESe2~¢(p) E~~/2. 

(ii) U. v E ~~/2(V *0) ~ uv-1 
r=: D(~W. 

(iii) The set ~1/2 "'u ~ ~ C2 is Abelian. 

(iv) Let {hi = p)qJr be an algebraically independent 
set in D(S)I, with homogeneous Pi' q i E S~/2, for some 
Ai (i=1, ... ,r). Then {¢(PJ¢(q)-lg are'also alge­
braically independent in D(~V. 

Proof: (i) Follows from Lemma 1, part (ii). 

(ii) A E G ~[A, I1V-1] = [A, u]v-1_ /lv- 1lA, V]V-1=AUV-l 

- UV-lAVV- l = 0. 

(iii) See, for instance, Ref. 2. 

(iv) Suppose that there exists a finite set Ie INr and 
complex numbers Asp ... 'Sr *0 [(Sl' ., ., sr) c"C I] such that 

;, A (¢(p.)¢(q.)-l)'l···(¢(p)¢(qtl)Sr=o. 
~ Sl,uo,5 r 1 1 r r 

In view of part (iii) this implies 

6 A ¢(p .)Sl ... ¢(p )Sr[ ¢(q )S1 '" ¢(q )Sr ]-1 = 0. 
51 t ••• 'Sr I r 1 r 

[ (5) 

Let A =' A rI>(P) l<) =' rI>(p )'1 •.• rp(p )'r, ¢(q) ls) 
(5) 510000 .Sr' 'f" '+" 1 r 

=' ¢(qyl ... ¢(qr)ST, and n[ ¢(q)(s) be the product of all 
¢(q)(S). By multiplying by nI rp(q)(S) Eq. (5) becomes 

6A(s)¢(P)<5) n ¢(q)(t)=O. 
[ [- (s ) 

Let di' e i be respectively the degrees of the homo­
geneous polynomials Pi' q j (i = 1, 2, ... , r). Let us write 
Imu for the subset of I consisting of those elements (s) 

= (s 1> ••• , s r) such that L: ~=l sid i + L:~=l L: (t ), (5 ) t ie i is maxi­
mal in I. Then Lemma 1, part (iv) yields 
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Now let us multiply (6) by n I q to) to conclude 

'" X h
SI 

'" h
S

' = O. LJ SI,<>"" ,sr 1 r 
ImBlt 

Thereby contradicting the hypothesis. QED 

The result of Lemma 2 admits a direct generalization 
to the quotient fields 10 ~ 

Lemma 2': The fields D(S)I and D(ij)I are isomorphic. 

An important consequence is the equality between the 
maximal number of algebraically independent elements 
(transcendence degree) of D(S)I and of D(~)1. Let us 
call T' this number. By the same argument already 
used in Theorem 1, we obtain 

Theorem 1': 

T' "" dimG - reG). (3') 

Remark: Let {hj}r' be a maximal set in D(S)I of the , 
type indicated in Proposition 2 (iv). Then {<p(p j)<p(q JI}~ 
is a maximal algebraically independent set in D(~)l. 

The preceding Example 3 shows that equality is not 
always reached in (3'). It would be helpful to know of as 
many Lie algebras as possible having only rational in­
variants. In other words, we are interested in those G 
such that T' = dimG - r( G). We now undertake this 
problem. 

4. THE CASE G ALGEBRAIC!! 

One sufficient condition for the nonexistence of ir­
rational formal invariants for G can be deduced from a 
result of J. Dixmier.12 

Theorem 2: Let G a finite-dimensional algebraic Lie 
algebra over a commutative field of characteristic zero. 
Then the maximal number of algebraically independent 
elements in D(S)I equals dimG - reG). 

Corollary 1: 

G algebraic =H'=dimG - reG). (3") 

Another important problem is to characterize the 
class of all Lie algebras G such that the number of 
algebraically independent Casimir invariants T equals 
dimG - reG). 

If we restrict our attention to algebraic Lie algebras, 
then a simple sufficient condition is D(ij)1 =D( ~ I) (in 
this case every rational invariant is a quotient of 
Casimir invariants). This sufficient condition holds for 
any nilpotent 13 or semisimple 14 Lie algebra. 

The case G semisimple is the best known. 15 Since G 
is automatically algebraic, 11 we conclude T= dimG - reG) 
In other words, the number of algebraically independent 
Casimir invariants equals the rank 16 of G. 

Now we generalize the semisimple result to a larger 
class of Lie algebras, including many other Lie algebras 
of frequent use in physics. 

Theorem 3: [G, G]= G ~ D(~)I=D(ijl). 

Proof: The only admissible weight for such Lie 
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algebra is X =0. From Proposition 1 part (i) we see that 
D(S)f =D(SI). Furthermore, Lemmas 2 and 2' imply 
D(~W = D(ij 1). QED 

Since [G, G] = G forces G to be algebraic, 11 we obtain 
the following important result: 

Corollary 2: [G,Gl=G~T=dimG-r(G). 

In such cases Casimir invariants are all we need in 
order to describe the set of formal invariants of G. 

5. APPLICATIONS 

While it is not generally true that T' =dimG - r (G), 
there are many physically relevant Lie algebras having 
only rational invariants. We quote a few typical exam­
ples. According to what has been said, we are provided 
with two quantitative statements (Corollary 1 and 
Corollary 2 above) concerning the number of algebraical­
ly independent invariants. Finding the explicit form of 
the invariants is a quite different problem. In the fol­
lowing examples it has been solved in a straightforward 
way. 

(a) G = {J i' P 1}~=1 with commutation relations 

(7a) 

(7b) 

It is the Lie algebra of E(3), the Euclidean group in 
three dimensions. It satisfies [G,G]=Go An easy calcu­
lation shows reG) = 4. A maximal set of (polynomial) in­
variants is given by 

C1 =P2
, C2 =JP. 

(a /) If we add dilatations to E(3), we obtain G' 
={Jj,Pi,D}~=I' The only new (nonzero) commutators are 

(8) 

One finds r(G')= 6, T=O, T' = 1. There is a rational in­
variant (JP)2(P2)-I. 

(b) Let G be the Lie algebra of the Galilei group G 
={Jj,Kj,PilH}~=l' The commutation relations are in 
addition to (7) 

lJi,Kjl=iEiJ/!(k' (Kj,H]=iP j (i,j, k= 1, 2, 3); (9) 

one easily verified reG) = 8, T= T' = 2. A maximal set 
of invariants is given by 

C1 =P2
, C2=(KXP)2. 

(b') Let G'={Ji'Ki,PI,H,M}~=l be the Lie algebra of 
the central extension of Galilei group, with modified 
commutation relations: 

[K p P j ]=i6 ij M (10) 

In this case reG') = 8, T= T' = 3, with a maximal set 

C1 =M, C2 =MH-iP2
, C3 =(MJ-KXP)2. 

(b") Now let Gil = {J i' K i' Pi' H, M, D} ~=l' D = dilatations. 
This is a 12-dimensional Lie algebra with added 
relations: 

[D,PjJ=-iP" [D,Kj]=iK j , 

[D,H]=-2iH (j=1,2,3). 
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We get this time r(G") = 10, T = T' = 2, with maximal set 

C1 =M, C2 = (MJ - KXP)2 

Remark; The Lie algebras in (b), (b'), (b") do not 
satisfy the hypothes is in Corollary 2. 

(c) Let us consider now the Poincar~ group. Its Lie 
algebra G admits the usual basis {J /Lv' P ,J (J..l, v 
= 0, 1, 2, 3), J /L V = - J w' The commutation relations are 

[J /LV' JpcrJ == i(gvrP /L cr - filJ,PJ vcr - g",r/pv + gvr/p",), (12a) 

(12b) 

As we see [G, G] = G. In fact T== T' = 2, with the well­
known (Casimir) invariants: 

C1 =P2
, C2 =fVl, 

where W/L = tE.,.vXPJvxPp' 

(c') By adding dilatations to G, we go into the so­
called Weyl group, with Lie algebra 

G'={J"v,P",D} and [D,P.,.]=-iP",. (13) 

An easy calculation shows r(G') = 10. This time there is 
no polynomial invariants. It is straightforward to verify 
that p2(W2)-1 is a (rational) invariant for G'. 

(d) In a series of articles 17 P. Roman et aZ. have in­
vestigated some Lie groups containing the Poincar~ 
group. We proceed to compute the number of their in­
dependent invariants in the light of the general results 
stated in Sec. 4. 

Let us begin with 17 50(3, l)X(T!XT~). Its Lie algebra 
admits a basis {J "v' P /L' n,.} such that both sets {J /LV' P ,J 
and {J "V' n,,} satisfy the Poincare commutation relations. 
Moreover, 

(14) 

Hence dimG = 14, and we find r(G) = 10. Since [G, Gl 
=G, we conclude that T=T'=4. By letting W.,. 
= tE/LVPcrJvpPcr and V'" =iE"'vPcrJvp IIu' a maximal set of in­
variants is given by 

C1 =p2, c2 =n2
, c3 =pn, C4 =WII=-VP. 

This is to be compared with Ref. 17 where neither the 
number nor the explicit form of its six (!) independent 
polynomial invariants are correctly stated. 

(d /) By addition of a new generator 5 to (d), we obtain 
a Lie algebra called Ci 5 in Ref. 17. This generator 
verifies 

[S,P"l=O, [S,n,j=ip" (J..l=o, 1,2,3). (15) 

WefinddimG=15, r(G)=12. Furthermore, T=T'=3, 
with Casimir invariants: 

C1 = p2, C
2 

= (pn)2 - p2n2, C
3 

= WII, 

once again in contradiction with Ref. 17. 

(d") Finally let us consider the Lie algebra of the 
group 17 H 5 which admits for its Lie algebra a basiS 
{J "'v' P.,., II", 5, C, D}. The only new nonzero commutators 
are 

(16a) 
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[D, n.,.l=in", 

[S,CJ=iD, 

[D, C]=2iC, 

[s,Dl=2iS. 

(16b) 

(16c) 

In this case we find dimG=17, [G,G]=G, r(G)=14. 
Therefore, T = T' = 3. A maximal algebraically indepen­
dent set of polynomial invariants is the following: 

C 1 = (PII)2 - PI! \ 

C2 = tJ" (p/LII" - pVIJ") + Sn2 + CP - DPI!, 

c3 =wn. 

The last one was not considered in Ref. 17. 

Remark: By its very definition r(G) is always an even 
integer (rank of an antisymmetric matrix M c), In con­
sequence, as can be verified in all preceding examples, 
the number of formal invariants has the same parity as 
dimG does. In particular, G algebraic =} T' = dimG 
(mod 2). 
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One-dimensional excited state reduced Coulomb Green's 
function 

Levere Hostler 

Physics Department, Wilkes College, Wilkes-Barre, Pennsylvania 18703 
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The nth excited state reduced Coulomb Green's function in coordinate space for the one-dimensional Kepler 
problem is investigated, and a closed expression for this function is obtained. 

I. INTRODUCTION 

Reduced Green's functions defined by 

K(r r E) '= - ~ :0 '0 c,okl(r2)c,o.,*(rl ) 
2, 11 n 2m k'n I Ek-En 

(1.1) 

are basic structures occurring in Rayleigh-Schrtidin­
ger bound state perturbation theory for a quantum me­
chanical particle moving in a potential field V(r). Here 
the Ek denote the distinct energy eigenvalues of the un­
perturbed Hamiltonian 

(1. 2) 

including continuum eigenvalues, if they occur.l The 
c,okl are the corresponding eigenfunctions of Ho, 1 being 
a degeneracy quantum number. The energy En is one of 
the bound state eigenvalues of Hoo The reduced Green's 
function (1.1) is just the coordinate space representative 
of the familar sum over intermediate states encountered 
in the Rayleigh-SchrBdinger bound state perturbation 
theory. As such the reduced Green's function enters in 
the calculation of the first order corrections to the 
bound state wavefunctions belonging to the eigenvalue 
En' and also in the second order corrections to the en­
ergies of these states, when the Hamiltonian Ho is 
modified by the addition of a perturbation term. An 
important part of the work of any bound state perturba­
tion calculation is thus summarized in the function 
K(r2, r l , En)' Since this function is independent of the 
particular perturbation problem; in principle it could be 
calculated once and for all and then used as a tool in the 
investigation of various physical effects. 

The reduced Green's function is related to the Green's 
function 

G(r r E) '= - ~ 7.1, c,ok l(rg)c,ot, (rl ) (1. 3) 
2' 11 2m";'"--( Ek-E 

of the Hamiltonian H o, in that K(r2 , rHEn) is obtained 
from G(r2 , r ll E) by removing the nth pole term 

_.!L L ~AL(r2)c,o:,(rl) 
2m I En-E 

(1.4) 

and evaluating the other terms at E = En' In Eq. (1. 3) 
E takes on arbitrary complex values not in the eigenval­
ue spectrum, discrete and continuous, of Ho. We refer 
to K(r 2 , r l , En) as the "nth excited state reduced Green's 
function" and (when necessary to avoid ambiguity) to 
G(r2 , r l , E) as the "full Green's function, " 

Reduced Coulomb Green's functions, for which Ho is 
the Coulomb Hamiltonian, are of interest for example 

as a possible tool for use in atomic and molecular cal­
culations, and have been the subject of a number of 
previous investigations, Hameka2 has derived a rela­
tively simple closed form expression for the S-wave 
component of the ground state reduced Coulomb Green's 
function in three-dimensional space; and subsequently 
Hostler3 expressed the complete ground state reduced 
Coulomb Green's function, including all partial wave 
contributions, in closed form, More recently, Swier­
kowski and Suffczynski,4 investigated the excited state 
three-dimensional reduced Coulomb Green's function. 

We will here obtain a closed expression, Eq. (2.28), 
for the excited state reduced Green's function of the one­
dimensional Kepler problem. The one-dimensional 
Kepler problem is of special interest because of its rel­
lative SimpliCity and because of a result of HostlerS that 
the one-dimensional Coulomb Green's function and re­
lated structures serve as generating fUnctions for the 
corresponding objects in spaces of any higher odd 
dimensionality. Because of this relation between Cou­
lomb Green's functions in spaces of different dimen­
Sionality, the results to be presented here for the one­
dimensional Kepler problem are Significant also for the 
three - dimensional problem. 

Our plan of attack is to obtain the one -dimensional 
reduced Green's function from the known one dimension­
al Coulomb Green's function of Meixner6 ,7 

GID (r2, r l ; E) 

= - taI ivr(1-iv) WiVil /2(2rj al iv)/!1 Iv;1/ z(2r<! aliv}, 

E= -1f2/2ma~(iv)2, Re(iv) > 0, a l =4rrn 2/mZe2, 
(1.5) 

by exploiting the relation between the reduced Green's 
function and the full Green's function. This is made 
possible by the formula 

u,=2r>!nal, v,=2r</nal' 

which expresses the relation between the two functions 
analytically. 8,9 

Equation (1.6) is readily verified by use of the eigen­
function expansion (1,3). Let 0 denote the operation 
performed on the full Green's functioft in Eq. (1.6). 
Then for any function j(E) 

OJ(E) = a[(E - E n)j(E)1!aE I E.E.' 
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Let 0 be applied term by term to the eigenfunction ex­
pansion (1. 3). When 0 acts on the terms regular at 
E::::En it simply evaluates them at E::::E 0 However 
when 0 acts on the pole term (1.4) it re~oves the ' 
(simple) pole and gives the derivative of a constant, 
which is zero. As a result the eigenfunction expansion 
(1,3) is converted into precisely the sum of terms (1. 1), 
L e" into the reduced Green's function. According to 
Eq, (1. 6) in order to calculate the reduced Green's 
function one merely has to differentiate an appropriate 
expression involving the full Green's function with re­
spect to energy, and substitute E::::E

n
• The expression 

being differentiated is analytic at En since the pole of 
the full Green's function is removed by the factor E - En' 

By Eq. (1. 5) the Coulomb parameter iv is a function 
of energy determined through the conditions E = -Ii 21 
2ma~(iv)2 and Heiv> 0, The latter condition He(iv) > 0 
renders iv a unique function of E, for E values not in 
the eigenvalue spectrum of the Coulomb Hamiltonian. 
The bound state eigenvalues of the Coulomb Hamiltonian 
(Bohr energy levels) correspond to the values iv = n 
= 1, 2, 3, ... of the Coulomb parameter: En = - n 2/2main2, 
Before proceeding with the differentiation in Eq. (L 6) 
it is convenient to make a change of independent vari­
ables from E to the Coulomb parameter iv. In terms of 
iv as independent variable the effect of the operator 0 is 

Of(iv):::: tn[a:v (iV -11) (i(i~)~lf(ivV ] ijv~n . (1. 7) 

The pole of the full Green's function occurs at the point 
iv = n in the complex iv plane and is removed by the 
factor (iv - n) in Eq. (1.7) when f(iv) is taken to be the 
full Green's function. 

Section IIA begins with the result of substituting the 
expression (1.5) for the full Green's function into Eq, 
(1. 7) to give the reduced Green's function in the form 
(2.1). Since the Whittaker functions Wiv ;1/2 and!11 ;v;1/2 
ar '''aring in Meixner's Green's function have variable 
order; differentiation of the Green's function with re­
spect to iv will entail differentiation of the Whittaker 
functions with respect to their order. This differentia­
tion of the Whittaker functions with respect to order is 
the principal difficulty in the calculation of the reduced 
Green's function. This problem has been dealt with 
before within the context of the earlier calculation of the 
ground state reduced Coulomb Green's function. There 
relatively simple expressions 

(1. 8) 

lOM 12k]1 =e-</2- e-Z/2(Z+I+zj'dL (e
t
-l)\ 

/llk;1/2 k=l t I 
o (1. 9) 

for the derivatives with respect to order [2 Wk;l //a kJ 1k=1 
and [a!11k;l//ak]lk.l were obtained by term by term dif­
ferentiation of appropriate infinite series representa­
tions of the Whittaker functions. 2,3 It has been found 
that the straightforward application of this same meth­
od to the derivatives with respect to order 

[awk;n/2/ak]lk~(n+1l/2 and a!11k;"//ak]lk~(n+1l/2 
provides the natural generalization of Eqs. (1. 8) and 
(1. 9) to Whittaker functions of higher order. The ap-
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propriate infinite series representations of the Whit­
taker functions required for this are1G,11 

Z(1+nl/2 e-z /2 
!11 k; n /2 = --,-1--­

,1. 

and 
W _sinnH(I+n)-k] ll(1 ) ]z(l+nl/ 2e-·/2 

k;n/2- 1T[Hl+n)-k] r z +n +k n! 

sin1Tlt(l+n)-kJr[I(1 ) ]IIA - - 1T z +n +k Il/k;n/21nz 

_ sin1Tl HI + n) - kJ [ 1 ] Z (l'n l /2e-e/ 2 
--...;;.:;."-'--.:.::.!.....~ r z (1 + n) + k 

1T n! 

x {w[t(l+ n)-k+l] -w[IJ-w[l+ nl} 

+[H1+n)-k] r(i(l+n)+k] Z(1+ n )l2 -~/2 
r[i(l+n)-k+l] e 

f: (x -I)! 1 
x ~z...: 1 (n - X) I z x -r'T'"[ -"'~ (;-:'I---=n:..,),....+-k-+-X~] 

sin1T[ 1.(1 + n) - kJ 
- 2 r(t(1 +n) + k]Z(l+nl/2e-./2 

11 

x -.0 l i(l + n) - k la { II . 
~~1 (n+X)! w z(l+n)-k+x] 

ZX 
- wll + xJ - wll + X + nl} - • 

xl 
(L 11) 

Here the notation la]~ =' a (a + 1)(0 + 2)· .. (a + X-I), X 
=1,2,3, ''', la]o=1 is used. Note that for x=I,2, 
3.· , " Wl + n) - kt contains a factor [HI +n) - kJ 
having a zero at k= i(l + n). In each equation all except 
the first term has a zero at k= Hn + 1). The occurrence 
of these zeros gives rise to conSiderable Simplification 
in the derivatives with respect to order when k is set 
equal to t(n + 1), and this is the feature which makes the 
calculation of 

l(1 Wk;n/2/akJ\ k:!n,j)/2 and [a!11 k;l//akJI k~(n+1l /2 

go entirely parallel to the earlier ground state calcula­
tion, Because of the occurrence of the zeros; relatively 
few terms generated by the term by term differentiation 
of Eqs. (1.10) and (1.11) with respect to k actually 
contribute after setting k = t(n + 1), and relatively sim­
pIe expressions, Eqs. (2. 5) and (2.6), are obtained for 
the more general derivatives with respect to order. 

Equations (2.5) and (2.6) still do not provide the 
derivatives with respect to order 

needed for the calculation of the reduced Green's func­
tion' but in Sec. IIA it is shown that the latter deriva­
tives can be related to the derivatives of Eqs. (2.5) and 
(2.6) by use of appropriate identities for the Whittaker 
functions. However, in the explicit evaluation of the 
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derivatives [aWk;1/iak]k'" and [a;JJk;l/iak]lk." a con­
siderable proliferation of terms is encountered. Sec­
tions II B and II C are devoted to organizing and sim­
plifying these terms for [a Wk;l/ia k] I k'n and [a/11 k:1/i 
ak] I k'n' respectively, In these reductions we are guided 
by the possibility of writing the new derivatives with 
respect to order without the introduction of new hyper­
geometric functions not already appearing in the ground 
state reduced Coulomb Green's function. Also as far 
as possible all polynomials encountered are written in 
terms of the same orthogonal set of Laguerre polyno­
mials, L~(z), p=0,1,2,3,···. Our final result, Eq. 
(2,28), is a rather symmetric and relatively compact 
expression for the one-dimensional excited state re­
duced Coulomb Green's function, This result is pre­
sented and discussed in Sec, lID. 

Finally, in Sec. II E we investigate the diffe rential 
equation and orthogonality condition which determine 
K1D(U, v, En) uniquely, This leads to an interesting al­
ternate derivation of Eq. (2.28), 

II. DERIVATION OF EXCITED STATE GREEN'S 
FUNCTION 

A. Further development of equations for K J D (u, v, En) 

When Eqs. (1. 5) and (1. 6) are combined and the re­
suit expressed in terms of ilJ as independent variable 
instead of E, we obtain [see Eq. (1. 7) for the form of 
the operator 0 in Eq. (1.6) when ilJ is the independent 
variable] 

K1D(U, v, En) 

1 a ( 7T(ilJ -n) (_1)(n-1 ) • 

= ,na1:;-:- . (" ) r(l .) (n + tlJ) 
oW sm7T tlJ - n + W 

X Wiv ;1/2(2r! alilJ);JJ iv;1/2(2r< / a1ilJ») liv-n. (2.1) 

The removal of the pole at ilJ = n of the full Green's 
function is reflected in the structure of Eq. (2,1) in 
which the combination 7T(ilJ - n)/sin7T(ilJ - n) is analytic 
near ilJ = n. The terms generated in the differentiation 
in Eq. (2,1) can be simplified as in ReL 3 by use of 
the identities12 

;JJ n+(l+l") /2(Z) = n!z (1+1") /2e- z/ 2 L~(z )/r(l + n + J.l) (2,2a) 

Wn+ (1+ I" )/2(Z) = (-1 )nn! z (1+,.<) /2e- z / 2 L~(z), (2, 2b) 

and13 

(a/az)r(z) = r(z)>l'(z), 

n 1 
>l'(1 +n)=>l'(l) + L: -, 

X =1 iI. 
>l'(1) = -Yo (2.4) 

Here y is the Euler-Mascheroni constant. As dis­
cussed in the introduction the calculation of the deriva­
tives with respect to order laWk ;l/iak]l k =n and [a;JJH/i 
ak]1 k'n needed in Eq. (2.1) proceeds in two steps. We 
first obtain the gene ralization 

[a;JJ k;n/2(Z)/ak] I k'(n+1) /2 

(2.5) 

and 

[a Wk;n/2(Z)/ak] I .'(n+l)/2 (2.6) 
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1M ( ) (n+11/2 -z/2 ~ n! 
=n·/I/(n+l1/2;"/2 Z lnz -z e X~l (n-il.)Iil.zu 

to Whittaker functions of higher order of the earlier 
ground state results of Eqs. (1,8) and (1,9). This is 
accomplished by term-by-term differentiation of Eqs. 
(1.10) and (1.11), followed by substitution of k= t(n + I), 
Then we seek to relate these derivatives with respect to 
order to the derivatives with respect to order needed in 
Eq. (2.1). The equations bridging the gap between the 
derivatives of Eqs. (2.5) and (2.6) and the derivatives 
with respect to order needed in Eq. (2,1) are found to 
be the special cases of14 

~ (e- Z / 2z(n-1) /2/11 (z)\ = e-z/ 2z(n-1-P1 /2!il (z) dzP k;"/2 ) k+p/2;(n-p1/2 

(2,7) 

= (_1)P e-Z/2z(n-l-P1 /2 W (z) k+p/2;(n-p1/2 . , (2,8) 

for which p = n -1. If both sides of Eqs. (2.7) and (2.8) 
with p = n -1 are differentiated with respect to k and 
evaluated at k= Hn + 1), then on the right-hand sides the 
desired quantities [a/11k;1/2(z)/ak] I k'n and [a Wk;1/2(Z)/ 
a k I k=n appear. These quantities are thus expressed in 
terms of derivatives which can be evaluated in terms of 
Eqs. (2.5) and (2.6). In the following, some further re­
ductions are used to simplify the derivatives with re­
spect to order, before substituting in Eq. (2.1). 

B. Further reduction of the expression for 
[aWk ; y, (z)/akllk=n 

Use of Eq. (2.6) in conjunction with the derivative 
with respect to k, evaluated at k= ,Hn + 1), of Eq, (2.8) 
with P = n - 1 leads to the expression 

_( _l)n-l I z /2 d"-1. (~ e-'Zn-X ) 
n.e dzn-I ~ (n-il.)!iI. 

for [a Wk;l/iak] I k=n' This expression is further reduced 
as15 

JX 
X -d x(lnz) z 

n ( 1) I -X+l -'L-x-1 
( 1)n-1 I z/2" n- .z e 1 -- n.e L.J n_ 

x=l (n-il.)!iI. 

= (_l)n-l I z/2 ~ (n-l)(n-l-il.)! e-' X+l LX+l d
X 

(1 ) 
n . e L.J iI. I Z n-1-X' dzX nz 

x=O n. 

by use of Eq. (2,7) with p=n-l-il., Eq, (2.2a), and the 
two identities16 

J.l arbitrary, 
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n, m = 0,1,2, ... 0 

(2010) 

The A = 0 part of the first A-sum above is written sepa­
rately 0 After working out the derivatives of the loga­
rithm, the remaining part of the first A-sum is com­
bined with the second A -sum to give 

lo Wk;l//okll k=n 

= (_I)n-1(n_l)! e-z/2zL~_llnz 

+ (-l)n-1(n_l) ' e-z/ 2 I: (_1)~-1 (Zp+l _nLH ) 
. ~>o A n-l-~ n-~ • 

(2011) 
The identities18 

dP 
--L"(z) = (-I)P L"+P(z) dzP n n-p (2.12) 

d 
z - L"= - " L"+ (II + n)L,,-l dzn r-n r- n 

allow the combination of Laguerre polynomials in Eq. 
(20 11) to be rewritten as 

After this rearrangement, one of the two terms of the 
A-sum becomes2o 

At this point we have the formula 

[awk:1//akllk=n 

= (_I)n-1(n_l) !e-z/2zL~_1Inz 

+ (-l)n-1(n_l)!e-z/2L~_1 

(2.14) 

(2.15) 

This remaining A -sum is investigated in Appendix B 
where it is shown that 

I: (_I)H L~:~(z)= aL~(z) I 
, >0 A all ,,=-1 

and that the derivative with respect to 11 can be re­
expanded as 

oL:(z) I == !. -z I: L~_l_~ (2.17) 
011 ,,=-1 n O(<(n A n-A 

in which only the lower index of the Laguerre polyno­
mial varies with the summation variable A 0 The final 
result of the reductions of this subsection is the formula 

=e- z /2(zL1 lnz+Lo -2 +2nz L L~_H \, 
\ "-1 n-

1 
O<) .. (n "A(n-xV (2. 18) 

and this is the form which will be used with Eq. (2.1) 
for the reduced Green's functiono 
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C. Further reduction of the expression for 
[a;)J k; y,/akllk~n 

In the integral of Eqo (2.5) the substitution 

1 (_I)n d"+1 
tn+1 = 7 dln+ilnt 

is made and n + 1 integrations by parts are performed 
giving 

f z dtt-n-
1 (e t - t 4) 

,=0 A. 
o 

1 1 z 1 = - - diet lnt + -(ez -1) lnz 
n! 0 n! 

_ 2- ~ (n-p-l)! (z_ n~ ~) ,L n-p e U , ' n. p:0 z ".0 QI • 

which is transformed into 

f z dtt-n
-

1 (e t 
- t ~) 

o ~"OA. 

= g(z) _ nt (n-l-p)! 
n! p=O n!zn-p 

eZ-L -~ ~ Z") 
,,=0 QI! ' 

I · et 
-1 f 1 g(z)'" dt-t-=-ze Z dte- tz ln(I-I), 

o a 

(2.19) 

(2.20) 

by changing the integration variable in f6 dtefInt to ~ 
where t= (1-0z and performing another integration by 
parts. The function g(z) occurred before in connection 
with the ground state reduced Green's function. It has 
the simple differentiation property 

dg(z)/ dz = (e Z -1)/ z (2.21) 

which is needed occasionallyo Our task is now to sub­
stitute the right-hand side of Eq. (2.19) into Eq. (2.5), 
substitute that into Eq. (2.7) with p= n -1, differentiate, 
and simplify. Some of the initial steps in this reduction 
are 

ez/ 2 n-1 (n-l) d"-1-, d' ez/ 2 
=- - L: --lzne- z ] -g(z) +-

n! ,.0 A dzn-1-~ dz~ n 

n-l n..p ( 1 p)' _ z/2 '" '" ..!!:::2_-__ . ( -1)1 z,,+p-(n-1l e-zL,,+p-(n-1 l e u u " n. n-1 
p=O ".0 n.QI. 

e- z / 2 

= - -- ZL~_lg(Z) 
n 

ez / 2 

+-­
n 
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e- z / 2 "\' 
+ -- L.J 

n 0(~"n-1 A! 

ez / 2 

+-­
n 

n-1 1 
+ e- z / 2 L-1 L: -­

n p=0 n-p 

-z /2 
= _ _ e_ ZL!_lg(Z) 

n 

d~-l 1 
dZ~-l Z 

e- z
/

2 
"\' (_1)H [AU _l.L~-l] + -- L.J L n-~ 'n-~ 

n oo-"n A 

ez / 2 e- z / 2 1 ~ 1 
+ -- - -- zLn _1 L -

n n ~ol A 

-z/2 "\' (_1)~-1 L~-l 
-c L.J n-~' 

o<~" n A 

To obtain the expression to the right of the first equal 
sign here Eq_ (2.9) was used. The next step in the 
reduction follows from Eqs. (2.21) and (2,10). In the 
next to the last step in the reduction the A-1 derivatives 
of Z-l expz are worked out, and the double sum involving 
p-1- (a+p) is rearranged by taking A = n-(a + p) as new 

a+p 

summation variable, with the A = 0 term split off as a 
separate term. The last expression was obtained by 
using Eqso (2.12) and (2.13) as in Sec. lIB, to reduce 
zL!~L~ = -(zd/ dz)L~_~, and also by using a form of 
Lerch's theorem21 

~(n -1-P)= (n). 
p~O A-1 A 

Use of Eqso (2.14), (2.16), (2,17), now gives the final 
result of the reductions of this section: 

-z/2 [ 
= _c _ -ZL!_lg(Z) + L~_l - 2 

n 

L!_H I f':!] + 2nz L: A(n->-..)- zLn _1 :-: A 
O<~(n ~_I 

cz / 2 

+ -O(z). 
11 

The polynomial 

O(z) =1-z L: (-1)~ LI+~ ~ I: (_z)cr 
O<~<n A n- - cr~O (7! 

(2.22) 

(2.23) 

is studied in Appendix C, where it is shown to have the 
simple integral representation 

o (z) =fro dsc-s SL!_l (s)-ZL!_l (z) 
S -z 

o 

(2.24) 

From this integral representation other forms of 0 (z) 
can be derived. 22 Two of these are 

0(z)=1+ 1:: (A~~)![L~_l_~( ~1- )(-z~PJ 
O<~<n Z P =0 11 P p. 

(2.25) 
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in which 0 (z) is exhibited as a sum of Z-(~-l) times 
truncated forms of L!_l (z), and 

1 

0(z)=1-z 1:: f d~r-1-~L!_1(~z), (2.26) 
OO.<n 

o 

which is free of indeterminate forms. The expression 
(2.18) for [awk;I/2/ak]lk~n and (2,22) for [a;11k;I/! 
a k] I k~n have each been checked by direct substitution into 
their respective differential equations (2,36 a, b) to be 
derived in Sec. lIE, In checking the expression (2,22) 
the differential equation 

d
2
0 d{) 0 L1 2 L2 

Z dz 2 + z dz + n = "-1 - Z n-2 (2.27) 

for 0 was encountered. The check of Eq, (2027) is 
included in Appendix C. 

D. Closed form for excited state reduced Coulomb 
Green's functions 

The necessary ingredients needed for the evaluation 
of K 1D(U, v;En) using Eq. (2.1) have now been assembled. 
Basic among these ingredients are the two new results 
expressed in Eqso (2.18) and (2 022). By working out the 
derivative in Eq. (20 1) the following expression for 
K1D (u, v;En} is obtained23

: 

K1D (u, v;En} 

= ~a1e- (u+v) /2uvL!_1 (U}L!_l(V) 0nu-g(v} 

u+v 1 ~1 ) +--+ - -2 L.J - -2 +y 
2n 2n ~~1 >-.. 

+ ~al e- (u+v) /2vL!_1 (v) L (u) + tal e- (u+v) /2uL!_1 (u) L (v) 

+ ~al e-(u-v) /2uL!_1 (u)O (v), 

L1 
L(z}=L1n_t-2+2nz 6 ,n(-l~l.) + (z-1}L!_2' 

O<~<n 1\ n >-.. 

(2.28) 

(2.29) 

This is the excited state reduced Coulomb Green's func­
tion for the one-dimensional Kepler problem. The 
similarity in form between Eq. (2.28) and the earlier 
ground state result24 in one dimension is quite remark­
able. In the ground state case (n = 1), the factors 
L!_l,O, and L become just factors of ±1(Lt=0 I n=l =1, 
L In=1=-1}. The expression (2.28) consists essentially 
of terms of the ground state result which have picked up 
additional "form factors" made up of the polynomials 
L!_l, 0, and L. For example, the same lnu and g(v} 
terms of the ground state result appear again in the 
excited state Green's function except that they pick up 
the additional form factor L!_l(U}L~l(V).No new hyper­
geometric functions appear in the excited state Green's 
function. 

As pointed out in the introduction, our expression 
(2.28) can be used to generate excited state reduced 
Coulomb Green's functions in spaces of higher odd di­
mensionality. In particular, the three -dimensional re­
duced Green's function can be calculated as 5 

K 3D (r2, ru En) = - 21Tna1 trz-ril (a: -a:) KID (u, v, En) 

in which K 1D (u, v, En) is the expression (2.28). What is 
essentially the result of Swierkowski and Suffczynski4 
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for the three-dimensional reduced Green's function is 
thereby obtained by a straightforward differentiation of 
the Simpler one-dimensional function. 

In view of the relation 

gl=O(r2, r 1;E)= (r2r1r1C1D{r2' r1;E) (2,30) 

between the S-wave componenes of the full three-di­
mensional Coulomb Green's function and the Coulomb 
Green's function in one-dimensional space, and the fact 
that this relation will be preserved by the operations 
of Eq, (1.6) generating the reduced Green's functions, 
it is apparent that the expression (2.28) doubles as 
essentially [i. e., aside from the factor (r2rd-tl, the 
s-wave component of the three-dimensional excited 
state reduced Coulomb Green's function. Thus Eq. 
(2.28) is essentially the excited state generalization of 
Hameka's original result. 26 

E. Differential equation and orthogonality condition 

The differential equation of the reduced Coulomb 
Green's function is derived by investigating the effect of 
the differential operator H -En' where H is the Hamilto­
nian, on the eigenfunction expansion (1.1) defining 
K(r2 , r 1 ; En). For the one-dimensional Kepler problem 
this differential equation is 

As shown in HeL 3, the differential equation together 
with suitable regularity conditions at the origin and at 
infinity uniquely determine the reduced Green's func­
tion, except as regards its component in the sense of 
Hilbert space along the energy eigensubspace of H to 
energy En' Thus the solution of Eq. (2,31) becomes 
unique when the magnitude of the projection of K1D (r2, r1; 
En) along the energy eigensubspace to energy En is pre­
scribed, A look at the eigenfunction expansion (1, 1) 
shows +hat this projection is zero, 

Jo 
where 

-1:!t 
dr2¢:(r2)K1D(r2' r1;En) = 0, 

( )
_ e-'2/na1(2r/na1)L~_1(2r.lna1) 

¢n r 2 - n3/2a!/2 

(2.32) 

(2.33) 

is the nth state energy eigenfunction, The orthogonality 
condition (2,32) together with the differential equation 
(2.31) and boundary conditions serve to uniquely charac­
terize the reduced Green's function, A remarkable 
simplification of the differential equation for K1D occurs 
if one expresses K1D as a function of the two variables 
u = 2r>/na1 and v = 2r</naj) instead of r2 and r t . By use 
of the equations 

ou/or2 = 2e(r2-r1)/ na1, ov/ar2 = 2B(r1-r2)/na1 
(2,34) 

in which B(x) is the unit step function, with dB(x)/ dx 
= 1i (x), one finds that the differential equation (2.31) 
splits into three relations27 
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(2,35c) 

The two differential equations (2, 35a, b) have the ad­
vantage that separable solutions can be found, The con­
dition (2.35c) ensures that the delta function singularity 
of a2K1D/a~ has unit magnitude as required by Eq. 
(2,31). It should be emphasized that Eqs, (2.35a,b,c) 
and boundary conditions must be supplemented by the 
orthogonality relation (2.32) in order to provide a 
unique characterization of K1D • In the following we in­
dicate briefly how the closed expression for K1D can be 
rederived from the stand point of the differential equa­
tion, 

Inhomogeneous terms of the form occurring in Eqs. 
(2.35 a, b, c) can be generated by differentiation of the 
homogeneous Whittaker's equation for Wk;1/2(nu/k) and 
()h;t/2(nv/k) with respect to the order k, followed by 
substitution of k = n. Thus 

[a Wk;t/2(nu/k)/ok 11 k=n 

= [0 Wk; t /2(u)/ok 11 ~=n - (U/ n) "'n;1/2(U) 
and 

[C}1J k; t /2 (nv/k )/ok ] 1 k=n 

= [0f)Jk;t/2(V)/ok 1lk=n - (v/n)f)Jn;1/2(V) 

obey the inhomogeneous equations 

(~ _ !. + ~)Io Wki1/21 
ou2 4 u \' ok k=n 

U· 1 1 --w ---w n n;1/2 - 2n n;1/2 

(2. 36a) 
and 

(a: _!. +~) /0/Yik;t/2! - V,-1lfin;1/2) = - 21nf)Jn:1/2' 
ov 4 v ~ ak k=n 

(2. 36b) 
Comparison of Eqs, (2, 36a, b) and Eqs. (2, 35a, b) shows 
that the function 

3 (_1)n-1 oWk;tdnu/k) I/);. (v) 
2 (n-1)! ok k=n n,1/2 

obeys the inhomogeneous Eq, (2, 35a) and the homoge­
neous form of Eqo (2. 35b), while the function 

~ (_1)n-1 W (u) of)Jk;tdnv/k) I 
2 (n-l)! n;1/2 ok k=n 

obeys the inhomogeneous Eq. (2. 35b) and the homoge­
neous form of Eq, (2.35a). Addition of these two func­
tions therefore produces a simultaneous solution of both 
inhomogeneous Eqs, (2. 35a, b), But the sum of these 
functions is just 

na (_1)n-1 0 T (n-l)! ak [Wk;t /2 (nu/k)/Yi k; 1/2 (nv/k)] 1 k=n (2.37) 

a particular integral of Eqs, (2,35a,bL The most gen­
eral solution of Eqs, (2. 35a,b) is then 
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(2.38) 

which is just (2.37) plus a general solution of the homo­
geneous Eqs. (2. 35a, b) obeying appropriate boundary 
conditions. It is evident that the differential equation 
has lead back to the original representation (2.1) of K1D 
modulo a solution of the homogeneous equation-addi­
tional terms in Eq. (2.1) generated by the action of 
aliJiv on factors outside both Whittaker functions are 
proportional to Wn;1/2(U);1;n;1/2(V) and are homogeneous 
solutions as demanded by Eq. (2.38). 

When we investigate the effect of imposing the further 
condition (2. 35c) on our solution (2.38) we find that the 
constant C drops out, and we encounter the relation 

l
L~_1 (u) O(u)l 

udet 

L~_l (u) O(u) 

= - n +U[L~_1(U)F + (1-u)L~_1 (u)O (u) 

which can be shown to be an identity by showing that the 
derivatives of both sides are equal, and that both sides 
agree for u = O. In order to show that the derivates are 
equal, the diffe rential equation (2. 27) for 0 and the dif­
ferential equation of the Laguerre polynomials is re­
quired. Our general solution (2.38) therefore obeys 
condition (2. 35c), for any value of C. 28 

The orthogonality relation (2. 32) will now be used to 
fix the value of the constant C, whereby complete agree­
ment between Eqs. (2.38) and (2.1) including the mag­
nitude of the homogeneous solution is achieved. The 
integration region in Eq. (2.32) is split up into two 
parts 0 ~ r2 ~ r 1 and r 1 ~ r2 ~ + 00: 

jr1 dr2CP:(r2)K1D(2r/ nalo 2r/na1; En) 
o 

+.r dr2CP:(r2)K1D(2r/nalo 2r1/ na1;En) = O. 
r1 

The function K1D (U, v;En) is understOOd here, and the 
relations u = 2r) I nalo v = 2r< I na1 have been taken into 
account in arriving at this expression. For conve­
nience, we denote 2r/na1 by u and 2r/na1 by v in both 
integrals obtaining 

r due-" /2uL~1 (U)K1D(V, u; En) 
o 

+j~due-u/2uL1 (u)K (u v·E )=0 
n-1 in" n 

v 

which is then rearranged in the form 

A(v)=O, 

where 

A(v) '" j 00 due-u/2uL~_1(U)KlD(u, v;En) 
o 

(2.39) 

- I v due-u /2uL~_1 (U)[K1D(U, v;En) - K1D (V, u;En)]. 
o 

Equation (2.39), which must hold identically in the 
variable v, provides in alternate expression of the or-
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thogonality relation in terms of the variables u and v. 
The function A(v) is here understood to be constructed 
with the general solution (2.38) of Eqs. (2. 35a, b, c). It 
will be shown that this function A(v) obeys the homo­
geneous Whittaker's equation (a 2/av2 - ~ + nlv)A(v) = 0, 
for any value of C. Thus 

aA(v) =1~ d e-u/2 L1 () iJK1D (U, v, En> 
iJv u U n-1 U iJv 

a 

-IVd -u/2 L1 ( )faK1P(U, V z En) _ iJKlD(VzUzEn)] 
ue u n-1 U L iJv iJv' 

o 

and 

(1.: _]; +~) A(v) 
iJv2 4 V 

= f 00 due-u /2uL~_1 (U) (iJ~: - i + ;) K1D (U, v, En) 
o 

- fVdue-u/2uL~_1(U>[(iJ~22 -i+;)K1D (U,V,En) 

o 

_(iJ~22 - ~ + ;) K1D (V,u,En)] 

_ e-V/2vL1_1(V)(iJK1P(UZ v, En) _ iJK1P (v Z u,En») I 
n iJv iJv u=v· 

\\ben this relation is Simplified by use of Eqs. (2. 35a, 
b, c) [and Eqs. (2. 2a, b)]; the integral with variable 
limit drops out due to a vanishing integrand and the other 
terms Simplify to 

(iJ~: - i + ;) A(v) 

=- ~f" due-uu2[L1 (u)}2e-v/ 2vL1 (v) 4n n-1 n-1 

o 

which vanishes identically, by virtue of the integral 

j~ due-u/ 2u2[L!_1 (u»)2= 2n2• 
o 

It can be shown that in addition to the homogeneous 
Whittaker's equation the boundary condition A(O) = 0 is 
obeyed by A(v), again for any C. Now we wish to choose 
C to make A(v) vanish identically. This can be achieved 
by imposing the further boundary condition [iJA(v)1 
iJv] I v=O = 0; since the trivial null solution is the only 
solution of the homogeneous Whittaker's equation obey­
ing both boundary conditions A(O)=O and [iJA(v)/av]lv=o 
= O. The problem of exploiting the orthogonality rela­
tion (2.39) is thus reduced to the problem of exploiting 
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the addition boundary condition [aA(v)/av) I v=o= O. More 
explicity, this boundary condition reads 

f~ due-u/2uL~_1(U) aKID~~v,En) iv=o =0 

o 

(2.40) 

which proves to be adequate for the unique determination 
of C, as required by the arguments above. When the 
derivatives in Eq, (2.38) are worked out using Eqs, 
(2.18) and (2022) then Eq. (2.38) goes over essentially 
into the closed expression (2.28) for KID except for the 
coefficient of the term 

~al e-(u+v) 12uvL~_1 {U)L~_1 (v). 

If one further applies Eq. (2.40), the equation 

n i~ due-Uu2[L~_I{U)F (lnu + 2U 
- 2 - t ~ + c) 

o n l.=1 It 

+ n r due-uuL~_1 (u) L (u) 
o 

+ J~ due-uu2[L~_I{U)F[ -H CO) + L CO) + ~O{O) +0 CO») 
o 

= 0 (2.41) 

results. The calculation is completed by use of the re­
lations 

L{O)=-l,O{O)=l, 

1'-<0) = ~+2 t !. 
11 n l.=IA' 

O{O) = 1 _ t !. 
n l.d A' 

(2.42) 

(2,43) 

(2.44) 

and standard integrals involving Laguerre polynomials. 
Equations (2.42), (2.43), and (2.44) are derived in 
Appendix D. In order to evaluate the integral involving 
L (u) it was necessary to rewrite the series (2.29) in­
troduced earlier for L (u) as29 

n _Ll +2Ll _Ll L (u) = 2n 'B n-l. n-H n-l.-2 
l.:l A 

- {n-2)L~_1 + (2n - 3)L~_2 - (n-1)L~_3' (2.45) 

The integral involving L (u) can now be evaluated with 
the use of the standard orthogonality and normalization 
integrals 30 

This result of this calculation is 

1 n 1 
C= - -'B - +y. 

2n \=1 A 

As mentioned earlier, this brings Eq. (2.38) into 
complete agreement with our earlier derivation. 

APPENDIX A 

(2.46) 

Equation (2. 14) follows quite simply from the integral 
representation31 

1 {, (1 + t)n+IL 
L~(z) = 21Ti J (o+)dte- tz ["+1 (~1) 
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Thus 

Ll. = -L. i dt -Ie (1 + t)n tl. 
n-). 2rrij e ~ , 

t (_l)l.-!Ll. = - -L. (,dte- tz ~ t(-tY 
). = 1 n-l. 2rri J tn

+ l.d • 

Here b~=1 can be replaced by b~=1 since the high powers 
of t in the additional terms remove the pole of the inte­
grand and give zero contribution after integration, Thus 

QED 

APPENDIX B 

Equations (2.16) and (2.17) will be derived here. The 
integral representation (AI) is differentiated with re­
spect to f.1 to give 

aL IL 1 [ (1 + t)"+" a: = 21Ti 1 (o+)dte- IZ tn+l In{l+t) 

Equations (2.16) or (2.17) are obtained from Eq. 
according as In{l+t) is expanded as 

In(l+t)=-t (-I)J. 
l.=1 A 

or as 

In(l + t) = E ~lt+I)/A' 

(B1) 

(B1) 

(B2) 

(B3) 

As in Appendix A only the first n terms of either Sum 
(B2) or (B3) contribute to the contour integral (B1). If 
the truncated series are substituted into Eq. (B1) and 
Eq. (AI) is used to identify the resulting integrals, the 
following expansions of aL~/all are obtained: 

aL" n (_1)l.-! 
_n = 'B -- Ll.+" 
all ).=1 A n-). 

(B4) 

and 

aL" n 1 
n - 'B - LIL iiiI" - l.=1 A n-l.' 

(B5) 

Here Eqs. (B4) and (B5) arise from the use of the series 
(B2) and (B3), respectively. Equation (B4) implies Eq. 
(2.16) as a special case obtained for Il = -1. Substitu­
tion of Il = -1 in Eq. (B5) gives 

aL~ I - t !. L-1 

iiiI" ,,=-1-). = 1 A n-l.· 
(B6) 

This expression is further transformed by use of the 
identity 

(B7) 

p~ 1, 

which is a special case of Eq. (2.10). Care must be 
exercised in this use of Eq. (B7) since the A =n term of 
Eq. (B6) does not obey the p?o 1 condition. Separation 
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of the X=n term and use of Eq. (B7) then converts Eq. 
(B6) into Eq. (2.17). QED 

APPENDIX C 

The representations (2.24), (2.25), and (2.26) ofO(z) 
will be derived in this appendix, and the differential 
equation (2.27) will be verified. We begin with the rep­
resentations of 0 (z). These representations are trans­
formed by introducing a new polynomial 0 (z) through 

0=1+z0. 

The integral representation 

O(z) =f~ dse-s L!_l (s) - L~_l (z) 
S -z 

o 

(C1) 

(C2) 

follows from Eq. (2.24) if one replaces the coefficient 
of L~l (s) in the numerator by s = (s-z) + z and splits the 
integral into a sum of two parts. 32 The desired repre­
sentations of 0 (z) will be established if it can be shown 
that the integral (C2) for O(z) can be expanded in the 
forms 

and 

O(z) = - ~ f 1 d~~n-H L~_1(~Z)' (C5) 
O<~<n o 

corresponding respectively to Eqs. (2.23), (2.25) and 
(2.26). 

To transform the integral (C2) into the form (C3) we 
begin by Taylor expanding the difference L!_I(S) -L~_l(Z) 
in the integrand in ascending powers of s-z 

1 1 n-l (S-Z)~ cP 1 
Ln_l(S)-Ln_1(Z)=~ --,,- dxLn-1(Z) 

~=1 1\ Z (C6) 

or 

by Eq. (2.12). Each term of Eq. (C6) contains a factor 
s-z, since A"" 1. Therefore, when Eq. (C6) is substi­
tuted into Eq. (C2) one obtains simply 

f 
~ n-1 ( 1)~ 

0= dse-s ~ (S_Z)~-1 --- Ll+~ (z) , n-1-~ 
~=1 1\ 

o 

= ~ (-1)~ Ll+~ (z) f~ dse-s y: (A -1) (_Z)crS~-1-cr 
~:l A! n-l-~ ~ a 

o 

or 

( 1)~-1 ~-1 ( )cr 
0= - ~ --- L1+~ ( )" .=.!-

A n-1-~ Z L- " O<~<n cr=O a 

which is just Eq. (C3). Thus, Eqs. (C2) and (C3) are 
equivalent. 

To obtain the representation (C4) from the integral 
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(C2) we begin by expanding the Laguerre polynomials in 
the integrand uSing33 

£1'= t (n+iJ.) (-z)P 
n p=0 n - p p! 

(C7) 

and reducing the ratios (sp-zP)/(s-z) according to 

(C8) 

p=1,2,3, '00. 

Making these expansions and integrating term by term 
gives the double series representation 

0= ~ n ---u za(p-1-a)! n-1~ )( 1)P~ 
p=1 n - 1-p p! a=O 

which can be written 

0= ~ (A-1)1 ~ ( n \ (-z)P 
00 < n z~ p=~ \n-I-p) p! 

(C9) 

by a change of summation indices from 

p and ato p and A=p - a. 

The p-sum in Eq. (C9) will be recognized as just the 
truncated form of L!_l which appears in Eq. (C4). This 
establishes the equivalence of Eqs. (C2) and (C4). 

In order to obtain the representation (C5) we extract 
a factor s-z from the numerator L!_I(S)-L~_1(Z) of the 
integrand of Eq. (C2) by means of the device 

L~_1(S)- L~_1(z)=-L~_1(I~)s+~z) li~~ 

f
1 a 

= - d~~ L~_l ((1 - ~)s + ~z) 
o 

= - (s-z)r d~L~_l «1 - ~)s + ~z). 
o 

Thus 

(CIO) 

The identity34 

L~1+1-'2+1 (x + y) = t Lil{x)L::_2~ (y) (Cll) 
~= 0 

is used to split up the Laguerre polynomial in Eq. (CI0) 
into a sum of separable functions of sand z 

f ~ 11 "-2 
0= - dse-s d~ ~ L~_N{(l- ~)s)L{(~z). 

o 0 ~=o 

Now by Eq. (C7) 

J ~ dse-s L~_N (1-t)s) 
o 

== dse S D sP i ~ -n*~( n-2-A) [- (1- ~)]P 
o p=O n -2-A-P p' 

= n"'f;~( n-2-A) [_ (1-~)]" 
p=O n-2-A-p 

==[1_(1_mn-2-~ 

== ~n-2-~. 

Substitution of this value of the s integral into Eq. (C12) 
and changing the summation index to A' ==A + 1 gives Eq. 
(C5). QED 
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As the final result of this appendix it will be verified 
that O{z) obeys the differential equation (2.27). In order 
to do this, we first convert Eq, (2.27) into the equiva­
lent re lation 

d 2 d 
z dz' 0+{2+z) dz 0+{n+1)O 

= LA-I - n _ 2L2 (C13) 
z n-2 

for O{z). It will be sufficient to show that O{z) obeys 
Eq. (C13). This will be done by use of the integral re­
presentation (C2) of O(z). The derivative dO/dz is 
computed by differentiating Eq, (C2) under the integral 
sign. One of the terms of the intergrand produced by 
this differentiation contains the factor a/az{s-z,-1. This 
factor is converted into a factor {-a/as){s-z)-1 and then 
the derivative a/as is removed from the denominator 
(S-Z)-1 by an integration by parts. This technique leads 
to the relation 

dO f~ L;_1(S)-L;_1(Z) +L;_l(z)-n 
- = - dse-s s - z z' 
dz 

J 

(C14) 

the last terms (L~_l (z )-n)/ z being "surface" terms from 
the integration by parts, Also, the identities (2.12) 
and35 

(C15) 

were required, Applying this same technique to Eq. 
(C14) leads to 

d2~ = f~ dse-s L~_l(S) -L;_1(Z) 
dz s-z 

o 

+ in(n+1)-L!_1(z) _L~_1(z)-n _L;_2(Z) 
z Z2 Z 

(C16) 

For the differential equation zdO/dz and zd20/dz 2 are 
required. In computing these quantities using Eqs. 
(C14) and (C16) the nonsymmetric combinations zL;~i(s) 
- zL;~i(z) under the integral signs are encountered. 
These are reduced by writing the coefficient of L;d(s) 
as z = (z - s) + s and then splitting off the symmetric 
parts sL~~i(s) -zL~:i(z). One then encounters the in­
tegrals36 

joodse- S L;_1(s)=n and j~dse-sL~_1{s)=in(n+1). 
o 0 

The results of these reductions are 

z dO = -f ~ dse-s SL!_l (s) - zL ~-1 (z) + L~_1 (z) 
dz s-z 

o 
(C17) 

and 

(C18) 
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The representations (C18), (two times) (C14), (C17), 
and (n + 1 times) (C2) are now combined to produce the 
representation 

d 2 0 dO 
z dz 2 + (2 + z) dz + (n + 1)0 

= f ~ dse ~ ([SL;_1(S) - (2 + S)L;_1 (s) + (n + 1)L1_1 (s)] 
s-z " 

o 

(C19) 
of the left hand side of the differential equation (C13). 
But the integral in Eq. (C19) vanishes by virtue of the 
identity37 

ZL~+1 - (J.L + z)L: + (n + /l)L:-1 = 0 (C20) 

and consequently Eq. (C19) goes over into the required 
differential Eq. (C13). 

APPENDIX D 

Here Eqs. (2.42), (2.43), and (2.44) will be derived. 
Equation (2.42) follows from the representation (2.29) 

L (z) = L~_1 (z) - 2 + 2nz L Le_
l
-! ~) + (z -1)L~_2(z) 

OQ.<" X n-X 

of L (z). Thus 

L (0) = i} (0) + 2n /, L~_1_JO) + L 1 (0) - i} (0). 
"-1 O<~" X (n-x) "+2 n-3 

But by Eq, (2 0 12) L!_1 = - L!_2 and L~_2 = - L;_3. Also, 
by Eq. (C7) 

L2 (0)=( n\=n(n-1) 
n-2 n - 2J 2 ' 

1 ( n-X \_ ) L n_1 _x(0) = n-\-lF (n-\ , 

L~_3(0) = (n-1)in - 2) • 

This gives L (0) = 2nL;~=11/x - 2 which implies Eq. (2.42) 
when divided by n. 

In order to obtain Eq. (2.43), we first note that 0(0) 
= 0(0), because of Eq. (C1). The representation (C5) 
of 0 gives for 0(0) the value 

~J1 O(O)=-~ d~e-HL;_1(0) 

o 

__ ~_1 (X \ 
- X=l n-X X-1) 

n-1 X 
=-6-

X=l n-X 

_ y: (n-\)-n 
-~ n-\ 

"-1 1 
=n-l-n"B -

Xd X 

n 1 
=n-n6 -, 

x:l \ 

and this implies Eq. (2.43) when divided by n. 

As the final result of this appendix, we obtain Eq. 
(2.44). This is obtained from the standard integrapa 
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1 ~ due-Vl.+l[V' (U))2 = (2n+/J. +1) r(n+/J. +1) (D1) 
n n! 

o 
by differentiation with respect to /J. 0 This differentiation 
produces 

fo ~due-uu,",+llnu[L~(u))2 + f'" due-uu,",+12L;:(u) o~~/J.(u) 
o 

= r(n + i + 1) + (2n + /J. + 1) r(n + ¥ + 1) >li(n + /J. + 1) 
n. n. (D2) 

in which the desired integral having the factor lnu in the 
integrand appears. In the second integral of Eq. (D2) 
the factor OL:/o/J. is expanded using Eq. (B5) and the 
factor uL: is expanded as39 

uL~ = (2n + /J. + l)L~ - (n + /J.)L~_l - (n + l)L~+l (D3) 

giving 

J., due-uu,",+12L"(u) aL:(u) 
n a /J. 

o 

n 2 J'" = ~ - (2n + /J. + 1) due-uu" L'"' (u)L'"'(u) A ~ n 
,:1 

o 

(D4) 

in which orthogonality of the Laguerre polynomials 
eliminates all terms except the A = 1 term of the second 
sum. This surviving term is evaluated with the help of 
Eq. (2.46). Thus 

J ~ d -u ,,+12L'" ) OL:(u) 2 _r-",(n'-+...J;/J.,-+---'.l) ue u ,\ll --- = - n 
n a/J. n! 

o 
(D5) 

Equations (D2) and (D5) imply 

J~ due-uu,,+1Inu[L:(u))2 
o 

=(2n+l) r(n+/J. +1)+(2n+/J. +1) r(n+/J. +1) >li(n+/J. +1)0 
n! nl (D6) 

The desired integral (2.44) now follows as a special case 
of Eq. (D6) obtained by setting /J. == 1 and changing n into 
n-1. 

lQuantization in a large sphere would be required to give the 
sum in Eq. (1.1) a meaning for the continuum states. 

2H. F. Hameka, J. Chem. Phys. 47, 2728 (1967); and 
erratum in J. Chem. Phys. 48, 4810 (1968). 
~L. Hostler, Phys. Rev. 178, 126 (1969). 
4'Swierkowski and Suffczynski, Bull. Acad. Polon. Sci. 
XXI, 285 (1973). 

5L. Hostler, J. Math. Phys .. 11, 2966 (1970), Eq. (9). 
6J. Meixner, Math. Z. 36, 677 (1933). 
7The functions W/v;I/2 and!l1 1,,;1/2 are Whittaker functions 
as defined in Herbert Bucholz, Die Konfluente Hyper­
geometrische Function (Springer-Verlag, Berlin, 1953). 
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~eference 3, Eq. (2.4). 
9The function K 1D(u, v;E,,) in Eq. (1. 6) is obtained by express­
ing K 1D(r2,rl;E,,) as a function of the two variables u "= 2r/ 
nat and v "= 2r>/nal instead of r2 and rl' 

l~eference 7, p. 12, Eq. (7); and p. 22, Eq. (25a) together 
with p. 21, Eq. (24a). 

l1The identities zr(z)=r(I+z), r(z)r(l-z)=7r/sin7rz 
[Whittaker and Watson, A Course of Modern Analysis 
(Cambridge V. P., Cambridge, 1927), 4th. ed., pp. 237 
and 239) have been used to write Eq. (l. 11) in such a way 
as to resolve all ambiguities due to expressions which as­
sumed an indeterminate form for k = ~(n + 1). Another identity, 
(l/z) + lP(z) = 1P(1 + z), needed in this connection is obtained 
by differentiating both s ides of the equation z r(z) = r(I + z) 
and using the defining equation r(z)lP(z) "=dr(z)/dz (Whittaker 
and Watson, p. 236). 

12Reference 7, p. 13, Eq. (10) (with the upper sign), and 
p. 23, Eq. (28a). 

DSee Ref. 11. 
14Reference 7, p. 46, Eq. (41 b), and p. 47, (43b). 
15Multiple derivatives of a product of two factors are ex-

panded by use of the identity 

~ _ ;.. (n\ !!!1 d""Pg 
dz" if g) -;;.0 pJ dzP dz"-P 

in which(~ is the binomial coefficient. 
l~eference 7, p. 135, Eq. (2). 
t7Reference 7, p. 136, Eq. (6e). 
l~eference 7, p. 136, Eq. (8). 
19Reference 7, p. 137, Eq. (lOg). 
2~quation (2.14) is derived in Appendix A. 
21Bateman, Higher Transcendental Functions (McGraw-Hill, 

New York, 1953), Vol. 1, p. 86, Eq. (16), withm= 
n + 1 - A, u - n - A, v -n - 1. 

22Derivations will be found in Appendix C. 
23To obtain this form a term zL;'2 was reduced using Eq. 

(2.12) and Ref. 7, p. 137, Eq. (lOg) to give ZL;'2 
= - z(d/ dz)L~_I(Z) = - (n - I)L~_I(Z) + nL~_2(z). 

24Reference 5, Eq. (17). 
25The partial wave components gZ(r2, rl;E), 1 = 0,1,2, .•• , of 

the three-dimensional Green's function are defined through 
the partial wave expansion 

~ 21 + 1 
G3D(r2 r l;E) = Lc -4- Pz(cosl!)gZ(r2,rl;E)· 

1-0 7r 

For the Coulomb Green's function 

gZ(r2,rl;E) = - ~ival(r2rl)-lr(l + 1- iV)Wiv;I/2+Z (2r>liva 1) 

x !I1/v;I/2+Z(2r>/ival). 

For 1 = 0, the S-wave component, this is seen to agree with 
Eq. (1. 5), aside from the factor (r2rl)-I. 

26Reference 2, Eqs. (97) of the erratum. 
27The right-hand sides of Eqs. (2. 35a, b) have been rewritten 

using 

exp[- (r2 +rj)/nal)(2r2/nal)(2rl/nal)n-1L;"I(2r2/nal)L;"1 (2rl/nal) 

= exp[- (r> +r J/natl(2r>/nal) (2r>/naj)n-1L;"1 (2r/nal) 

X L~_1(2r/naj), 
which follows from the symmetry of the expression on the 
left hand side under interchange of r2 and rio and Eqs. 
(2.2a,b). 

2BTherefore, the differential Eqs. (2.35a,b) together with 
appropriate boundary conditions and the orthogonality rela­
tions already uniquely determine K 1D(u, to ;E,) • 

29Equation (2.10) was used to rewrite L as 

L-1 

L =L~_j - 2 + 2n Lc ~ - (n -1)L;;1 - L;"2' 
li<l<n " 

Equation (2.45) was obtained from this expression by 
repeated use of the identity LI: =LI:+ 1 - Lt:::l illef. 7, p. 136, 
Eq. (8) combined with p. 137, Eq. (lOd)). 

30Refe renee 7, p. 136, Eq. (9). 
31Reference 7, p. 135, Eq. (2). 
32The integral J'OdseooSL;'I(s) =1, n=I,2,3, ••• , is required. 
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This integral may be established for example, by writing it 
as 

-1'" dse-S dL~(s) = - e-SL O(s) I '" -( '" dse-sL O(s)L O(s) 
o ds "0 J 0 "0 

and using Eq. (2.46). 
33Reference 7, p. 135, Eq. (1). 
34Reference 7, p. 142, Eq. (17). 
35See Ref. 29. 
3sA special case of Eq. (ell) gives 

L;:'(s) = E L~(s)L:-1(O) = t (n -X + m -1) L~(s); 
~o ~o n-X 

the integral 

t '" ~ (n-x+m-I)ifn'" dse-sL;:'(s) = L' dse-SL~(s)L8(s) 
o ~o n-X 

o 
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now follows from Eq. (2.46). Substitution of m = 2 or 3 
and n -n - 1 gives the special cases of this integral cited in 
the text. 

31Reference 7, p. 137, Eq. (IDa). 
3BEquation (DI) is obtained by splitting the integrand into the 

product e""'ull-L ~ times uL/:. The second factor is expanded 
as lRef. 7, p. 137, Eq. (lOb) l 

uL~= (2n + /L + I)L~ - (n + /L)L::"' l - (n + I)L::'! 

and then Eq. (2.46) is used. 
39See Ref. 38. 
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Continuous subgroups of the fundamental groups of physics. I. 
General method and the Poincare group * 

J. Patera and P. Winternitz 
Centre de Recherches Mathematiques, Universite de Montreal, Montreal, Canada H3C 3J7 
(Received 27 January 1975) 

H. Zassenhaus 
Department of Mathematics, Ohio State University, Co/umhus, Oliio 43::]11 

We present a general method for reducing the problem of finding all continuous subgroups of a given Lie group 
G with a nontrivial invariant subgroup N. to that of classifying the subgroups of N and the subgroups of the factor 
group G/ N. The method is applied to classify all continuous subgroups of the Poincare group (PG) and of the 
Lorentz group extended by dilatations [the homogeneous similitude group (HSG)]. Lists of representatives of each 
conjugacy class of subalgebras of the Lie algebras of the groups PG and HSG are given in the form of tables. 

J. INTRODUCTION 

The present article is the first in a series devoted to 
a study of the subgroup structure of the fundamental 
groups of physics. In this first installment we present 
a general method for classifying all continuous sub­
groups of any Lie group that has a nontrivial continuous 
invariant subgroup. We then apply the method to find 
all classes of continuous subgroups of the Poincare 
group PG (the inhomogeneous Lorentz group) with re­
spect to conjugation under the Poincare group itself 
(i. e., with respect to inner automorphisms of the 
Poincare group). 

Part 2 of this series is appearing simultaneously 
and is devoted to a claSSification of all continuous 
subgroups of the similitude group of space-time, 1. e. , 
the Poincare group extended by dilatations. 1 Articles 
in preparation will deal with the de Sitter groups, the 
conformal group of space-time and other groups of 
interest. This series was preceded by two related arti­
cles. In the first 2 we developed a method for construct­
ing all maximal solvable subgroups of an arbitrary 
semisimple Lie group and applied it to construct all 
maximal solvable subgroups of SU(P, q). In the same 
paper we found all continuous subgroups of SU(2, 1). All 
maximal solvable subgroups for the groups SO(p, q) 
were obtained in a separate article. 3 

The importance of studying the subgroup structure 
of a given group has been discussed previously. 2,3 Let 
us just mention several points here. 

1. There exists a direct connection between group 
representation theory for a given group and its subgroup 
structure. On one hand, this connection is provided by 
the theory of induced representations, where different 
subgroups can be used to induce representations of a 
group. 4 On the other hand, chains of subgroups will pro­
vide us with bases for group representations. Indeed, 
each chain of continuous subgroups provides us with a 
chain of subalgebras of the corresponding Lie algebra. 
Let us restrict ourselves to algebras whose enveloping 
algebras have nontrivial centers, i. e., to algebras that 
have Casimir operators. We can then define bases for 
representations of the group as the common eigenfunc­
tions of a complete set of commuting operators, con­
sisting of the Casimir operators of all the algebras in a 
definite chain of subalgebras (which we may have to sup­
plement by some further operators). Each nonconjugate 
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chain of subgroups thus provides us with a different 
basis. For physical applications one usually needs a 
definite and specific basis, rather than just an abstract 
one. Different bases will in general lead to quite differ­
ent applications, in particular, to different expansions 
of physical quantities, like scattering amplitudes and 
form factors. Indeed, when the basis functions are 
realized in definite representation spaces we find that 
different bases correspond to different special functions. 
Let us mention that discrete subgroups of Lie groups 
are also of very definite interest in this connection. In­
deed, bases for the representations of Lie groups, pre­
viously called "nonsubgroup bases, " have numerous ap­
plications. 5 The basis functions in this case are eigen­
functions of certain operators, not related to any Lie 
subgroup, which may however be invariants of certain 
discrete subgroups. For a discussion of expansions of 
scattering amplitudes in terms of representations of the 
Lorentz and Galilei groups and in particular of the role 
of different subgroup and nonsubgroup bases we refer to 
a recent review. 6 

2. Most symmetries of interest in physics are broken, 
e. g., by the presence of symmetry breaking interac­
tions or boundary conditions. The symmetry breaking 
often reduces the symmetry group to one of its sub­
groups. A classification of subgroups thus provides a 
claSSification of possible symmetry breakings. 

3, Different subgroups of a given group correspond 
to different Lie subalgebras whose generators can be 
identified with certain physical observables. A classi­
fication of the Lie subalgebras thus provides us with a 
list of different possible sets of observables for a 
given system, Different observables clearly corre­
spond to different possible phYSical situations, e.g., 
to different possible measurements performed on the 
system (e, g., angular momentum versus linear 
momentum). 

The above considerations are valid for any group 
figuring in physics (or elsewhere) but are particularly 
true for any group reflecting the fundamental proper­
ties of space-time. Such are the Galilei group for non­
relativistic physics, the Poincare group in the relativ­
istic case, the de Sitter groups for curved universes 
and also the similitude group and conformal group of 
space-time. 
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The present article is devoted to the Poincare group, 
all other groups mentioned above will be the subj ect of 
subsequent publications. The importance of the 
Poincare group, underlying the whole kinematics of 
any relativistic theory, is obvious. 

In addition to the points listed above for arbitrary 
Lie groups, the subgroups of the Poincare group are of 
interest for further reasons. Thus: 

1. An elementary physical system is conventionally 
defined to be a system whose state vector transforms 
according to an irreducible unitary representation of 
the Poincare group. 7 This refers to an isolated system 
in vacuum. If we wish to discuss elementary systems 
(particles) in external fields that break the homogeneity 
and isotropy of space-time, then it seems natural to 
consider the largest subgroup of the Poincare group 
that leaves the external field invariant and use its 
unitary irreducible representations to define elementary 
particles. 

2. A related problem arises when formulating rela­
tivistic equations for particles in external fields (e. g. , 
generalizations of the Bargmann-Wigner8 equations). 
The equations involving the fields will no longer be 
Poincare invariant, they may however be invariant with 
respect to various subgroups of the Poincare group. 
The use of the corresponding integrals of motion will 
simplify the treatment of these equations and the rep­
resentation theory of the corresponding group will pro­
vide properties of their solutions. 

3. When developing elementary particle dynamics, 
e. g., two particle interactions, it sometimes proves 
to be fruitful to give up relativistic covariance (i. e. , 
an over-all Minkowski space-time viewpoint) and to 
proceed in specific frames of reference. This in turn 
may lead to the use of different subgroups of the 
Poincare group. In particular, the infinite momentum 
frame9. 10 or Dirac's "front form" of dynamics ll lead to 
an eight-parameter subgroup of the Poincare group and 
to "Galilean subdynamics. ,,12,13 

4. The subgroups of the Poincare group will have 
applications even in classical phySiCS. Indeed, the 
Maxwell equations of classical electrodynamics are 
Poincare invariant (in vacuum) and as a matter of fact 
they are even conformally invariant. A classification 
of subgroups again provides us with a classification of 
external fieldS (classical electromagnetic fields) that 
can be introduced into the Maxwell equations to describe 
various physical situations. 

In Sec. 2 of this paper we present a general algorithm 
for classifying the subalgebras of a Lie algebra L with 
a nontrivial ideal N into conjugacy classes with respect 
to a group of automorphisms A. Two interesting special 
cases are treated separately in greater detail. One is 
the case when the ideal N is Abelian and the algebra L 
splits over N, the second is that when L is the algebraic 
sum of two Lie algebras L = L1 Ql L 2• The results of Sec. 
2 are applied in Sec. 3 to obtain all conjugacy classes 
of subalgebras of P, the Lie algebra of the Poincare 
group, with respect to transformations of the Poincare 
group itself. In Sec. 4 we provide another application 
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of the results of Sec. 2, namely we use the Lie-Goursat 
method to classify all subalgebras of DEB L5L(2, C), 
i. e. , the Lie algebra of the homogeneous Lorentz group, 
extended by dilatations. 

Section 5 contains our conclusions and future out­
look, as well as some comments on related papers 
that recently came to our attention. 14,15 

2. GENERAL METHOD FOR CLASSIFYING THE 
SUBALGEBRAS OF LIE ALGEBRAS WITH 
NONTRIVIAL IDEALS 

A. Introductory comments 

In this section we develop a general method [or 
classifying the subalgebras of a Lie algebra L of finite 
dimenSion d(L) = dimkL over a field k. We consider the 
case when L has a nontrivial ideal N of dimension d(N) 
=dimkN [0 <d(N) <d(L)]. Our aim is to reduce the prob­
lem of finding all conjugacy classes of subalgebras of 
L (conjugacy under some group of automorphisms A) to 
that of classifying the subalgebras of the ideal N and of 
the factor algebra F = L/ N under related groups of 
automorphisms. 

The task can be conveniently linearized if the ideal 
N is Abelian. It becomes particularly simple if L splits 
over N, that is there exists a representative subalge­
bra F such that F n N = 0 and F + N = L. Note that this is 
precisely the case which we encounter when considering 
the algebra of the Poincare group, since it is the semi­
direct product of the homogeneous Lorentz group 0(3,1) 
[locally isomorphic to 5L(2, C)] and the four-dimensional 
Abelian group of translations T4• Thus in this case N is 
the algebra LT4 of translations, F is the algebra 
LO(3,1), and A is the inner automorphism group of P. 
The required list of conjugacy classes of subalgebras 
of LO(3, 1) under transformations by 0(3,1) is known16,17 

and we shall make full use of it in the next section. The 
conjugacy classes of subalgebras of L T 4 under PG are 
easy to find, hence an algorithm reducing the problem 
for the Poincare algebra P to that of LO(3, 1) and LT4 
would clearly be of use. 

In part B of this section we present an algorithm 
solving our classification problem in the simplest case, 
i. e., when N is Abelian and F n N = 0 (up to conjugacy 
under A). We also restrict ourselves to the case when 
A is the group of inner automorphisms of the consid­
ered algebra L, i. e., A = G = expL is the Lie group 
generated by the algebra L. The algorithm makes use 
of cohomology theory but is presented in a directly usa­
ble manner, i. e., as a "kitchen recipe," operative for 
physicists interested in the subalgebra structure of a 
specific algebra. 

In part C we formulate the algorithm more general­
ly, considering the ideal N to be not necessarily Abelian 
and the algebra L not necessarily splitting over N, and 
prove that the algorithm does actually provide us with a 
complete list of representatives of all mutually noncon­
jugate classes of subalgebras of L. The important spe­
cial case of invariant algebraiC sums of Lie algebras is 
treated in part D and leads to a Lie-Goursat type 18-20 

classification method. 

Patera, Winternitz, and Zassenhaus 1598 



                                                                                                                                    

B. Algorithm for classifying the subalgebras of a lie 
algebra with an Abelian ideal 

Consider a Lie algebra L of finite dimension deL) 
over a field k with an Abelian ideal N of dimension deN) 
satisfying 0<. deN) <. deL). Consider the factor algebra 
F = L/N and assume that a representative subalgebra 
F of L exists such that 

Fn N=O, L =F +N. (1) 

Consider also a group A of automorphisms of Lover 
k leaving N invariant and containing all automorphisms 
of the form 

exp[ad(n)]: L - L, (n E N), 

exp[ad(n)](X) =X + [n,Xj, (X E L). 
(2) 

Note that the set exp[ad(N)] of all special automorphisms 
exp[ad(n)] with n in N is an Abelian normal subgroup of 
A. If k is the real number field then those automor­
phisms are the traditional iIiner automorphisms asso­
ciated with the elements of N. 

We wish to provide a representative list S(L, N, A) 
of A-conjugacy classes of k-subalgebras of L. Since all 
automorphisms in A leave N invariant the action of A 
induces an automorphism group if = wA of F according 
to the homorphism 

w:A - Autk(F) 

wa:(x/N)=a(x)/N (aEA,xEL) 

of A into the automorphism group of F over k. 

(3 ) 

Step 1; Find all conjugacy classes of subalgebras of 
the algebra F under conjugation by the group if and 
choose a representative algebra of each class. Label 
these subalgebras F j (i = 0, 1, ... ,p) with Fo = F and 
Fp = 0 0 Further c~nsider each algebra Fi separately. 
For each Fi ~nd Fi' the representative subalgebra 
contained in F, and its normalizer in the group A, L e. , 
the subgroup NorAFi of A leaving F j invariant. If k is 
the real field the Lie algebra LNorAFj of NorAFj 
satisfies 

(4a) 

in fact, 

LNorAFj = NorLFi ={x Ix E L, [x, F;]<: Fj}. (4b) 

It must however be remembered that the normalizer 
of Fi in A may also contain additional discrete elements 
not obtained by exponentiating LNorAFi • 

Any k-subalgebra S of L determines the subalgebra 
(S + N)/N of F. There exists an element a of A such that 
w a[ (S + N)/N] = Fi is a member of the representative 
lists S(F,O,A-, uniquely determined by S. 

Before describing the remaining steps of the recipe 
it is necessary to point out that our problem leads to 
the execution of a number of computational cycles. 

We want to find a list of A-conjugacy classes of the 
k-subalgebras S of L for which it was already stipu­
lated that (S + N)/N is one of the F;'s. We observe that 
S n N is an Abelian ideal of S, invariant under the action 
of F;, which under the action of Nor AFi may be trans-
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formed into a privileged pOSition without changing the 
previous stipulation (Step 2 below). 

Having fixed S n N, it is now clear that S will be found 
as a subalgebra of Pi +N and that the remaining task is 
to pick out a representative set of conjugacy classes 
under the group A * = Nor A (Fi ) n Nor A (S n N) acting on 
Pi + N. It is to our advantage, computationally, to take 
factor algebras over S n N. 

Thus the scene of action became 

I = (Pi +N)/sn N 

with the Abelian ideal 

N=N/SnN 

and the representative subalgebra 

Fj = (Pi + sn N)/sn N, 

isomorphic to F i . 

(5a) 

(5b) 

(5c) 

The group under consideration is the group A of all 
automorphisms ii of I that are induced by the action of 
the elements a of Nor A (Fi) n Nor A (S n N). The task is 
to determine a representative set R(I, iJ,A) of the A­
conjugacy classes of k-subalgebras 

s= s/sn N (6) 

of i representing i/iJr:::Fi • Note that A contains all 
automorphisms of the form exp[ad(nl] with n in N. 

At this point it is clear that this task has to be per­
formed many times over ("there are many algorithmic 
cycles to go through"), depending on the choice of Fi 
and the fixation of sn N. However, in explaining the in­
dividual task we avail ourselves of the initial notation 
of Sec. 2. Thus we change I to L, iJ to N, A to A. 

Step 2: For each subalgebra F j find all invariant sub­
spaces in N, i. e., all subspaces N ia satisfying 

[Fj, N ia ] <: N ia • (7) 

Classify all N ia into conjugacy classes under Nor AFi 
and choose one representative Nia of each conjugacy 
class. Each such representative provides us with a 
subalgebra of L that is a "split extension" of N ia by F i : 

(8) 

In this manner we obtain a representative set of all 
split extensions for all Fi under A-conjugacy, i. e., all 
subalgebras of L that can be written in the form (8). 

Step 3 will consist of finding all nontrivial splits of 
L, i. e., algebras for which a basis can be chosen in 
the form 

(9) 

where C ki E k and d rJ E k are fixed constants (not all 
zeros) which cannot be transformed simultaneously 
into zero by an element of A. To ensure that the gen­
erators (9) form a Lie algebra the additional terms 
'f,CkiXi must form 1-cocycles of cohomology theory. 
Among these there are certain trivial cocycles, called 
coboundaries which are the ones that can be trans­
formed away by the group exp(adN). These should be 
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used to simplify (9). To do that one proceeds as 
follows. 

Step 3: Represent the algebra F on the space N by the 
matrices (i3!b) defined by 

where 

{Bl> B 2, ••• , Bd(F)} 

is a basis chosen in F and 

{X j ,X2, ••• ,Xd(N)} 

is a basis chosen in N. Obviously one has 

[i3;, {3 kl ='~ fMY, 
J 

where fj~ are the structure constants of F, i. e. , 
[B j, Bkl =' Ljfj~Bj 

(10) 

(11) 

(12) 

(13) 

For each B; define a 1-cocycle as a vector in N with 
components cij in the chosen basis 

y(B;) ='~ cijX j • (14) 

The components Ci i must satisfy a set of linear homo­
geneous equations obtained from the conditions 

y([B;, B k )) =' i3i y(Bk) - f3k y (Bi) ='~ ilk y(Bj). (15) 
J 

Find first the coboundaries a(Bi ) =' [B;,X] for some X 
of N which happen to solve (15) in a trivial manner. We 
use the following equation for the components d;k of the 
basic coboundaries: 

a(k)(B;)='[Bi,Xk]=~ i3~jXj=6 dfjXj [k=I,2, ... ,d(N)]. 
1 j 

(16) 

Forming linear combinations X = Lk XkXk' we find the 
components of the vector a(B j ) [for each i = 1, 2, ... , d(F)] 
from 

a(Bi ) =6 d;jXj ='6
k 

xk2! d~jXj' 
1 1 

(17) 

Since Eqs. (15) for C;k are linear homogeneous and 
since also diJ are solutions of (15), the numbers 

Ci}+~ xk d1j (18) 

will also be solutions for arbitrary choice of xk in (18). 
We use this freedom to simplify Eqs. (15), e. g., by 
requiring that as few as possible of the basic solutions 
of (15) together with the l-coboundaries span all co­
cycles over k. 

This is done, e. g., by producing an adapted k-basis 
Yt> Y 2 , ••• , Yd(N) of N as follows. 

Seek out the first nonzero l-coboundary among the 
a(k), s, say aYj = a(k j ) with 

Yj=X;, Yk=Xk_l> ayk=o (l<k"'i j). (19) 

Thus a Yj (B j) '" 0, say d~l '" O. Replace the subsequent 
l-coboundaries a (k) by a Yk , where 

Ij 

Yk =,Xk - ~ X k [i < k '" d(N)]. (20) 
d .k 

J j 

For the new k-basis Yt> Y2 , ••• , Yd(N) of N we have new 
commutation rules 
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[B i , Yk ] ='6 d:~ Y z ' 
1 

(21) 

such that we have the zero components 

d'1 = 0 if 1 < k -s d (N), 
kkj 

but 

Now continue if possible in the same manner to simplify 
Y2, ••• , }deN). 

In the end we will find a new k-basis Yl>' .. , Ya(N) of 
N such that the structure constants of (21) satisfy 

(22) 

Then ay j , ••• , aYr form a k-basis of l-coboundary 
space. With this Simplification of the l-coboundaries we 
obtain the required additional solution basis of (15) by 
imposing the condition 

C/.;.='O (1 "'j"'r) 
J J 

in addition to (15) on the Cij' Examples are shown in 
Sec. 3. 

(23) 

Thus, Step 3 consists of finding a k-basis of the 1-
cocycles y(Bk), Bk E. F modulo the linear space of the 
1-coboundaries of F acting on N. So far we took into 
consideration only the transformation action by the ele­
ments of exp(adN). 

Step 4: If the algebra F; has any outer automor­
phisms (i. e., NorAFj properly contains expFj) use 
them to further simplify the generators (9). 

In the case of the real number field k = R the group A 
has a natural topology so that the component of 1A forms 
a normal subgroup Aj of A. In the applications we are 
confined to the case that A is a closed subgroup of the 
full group of automorphisms of Lover R. In that case 
Aj happens to be a continuous Lie group with infinitesi­
mal ring LA j and the transformation effect of Aj on the 
l-cocycles can be described totally by the action of LA j • 

Even though in the Poincare group case the ensuing 
linearization of the search for the A-eqUivalence classes 
was never used it should be pointed out for further 
applications. 

Firstly, let us observe that LA j is a subalgebra of 
the R-derivation algebra Der R L of L. Then for every 
element D of LA j we have 

D(x+y) =D(x) +D(y), 

D(>..x) = A.D(x), (24) 

D«(x, y D = [D(x), y] + [x, D(Y)], 

where x, Y E L, A EO R. Also, D(N) c;:: N because of the 
invariance of N under A. 

We associate with D the l-cocycle Dr of F; acting on 
N defined by 
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D1'(B) = y(D(B» - D(y(B». (25) 

The l-cocycle properties of D1' can be directly verified 
by lengthy computations. The mapping y on D1' defines 
a linear transformation t:J) of the linear space C' (F, N) 
of all l-cocycles of F j acting on No It leaves invariant 
the linear subspace B'(Fj , N) = aN of all l-coboundaries 
of F j acting on N. The mapping t.. of LA j into 
End R [C' (Fj, N)l is a representation in the Lie theoreti­
cal sense. 

Using the exponential function we obtain a represen­
tation IjJ of Aj acting on C' (Fj , N) via the rule 

ljJ(expD)(y) = exp(t:J)(y) 

which, due to the fact that 

Aj = (exp(LA j » , 

permits an accounting for the transformation effect of 
Aj on the factor algebra 

H'(Fj , N) = C'(Fj , N)/B'(Fj , N) 

completely in terms of the representation t.. of LAb 
with C'(Fj , N) as representation space. It is now only 
a question of forming the orbits of Aj acting on H' (Fj, N) 
and representing each orbit by a single element. 

In the applications the discrete factor groups A/ Aj 
will always be finite and one gauges the effect of this 
factor group by a careful case for case discussion. 

C. The classification of subalgebras of Lie algebras with 
proper nonzero ideals 

Consider the following situation. Let a Lie algebra 
L of finite dimension deL) over a field k, an ideal N of 
L such that N is a linear space of dimension d(N) over 
k satisfying the inequalities ° <deN) <deL) and a group 
A of automorphisms of Lover k that leave N invariant 
be given. It is clear that also in this case there is the 
homomorphism 

w:A - Autk(F), 

wa(x/N) = a(x)/N 

of A into the automorphism group of the factor algebra 

F=L/N 

over k. 

Speaking in more general terms than we did in part 
B we ask which advantage we can draw from the know­
ledge of the behavior of F under wG = G and from N 
under G/N for the task of establishing a representative 
list S(L, N, G) of the G-equivalence classes of k-sub­
algebras of L. 

Initially we apply the same 3 steps as in part B. 

Step 1: Find a list S(F, 0, C) of the C-equivalence 
classes of k-subalgebras of F. For each member Fi 
of S(F, 0, C) find the normalizer 

NorA(F.)={aJaEA & wa(Fi ) = F.} 

of Fi in A. 

Step 2: For each member F j of S(F, 0, C) find a rep­
resentative set SeN, 0, NorA (F.)/N) of the NorA (Fi )-
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equivalence classes of k-subalgebras of N. Delete from 
the list all those members for which the normalizer in 
L does not cover F i • This is safe because the deleted 
members could not serve as S n N in the case S/ N = F •. 
There remains the sublist SeN, 0, NorA (FI )/N, F I ) of all 
members X of S(N,O,NoriFj)/N) with the property that 
the normalizer 

covers Fi so that 

(X + N)/N-:2 F •. 

Hence the k-subalgebra 

NorF.(X)={xJxENorL(X) & X/NEF i} 
• 

of NorL(X) satisfies the condition that 

[NorF.(X) + N]/N= F i . 
• 

It follows that NOrFj(X) n N is a k-ideal of NorFi (X) with 
factor algebra isomorphic to F i • 

Delete from the list SeN, 0, NorA(Fi)/N,F i ) all mem­
bers X for which the Lie algebra NorFi(X) does not split 
over the ideal NOrFj(X) n N. This is safe because the 
deleted members could not serve as Sn N such that SiN 
=F •• There remains the sublist R(N,O,NorA(F.)/N,FI ), 

consisting of representatives X of those NorA (F l )-equi­
valence classes of k-subalgebras of N for which 

(a) (NorL(X) +N)/N-:2 F l , 

(b) NorF.(X) contains a k-subalgebra R(X, N, F i ) • 
satisfying the conditions 

R(X, N, F i ) n N= 0, 

R(X, N, F i ) + (NorFi(X)n N) = NorFi(X). 

Step 3: For each member X of R(N, 0, NorA (Fl)/N,F.) 
form the Lie algebras 

i = NorF. (xl/x, 
• 

lV=LnN/X, 

F=L/,V, 

F= [R(X, N, F i ) +xVX 

and the group A of all automorphisms C; of L of the 
form 

D(Y/X) = aCYl/X, 

[V E f, a E NorA (X) n NorF.(X)]. . . 
We observe that each member of A is a k-linear 

automorphism of i leaving invariant the k-ideal N of 
i and that F is a representative subalgebra of i 
modulo FJ' so that the splitting conditions are satisfied 

in N=O, F+iV=i. 

There remains the task of establishing a representa­
tive list R(i, N, A) of the A-conjugacy classes of k­
subalgebras of L that form a representative subalgebra 
of L modulo N. If that task is solved then to each mem­
ber S of R(i, Ft,..4) there corresponds in one-to-one 
fashion the k-subalgebra 

S={xJxEL & X/XES} 
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such that the S's for all X's and all Fl's together are 
compiled into the desired list S(L, N, A). 

Changing notations as previously from f to L, N to N, 
i'to F, A to A we have the initial situation of this sec­
tion with the additional information that L is a splitting 
extension of N so that there is given a k-subalgebra F 
of L for which 

FnN=O, F+N=L. 

The initial task is reduced to the less demanding task 
of establishing a representative list R(L, N,A) of the 
A-equivalence classes of all k-subalgebras S of L for 
which 

sn N=O, S+N=L. 

Again as in part B, we observe that the elements of S 
are of the form 

B+y(B) (BEF) 

such that y is characterized as a k-linear mapping y of 
B in N subject to the additional conditions 

y([B, B'l) = [B, y (B')l- [B', y(B)l + [y(B), y(B')] 

(B,B'EF). (26) 

Again, a k-linear mapping y of B in N satisfying (26) 
may be called a 1-cocycle of F acting on the k-ideal 
N of L via Lie multiplication. However, due to the ad­
ditional term [y(B), y(B')] on the right-hand side of (26) 
the system of equations (26) for the 1-cocycle is not 
necessarily linear h~mogeneous so that the set Cj(F, N) 
of all 1-cocycles of F acting on N may not be a linear 
space over k. Also, in general, we will not have a nice­
ly behaved linear subspace of 1-coboundaries so that 
the discussion of Cj(F, N) and the orbits of A acting on 
Cj(F, N) requires new tools (e. g., of algebraic geom­
etry in case A is an algebraic group) for its successful 
treatment. 

We abandon the discussion of the most general prob­
lem and ask instead the obvious question: Which further 
advantage can we draw from the existence of a nonzero 
ideal N j of L that is properly contained in N and invari­
ant under A, for the purpose of establishing the list 
S(L, N, A), provided we have all the required informa­
tion for L/Nj • 

It is clear that S(L, NbA) serves in the capacity of 
S(L, N, A), since in fact the only connection of N with 
the problem of finding S(L, N, A) is the condition that 
N be invariant under A. 

In order to carry out Step 1 for the task S(L, Nb A) we 
need to establish 

where Wj is the homomorphism 

Wj : A - Autk(L/Nj ) 

wju(x/Nj)=u(x)jNj (uEA,XEL). 

For example, in the case that Nj = [N, N] =DN, the task 
of establishing S(L/Nj, N/Nj, wjA) essentially is solved 
by the methods explained in part B where a small modi­
fication will be needed only in case wjA would not con-
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tain all automorphisms of L/Nj of the type exp[ad(n)l 
with n in N/N j • 

Similarly, in the case that 

[Nj,Njl=o, 

i. e., that Nj is a nonzero Abelian A-invariant ideal of 
L properly contained in N, the task of establishing 
S(L,NuA) is solved by the methods of part B provided 
we can carry out Step 1 which is tantamount to establish­
ing S(L/Nj, N/Nj, ,v,A). 

There remains the discussion of the case that N is a 
perfect ideal of L which does not contain any nonzero 
Abelian ideal of L. 

Over fields of reference of characteristic ° it is 
known that the radical ideal R(N) of an ideal N of a 
finite-dimensional Lie algebra L always is again an 
ideal. In other words there only remains to discuss 
the case that 

0= R(N)c N=[N, Nl < L, 

i. e., N is a semisimple ideal of L. It is known that in 
this case (for characteristic 0) there holds the 
dec ompos ition 

L =N+ZL(N) 

of L into the direct sum of N and the centralizer 

ZL(N)={xlxEL & [x,N]=O}. 

Clearly, both Nand ZL(N) are invariant under A. Then 
we have a special case of the Lie-Goursat problem 
which we deal with in its general form below in part D. 

D. The Lie-Goursat classification method for the 
subalgebras of albegraic sums of Lie algebras 

The Goursat problemj8 is that of establishing a list of 
representatives S(Gj, Gz, A) of the classes of A-conju­
gate subgroups of the direct product Gj & Gz of two 
groups. The conjugacy is considered with respect to a 
given group A of automorphisms of Gj @G2, leaving each 
factor Gj and G2 in the direct product invariant. It is 
assumed that the corresponding subgroup classification 
problem has already been solved for the groups Gj 

and G2 • 

Correspondingly, the Lie-Goursat problem is that of 
establishing a representative list S(Lj, L 2 , A) of the 
classes of A-conjugate k-subalgebras of the algebraic 
sum L = L j ttl L2 of two Lie algebras L j and L2 over the 
field k. Here A is a group of automorphisms of Lover 
k, leaving L j and L2 invariant. We wish to reduce the 
problem to well-defined classification problems for sub­
algebras of L j and L2 and their factor algebras. 

We use the Goursat lemma for quasirings. We recall 
that a quasiring is a system with two binary operations, 
addition and multiplication, such that the system is a 
module under addition and the multiplication is distribu­
tive on both sides. If L j and L2 are both quasirings then 
L j ED L2 is defined as the set of all symbols aj Hi a 2 

(a j E L;, i = 1,2) with "componentwise" operational rules: 

ajEDa2=bjCBb2<:}aj=bj, i=1,2, 
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aj EEl a2 + bj EEl b2 = (aj + bj) EEl (a2 + b2), 

(aj EEl a2) (bj EEl b2) = aj b j EEl a2b2 

(a;, b/ ELI, i = 1,2). 

Note that the mappings 

111 : LI - L1 EEl L 2, 

11j (a l ) = aj CB 0; 112 (a2) = ° EEl a2 , 

(a I EL;,i=1,2) 

(27) 

(28) 

are monomorphisms with ideals as images such that 
L 1 EEl L2 = 1] 1 L 1 + 11:J. 2 and that the converse of this state­
ment holds as welL Usually L; and 11/LI are identified. 
We shall abbreviate the words "subquasiring" to 
"subring" and "factor quasi ring" to "factor ring. " Now 
let L 1 EEl L2 be the algebraic sum of two quasirings L 1 

and L 2 0 We have: 

(a) For every subring S of L j EEl L2 there exist the 
ideals S n L10 S n L2 and their direct sum S n L1 EEl S n L 2, 
which is also an ideal of S. The projection 
homomorphisms 

8/S-L/, 

8j x = (x+L2) n L j, 

of S into L/(i = 1, 2), such that sn L; is an ideal of 
81S (i = 1, 2) and that we have a Goursat isomorphism 
of 81stlsnL1 on 8~!SnL2 (XES). 

(29) 

(b) ConverselY, given two subrings SI of LI (i = 1,2) 
and ideals NI of SI and an isomorphism a of the factor 
ring S/ N1 onto the factor ring S2/ N2, then there exists 
the subring S={xlEElx2 1x1 ESu X2ES2 and a(x/N1)=X2/ 

N2} of L1 EEl L 2 , such that 

8.S=S/, SnL;=NI (i=1,2). 

Proof: (a) All that needs to be shown is the existence 
of the Goursat isomorphism (also called the Goursat 
twist). For this purpose we observe that the 
congruence 

8jx'" 8j y (modS n L j ). 

implies an equation 

x=y+u withuESnL j, 

So that 

82x = (x + L 1) n L2 = (y + L 1) n L2 = 8zY. 

We hence have the onto mapping 

a: 8 j S/Sn L j - 82S/SnL2, 

a(8 jx/SnL1)=82x/SnL2 (XES). 
(30) 

Since both 8j and 82 preserve addition and multiplica­
tion, the same is true for a. The kernel of the epi­
morphism a consists of all cosets 8jx/ S n L j (x E S) for 
which 82x belongs to S n L 2• In other words 

1603 

8ixEL; (i=1,2), 

82x E sn L 2• 
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This implies that 81x =X - 82x belongs to S. Hence 
8jx E sn L 1, 82x/S n L j = 0. Thus the isomorphism prop­
erty of a is established. 

(b) For the converse we must verify the subring 
property of S which is straightforward because a pre­
serves addition and multiplication. 

We thus obtain the following algorithmic solution of 
the Lie-Goursat problem (we use the same notations 
as in the beginning of this section). 

Step 1: Establish a representative list S(L u O,A/L 1) 
of the A-conjugacy classes of k-subalgebras of L j and 
their normalizers in A. 

Step 2: For each member S1/ of S(L u O,A/L 1) estab­
lish a representative list S(L2, 0, Nor AS1/L2)0 For each 
S2 of S(L2, 0, NorAS1;iL2 ) find the normalizer 

Nor A (S1/ CB S2) = Nor A (S1/) n Nor A (S2)' 

Step 3: For given Sji and S2 establish a representa­
tive list S(Sli, S2, Nor A (S1/ CB S2) of the Nor A (Sli rJJ S2) 
equivalence classes of pairs of subalgebras. Find 

N1/ <J S1i, N2 <J S2 

for which 

S1//N1/ :::: S/N2 k 

and find the intersection 

A* =NorA(Sjj<B S2) n NorA,(N1/(D N2). 

Step 4: For given S1/, S2, Nji, and N2 determine a 
representative list S(S1/, S2, Nti , N2, A*) of the A*­
equivalence classes of the Lie algebra isomorphisms 
of S1i/N1/ and S2/N2' 

Step 5: Form all the Goursat twisted subalgebras 

3 = {xl +x2lXj E S1/, X2 E S2 and a(x/N1/} =X2/N2} 

for a of S(Sji,S2,N1/,N2,A*) and compile the desired 
list S(L 1 EElL 2 ,0,A) by gathering together, for all a's of 
S(S 1/, S2, Nji, N2, A *) all N1/, N2 of S[ S 1/, S2, Nor A (S1/ EEl S2) j, 
all 32 of S[L 2 ,0,Nor)S1i)/L2J and all Su of S(L u O,A/L 1). 

An application of the Lie-Goursat method to a classi­
fication of the subalgebras of the algebra of the homo­
geneous Lorentz group, extended by dilatations, fallows 
in Sec. 4. 

3. CONTINUOUS SUBGROUPS OF THE POINCARE 
GROUP 

A. Subgroups of the homogeneous Lorentz group 

Let us first introduce some necessary notations. 
The Poincare group can be defined as the group of 
linear transformations 

x~ =A"vxv+a" (31) 

of a real linear vector space with metric 

ds 2 
= dX6 - dxi - dx~ - dx~, 

leaving the distance (32) invariant. 

(32) 

Its Lie algebra has 10 generators. We chose a basis 
that is convenient for our purposes, although it differs 
from the one conventionally used in physics. Let us 
write the generators of the homogeneous Lorentz group 
in a four-dimensional representation as 
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B'C~ 
0 

o ~ ( 

0 0 

g) B'C~ -i o 0 0 -1 0 
0 - i 0 ' B2 = 0 0 1 
0 o i 0 0 0 -1 0 

~iOJ ~ 
0 0 

1) ~ o 000 1 0 0 o i 
B4 = 0 0 0 i ' B5 = 0 0 0 ~ , B6 = ~ 

00000 0 - 1 

The generators of translations are 

(

0 0 

X = 0 0 
1 0 0 

o 0 

~ ~),xj~ ~ ~ ~~ ,x,=~ ~: 
o 0 ~ 0 0 0) ~ 0 0 

(~ ~ 0 ~) 
X4 = 0 0 0 0 . 

o 0 0 0 

Note that all the above matrices satisfy 

XJ +JX+=O 
with 

J=(~~~~) o 1 0 0 . 
1 000 

All complex matrices X satisfying (35) and detx = 1 
constitute a realization of the algebra of the pseudo­
unitary group SU(2, 2). This is convenient for our 

(34) 

(35) 

(36) 

future purposes since we can in a simple manner en­
large the basis (33), (34) to that of the similitude group, 
by adding the element 

DJ~ 1-:, l). (37) 

~ 0 0 -1 

The conformal group of space-time would then be ob­
tained by adding four more generators (of special con­
formal transformations). We shall need the commuta­
tion relations of the Poincare algebra; they are sum­
marized in Table I. 

The translations commute: 

[X",Xvl=O, j..L,v=0,1,2,3. 

The relation to the usual physical operators, namely 
the angular momentum Li (rotations), boosts K j 

(proper Lorentz transformations), energy-momentum 

TABLE 1. Commutation relations for the Poincare algebra. 

B j B2 B3 B4 B5 

Bj 0 0 2B4 - 2B3 - 2B6 
B2 0 0 2B3 2B4 - 2B 5 
B3 - 2B4 - 2B3 0 0 B2 
B4 2Bs - 2B4 0 0 B j 
B5 2B6 2B5 -B2 -B j 0 
B6 - 2B5 2B6 -Bj B2 0 
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1 0 
o 0 
o 0 
o 0 

o 0 
o 0 
o 0 
o 

Ipo, PI (translations) is as follows (i = 1,2,3): 

B 4=L1-K2, B 5=L2-K1, B6=Lj+K2' 

and 

(33) 

(38) 

The subalgebras of F=LSL(2, C) are known16• 17 and 
we list them and some of their properties in Table II. 
In the first column we introduce a notation for each 
subalgebra, in the second we give its dimension dimRFi 
(over the field of real numbers), in the third we list the 
generators. In the fourth we give NorLGFi , i. e., the 
normalizer of Fi in the Lorentz group LG::; expF 
::;SL(2, C). Relevant comments are made in the fifth 
column. 

Notice that F5 and Fl1 are actually infinite classes 
of subalgebras, depending on one real continuous pa­
rameter 0 < C < 'IT, c * 'IT/2. We could have combined 
several subalgebras together by simply letting c take 
all values 0"" c < 1T (then F5, F6, F7 and F l1 , F 12 , Fj3 would 
have been bunched together). This was actually done, 
e. g., in Ref. 16. However, the properties of these al­
gebras are sufficiently specific for c = 0 and c = 1T/2 to 
justify their separate treatment. All other entries F j 

(j * 5, j * 11) are single algebras, not depending on any 
parameters. 

The normalizers sometimes involve discrete ele­
ments. In particular, we have 

(

01 ~ ~ ~) 
o 0 0 - 1 
o 0 1 0 

z,=(l 
0 0 

V 
=B 3 -B 5, 

- i 0 
o - i 
0 0 

and C4 is a cyclic group consisting of the elements 

=Bj, 

(40) 

Z2, Z~ = - 1, Z~ = - Z2 and zi = 1. The symbol [' indicates 
a semidirect product of two groups where the second 
group is an invariant subgroup. Note that Zl is a rota­
tion through 1T about axis 2, Z2 a rotation through 1T 

about axis 3 0 

Bs Xj x 2 X3 x 4 

2B5 0 2X3 -2X2 0 
- 2B6 2Xj 0 0 - 2X4 

B j 0 0 2Xj X3 
-B2 0 -2X j 0 -X2 

0 X3 0 2X4 0 
0 x 2 2X4 0 0 
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TABLE II. Representatives of conjugacy classes of subalgebras of F=LSL(2,C) under SL(2,C). In column 3 the generators to 
the right of the semicolon span the derived algebra of F j • 

Notation dim#i R-basis NorLCFi Comment on subgroup 

FI 6 ;B j , .•• ,BG Inner SL(2,C) 

F2 4 Bj,B2;B3,B4 Inner Borel 
F3 3 ;B j ,B3-B5, B4+ B G Inner SU(2) 

F4 3 ;Bj,B3+ B 5' B4 -Bs expF4U expF4 'Zj SUO, I) 

F5 3 Bc= coscB j + sincB2;B 3, B 4, expF2 S(3) 

o <c <71"/2, 71"/2 <c <71" 

F6 3 Bj;B3,B4 expF2 E(2) 

F7 3 B2;B3,B4 expF2 DOTH 

Fa 2 B2;B3 C4 0expFs CO) 

F9 2 Bj,B2; expFsU expFs,Zj Abelian, Tc 
FlO 2 B 3,B4; expF2 Abelian, TH 
F jj 1 Be = coscB j + sincB2; expF9U expFs 'Zj S(1) 

o <c <71"/2, 71"/2 <c <71" 

Fj2 1 Bj; expF9U expFs'Zj 0(2) 

Fj3 1 B 2; expF9 U expF,,' Zj 0(1,1) 

Fj4 1 B 3; C4 0expF7 E(1) 

Fjo 0 0 expFj 

To each subalgebra F j of LSL(2, C) there corresponds 
a continuous subgroup expFj of the Lorentz group. We 
do not go into the question of discrete centers, etc., 
for these groups and do not discuss the question of how 
many different locally isomorphic Lie groups corre­
spond to each algebra. 

Most of the groups are obvious (see last column in 
Table 11). We shall call expB4 =B the Borel subgroup21 
since it is the maximal solvable subgroup of SL(2, C). 
Throughout we denote 

Bc=coscB1 +sincB2, O<c<7f, c*7f/2. 

The corresponding group which we denote 

S(1) = expF11 

(41) 

(42) 

corresponds to a rotation about a space axis with a 
simultaneous boost along the same axis (a "screw" 
with c the corresponding angle). Similarly, we denote 

S(3) = expF5• (43) 

This group corresponds to screw-like transformations 
along one axis and translations in the plane perpendicu­
lar to this axis. 

The group expFs corresponds to transformations of 
a straight Hne, i. e., translations and dilatations: 

x' =ax +b. (44) 

A matrix realization of expFs is given by 

g= (~ ~) 
acting on the vector x = (fl. We shall denote this group 
C(l), the conformal group in one dimension. 

The groups expF9 and expF10 are both Abelian and 
can be interpreted as translations. Since expF9 contains 
a compact generator Bl it can be identified with trans­
lations on a cylinder; expFjO corresponds to transla­
tions on a plane. More precisely, if we interpret the 
Lorentz group as the group of motions of a real 
Lobachevsky space then expF10 corresponds to transla­
tions on a locally Euclidean subspace-an horosphere. 22 

Let us denote 
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T c = expF9' T H = expFjo . (45) 

The group expF, - DDT H corresponds to dilatations and 
translations in a plane 0 

B. Splitting subalgebras of the Poincare algebra 

We now proceed to apply the algorithm of Sec. 2B, 
to find all subalgebras of the Poincare algebra P. Step 
1 has already been performed, i. e., we have given a 
list of representatives F j of the conjugacy classes of 
subalgebras of the factor algebra F= LSL(2, C) = piN, 
where N = LT4 is the algebra of the translations. Con­
jugation was considered under the proper orthochronous 
Lorentz group and the normalizers NorLCFj in the 
Lorentz group were also found, All of this is sum­
marized in Table II, 

Step 2 of the algorithm will provide us with all sub­
algebras Pj,k of P that split over their intersection with 
the translations (are splitting extensions of Nj,k c:; N by 
F j , where Nj,k is a subalgebra of N). This step must be 
performed separately for each subalgebra F j , i. e" for 
each F j we must find all invariant subspaces Nj,k c;;: N. 

They satisfy [Fj, N j , k 1 c;;: NJ, k and provide us with the re­
quested algebras according to the prescription PJ,k 
= F j + N},ko The label k simply serves to distinguish dif­
ferent invariant subspaces Nj,k corresponding to the 
same F j and different subalgebras Pj,k of P. 

Simultaneously, we apply Step 4, i. e., use elements 
of NorLCF/(expFj), i. e., the outer part of the nor­
malizer, to simplify Nj,k' 

For each F J we thus face a trivial problem of linear 
algebra. Let us run through the individual F J• 

F 1-The algebra Fl is represented irreducibly on the 
space N. Hence the only invariant subsapces are 

(46) 

F2-The Borel subalgebra Fz has four invariant sub­
spaces in N, namely 

N 2,l =LTH N2,z ={X j ,XZ,X3}, NZ,3 = {XI}, N2,4 = O. 

(47) 

Obviously, we have [F2' N2, j] c;;: N2,j and we check direct­
ly that there are no other invariant subspaces. 
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F 3-Since F3 is the Lie algebra of SU(2), it is im­
mediately clear that the invariant subspaces are 

N 3,l =LT4 , NS,2 ={Xj -X4,X2,X3}, N3,3 ={~ +X4}, N3,4 = O. 

(48) 

Here Ns, 2 are the space components of linear momen­
tum Pj, P2, P3 and N3,3 is the time-component (energy) 
Po [see (39)]. 

F 4-Since F4 is the Lie algebra of SU(l, 1), the re­
sults are equally obvious: 

N4 ,I=LT4 , N4,2={Xj+X4,X2,X3}, N4,3={Xj -X4}, N4,4=0. 

(49) 

F 5-Putting [F5, N5ih~ N5i , we find 

N5,j =LT4 , N5,2 ={Xt. X 2,X3}, N5,3 = {Xj}, N5,4 = O. 

(50) 

Fs-The same holds as for F 5, i. e. , 

F 6,l =LTH NS,2 ={Xt.X2,X3}, Ns = {Xj}, NS,4 = o. (51) 

F 7-The invariant subspaces in this case are 
{O}, {xj, {Xl>X2 coscp+X3 sincp, O~ Cp<1T}, {xj,X2,X3} 

and L T 4 • However, remembering that the normalizer of 
F7 is Nor LGF7 = expF2 (see Table II), we can simplify the 
subspace: {Xl> X 2 coscp +X3 sincp}. Indeed, we have 

exp(xBj)(COSCPX2 + sincpX3) exp(- xB j) 

= cos(2x + cp) X 2 + sin(2x + cp) X 3. (52) 

Putting x = - cp/2 we transform our subspace into {Xt. X 2}, 
Thus we obtain 

N7,l =LT4 , N7,2 ",{Xl> X 2, X 3}, N7,3 ={Xt. X 2}, 

(53) 

Fs-The invariant subspaces obtained by investigat­
ing the equation [Fs,Ns,k]CNs,k are 

NS,I=LT4 , NS,2",{Xl>X2,X3}, NS,3"'{xj,X3,X4}, 

NS,4={Xt. X 2}, NS,5"'{xt. X 3}, Ns,s={Xl>X2 +bX3,b*0}. 

Ns, 7 = {Xj}, Ns, s = {X2}, Ns, s = O. 

(54) 

The normalizer in this case is C4 [l expFs and we can 
check that it cannot be used to simplify the invariant 
subspaces (e. g., the value of bin N8,S is invariant under 
NorLcFs)· 

Fs-The invariant subspaces directly obtained are 
LT4 , {Xl>X2 ,X3}, {X2 ,X3 ,X4 }, {X"X4}, {X2 ,Xg}, {Xl}, 
{X4}, and O. However, the transformation Zj of (40) 
in Nor Fs satisfies 

ZjXjZj
j 
=X4 , Z jX 2Zj

j 
=X2, 

ZjX3Zij=-X3, ZjX4Zij=Xj. 
(55) 

The subspaces Xj and X 4 and similarly {X jX 2X 3} and 
{X2,X3,X4} are thus conjugate to each other and we ob­
tain the following independent invariant subspaces: 
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FjO-The invariant subspaces obtained for FjO are 
LT4, {Xl>X2,X3}, {Xu coscpX2 + sincpX3, 0 ~ cp ~ 1T}, and 
{Xl}' We can again make use of the fact that expxB 1 is in 
the normalizer of FlO and rotate coscpX2 + sincpXg into X

2
, 

leaving Xl invariant, Thus we obtain 

NlO,l = LT4 , N jO,2 ={Xt. X 2,X3}, N jO,3 = {Xt. X 2}, 

(57) 

Fjj-The invariant subspaces of Be are found directly 
to be 

NIl,l =LTH Nl1 ,2 ={Xl>X2,X3}, Nl1,3 = {X2,X3}, 

Nl1,4 = {Xl> X 4}, Nl1 ,5 = {Xj}, Nl1, s = O. 
(58) 

F 12-The operator B j leaves the space aX j + bX4 in­
variant for any a and b. However, using the fact that 
exp(xB j+yB2) and Zj are in the normalizer of F j2 , we 
can transform aXj + bX4 into Xl if ab = 0, into Xj +X4 if 
ab'. 0, or into Xl - X 4 if ab < 0. Similarly, the three­
dimensional invariant subspace {aXl + bX4 , X 2 , X 3} can 
also be simplified. We obtain the following independent 
(nonconjugate) invariant subspaces: 

N l2,l = LT4 , N j2,2 = {Xj, X 2,X3}, N12,3 = {Xl - X 4, X 2, X 3}, 

N12,4 ={Xj +X4,X2,X3}, Nj2, 5 ={Xl>X4}, N12,s ={X2,X3}, 

Nj2,7={Xj}, Nj2,s={Xj -X4}, Nj2,s={Xj +X4}, 

Nj2,jO = O. 

(59) 

F j3-The operator B2 leaves both Xj and X 4 invari­
ant. However, Zj is in the normalizer of Fj3 and trans­
forms X 4 into Xj. Similarly, aX2 + bX3 is invariant for 
any a and b but can be rotated by expxBj into X 2• The 
invariant subspaces {Xt. X 2 coscp +X3 sincp, 0 ~ cp < 1T} can 
similarly all be rotated into {X j ,X2}. The other invari­
ant subspaces are obtained directly. Thus 

N I3,l=LTH Nj3,2={Xj,X2,X3}, N j3,3={Xt. X 3,X4}, 

N j3,4 ={Xj,X4}, N j3,5 ={Xj,X2}, N j3,s ={X2,X3}, 

N j3,7={Xj}, N j3,s={X2}, N j3,9=0. 

F 14-The operator B3 leaves the following spaces 
invariant: 

N14,l = L T4 , N14,2 ={Xt. X 2, X3}' N j4,3 = {Xl> X 3, X 4}, 

(60) 

Nj4,4 ={X1, X 2}, Nj4, 5 ={Xj,X3}, N14,6 ={X1, X 2 + bX3, b * O}, 

N14,7={Xj}, N14,s={X2}, Nj4,9=0. 

(61) 

Since Nor LGF14 does not contain expBj we cannot rotate 
in the {X2, X 3} space so each value of b in Nj4,6 will cor­
respond to a different subalgebra (mutually nonconju­
gate for different values of b). 

F 15-The algebra Fj5 is empty, i. e., contains the 
element 0 only. The space of translations N can be 
split into orbits under SL(2, C). We have 
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(a+b) (-a+b) = -2- Po - dP1 +CP2 + --2- P 3 

[we have used (39) J. The orbits will clearly differ by 
their signature, i. e., by the number of mutually 
orthogonal timelike, spacelike and lightlike vectors 
contained. For CESL(2,C)we find that the 
transformation 

CNC-1 =N 

leaves 

A=ab _c2 _d2 

invariant. An individual vector 

X=aiXi 

will be characterized by A = a1a4 - a~ - a5. We call a 
vector, respectively, 

timelike (+) if A> 0, 

spacelike (-) if A < 0, 

lightlike (0) if A = O. 

(62) 

(63) 

The mutually nonconjugate subs paces of N and their 
signatures are 

N 15,l =LT4 (+ - - -), N15•2 ={Xj,X2,Xa} (0 - -), 

N15• 3 ={Xj - X 4,X2, X 3} (- - -), N15,4 = {Xl +X4,X2, Xa} (+ - - ), 

N j5,5={X j ,X2} (0-), N j5,6={Xj,X4} (+-), 

N j5,7={X2,X3}(--), Nj5,s={Xj } (0), N j5,s={X j +X4}(+), 

(64) 

This completes our list of invariant subspaces for all 
F J

• The resulting splitting subalgebras 

PJ,k = F J + Nj,k 

are listed in Table III. The first column introduces a 
notation PJ,k (k simply differentiates between different 
subalgebras of P obtained from the same F J). The sec­
ond lists F J, the third gives the dimension of PJ,k (over 
the field of real numbers). The generators of F J and 
NJ,k are given in columns 4 and 5. The normalizer of 
PJ,k in the Lorentz group is given in the sixth column. 
Comments on the corresponding subgroup of the 
Poincare group are given in the last column, in particu­
lar, we indicate the Signature of Nj,kO Again the Borel 
group is the maximal solvable subgroup of SL(2, C), 
E(3) and E(2) are the Euclidean groups in three and two 
dimensions, E(2, 1) and E(l, 1) the pseudo-Euclidean 
groups in three and two dimensions. C(l) is the group 

TABLE III. List of representatives of splitting subalgebras Pj,k of P. 

Notation F j dim#j,k Generators of F j Nj,k NorLcF'jn Noru/vj,k Comment on subgroup 
Pj,k 

Pl,l 
Fl 

10 Bj, •• _ ,Bs Xj,XZ,X3,X4 PC"" LCO T4 

P l ,2 6 0 Inner LC~SL(2,C) 

P 2,1 8 X I ,XZ,X3,X4 BorelO T4 

P 2,2 
F2 

7 
Bj, _ •• ,B4 

X j ,XZ,X3 Borel 0 (0--) 

P 2,3 5 Xj 
Inner BorelO (0) 

P 2,4 4 0 Borel 
P 3,1 7 Xj,XZ,X3,X4 SU(2) C T4 

P 3,2 
F3 

6 
Bj,B3 -B5,B4 +Bs 

Xl -X4,X2,X3 SU(2) 0 (- - -) ~ E(3) 

P 3,3 4 Xj+X4 
Inner SU(2)0 (+) 

P 3,4 3 0 SU(2) 

P 4,1 7 Xj,X2,X3,X4 SUO, 1) 0 T4 

P 4,2 
F4 

6 
Bj, B 3+ B 5,B4- B S 

Xl +X4,X2,X3 SUO, 1)0(+ - -)~ E(2, 1) 
P 4,3 4 X I -X4 

expF'4U expF4 -Zj 
SUO, 1)0 (-) 

P 4,4 3 0 SUO,l) 
P:,j 7 Xj,X2,X3,X4 S(3) [] T4 

P 5,2 
F5 

6 
Bc,B3,B4 

Xj,X2,X3 S(3) iJ (0--) 

P 5,3 4 Xj 
expF2 S(3) i'l (0) 

P 5,4 3 0 S(3) 

P 6,1 7 Xj,X2,X3,X4 E(2) 0 T4 

PH, 2 Fs 
6 

Bj, B s,B4 
Xj,X2,X3 E(2) [1 (0--) 

P S,3 4 Xl 
expF2 

E(2)0 (0) 

P S,4 3 0 E(2) 
P 7,1 7 Xj,X2,X3,X4 expF2 (DOTH) 0 T4 
P 7,2 6 Xj,X2,X3 expFz (DOTH) 0 (0--) 
P 7,3 F7 5 B2,B3,B4 Xj,X2 C4 0 expF7 (DO T H) 0(0-) 
P 7,4 4 Xl expF2 (DO TH)O (0) 
P 7,5 3 0 expF2 (DOTH) 
Pa,l 6 X I ,XZ,XS,X4 CO) 0 T4 
Pa,z 5 Xj,X2,X3 C(1) 0 (0--) 
P a,3 5 X l ,X3,X4 C(1)[l(+--) 
P S,4 4 Xj,X2 C(1) 0 (0-) 
P S,5 F8 

4 
B 2,B3 

X1>X3 CO) 0(0-) 
Pa,s 4 X1>X2+bX3, b>"O 

C4 0expFa 
CO) 0 (0-) 

P a,7 3 Xl C(1)O(O) 
Ps,a :l X 2 C(1)0 (-) 
P S,9 2 0 CO) 
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TABLE III continued 

Notation F j dimRPj,k Generators of F j Nj,k NorLGFj n NorLGNj,k Comment on subgroup 
Pj,k 

P 9,1 6 Xj,X2,X3'X~ expF9U expFn' ZI Tee[ T1 
P 9,2 5 X I ,X2,X3 Inner TcLJ(O --) 
P 9,3 

Fs 
4 

Bj,B 2 
X 2,X3 cxpF:IU expF9 ' ZI Te l-[(--) 

P S,4 4 X I ,X1 expFnU expF:1 'ZI Tell (1-) 
P S,5 :3 XI Inner Te! '(0) 
P S,6 2 0 expF~U expF9 "ZI Te 
PIO,I 6 X I ,X2,X3 ,X1 expF2 T HIJT1 
P IO,2 5 Xj,X2,X3 expF2 TH~(O--) 
P IO,3 Flo 4 B 3 , B4 X I ,X2 C 40expFy THr ,(0-) 
P IO ,4 :l XI expF2 T H 0(0) 
P IO,5 2 0 expF2 TH 
P 11,1 5 Xj,X2,X3,X4 expF:10 expF9 'Z I S(1) II T1 
P 11,2 4 Xj,X2,X3 expF:1 SO)I '(0--) 
P 11,3 

F11 
3 

Be 
X 2,X3 expF" U expF:1 • Z I S(l) 1 (--) 

P 11,4 :3 Xj,X4 expF"U expF9 'Z I SO)I-,(+-) 
P 11,5 2 XI cxpF:) SO) I (0) 
PIl,s 1 0 expFsU expF9 'ZI S(1) 
P12,1 5 X I ,X2,X3,X4 expF9U expF9 'ZI 0(2) I 1 T4 
P 12,2 4 Xj,X2,X3 expFg 0(2): 1(0--) 
P U ,3 4 XI -X4 ,X2,X3 expFI2 U expF12 "ZI 0(2) I 1 ( ___ ) 

P 12,4 4 XI +X4 ,X2,X3 expF I2 U expF l2 'Z I 0(2)1 1(+--) 
P I2 ,5 FI2 3 BI X I ,X4 expFnU expF:1"ZI 0(2) Q'; ( I -) 
P 12,6 3 X 2,X3 expF:JU expF:1 'ZI 0(2)1,(--) 
P 12,7 2 XI expF9 0(2)0 (() 
P I2 ,S 2 X I -X4 expF I2 U expFI2'ZI 0(2)'6 (-) 
P I2,S 2 XI+X.j expFI,U expF l2 ' ZI 0(2) c& (+) 
P 12,10 1 0 expF,LJ eXj2F'I" ZI 0(2) 
P 13,1 5 Xj,X2,X3,X4 expF" U expF:I • Z I 0(1,1) C:.' T4 
P I3,2 4 X I ,X2,X3 expF" 0(1,1)1'(0--) 
P 13,3 4 Xj, X 3,X4 C 4 :-:,(expFI3 U expFI3 'Z I) 0(1,1)[' (+--) 
P I3,4 :1 Xj,X4 expF9U expF:1 ,ZI 0(1,1) , (+ -) 

P I3,5 FI3 :3 B2 X I ,X2 C 41 'expFl3 0(1, I) I 1(0_) 

P I3 ,S :3 X 2,X3 expFB U expFs • Z I 0(1,1)0(--) 
P13,7 2 XI expFs 0(1 , 1) I I (0) 

P I3 ,S 2 X 2 C 4 ' (expF l3 U expFl3 ' ZI) 0(1,1) 0; (-) 
PI~,~ 1 0 e xpF'ILJ expF" • Z l 0(1,1) 
P I4,I 5 Xj,X2,X3,X1 C 4 ',' I expF, E(1) I 1 T4 
P 14,2 4 X I ,X2,X3 C 4 ,I expFi E(I) I (0 --) 

P 14,3 4 X I ,X3,X4 C4 ~'[expFs E(I) I (I __ I 
P 14 ,4 3 X I ,X2 C4 OexpF, E(1)0!(0 -) 

PH" FI4 
3 

B3 
X I ,X3 C1 nexpF 7 E(I) 1 (0 -) 

P 14,6 3 X I ,X2 +bX3, b;>" 0 C 41-1 expF, E(1) (0 -) 

P 14,1 2 XI C 4 [JexpF'i E(1)(;; (0) 

P I4 ,S 2 X 2 C4 i I expFs E(I)~-H 

P 14,9 0 C4~-lexpFl E(I) 

P 15,1 4 X I ,X2 ,X3,X4 SL(2,C) T4 
P 15,2 3 X I ,X2,X3 expF2 (0--) 

P I :"3 3 X I -X4,X2,X3 expF3 (---) 

PI:" 4 :J XI +X4 ,X2,X3 expF4U expF4,ZI (+ --I 
P 15" 2 X I ,X2 C,ll expF7 (0 -) 

PI:"G F I5 2 0 Xj,X4 expFsU expF,I'ZI (+-) 

PI;" 7 2 X 2,X, expF9U expF9 ,Zj (--) 

P I5,S XI expF2 (0) 

PI:"s 1 X I +X4 expF3 (,) 

P I 5,IO 1 X I -X4 expF4U expF4 ,ZI H 
P I 5,l1 0 0 SL(2,C) 

of transformations of a straight line (44); S(3) and S(l) 
are defined in (42) and (43). 

a list of all the remaining subalgebras of P, namely 
those that are nonsplit extensions of the subalgebras 
NjkcNby F J• 

The algebras F i , F 3, and F4 [corresponding to 

The normalizers of column 6 are easy to obtain from 
NorLGFJ of Table II by inspecting its action on NJ,k' We 
do not present the details. 

C. Nonsplitting subalgebras of the Poincare algebra 

Following the algorithm of Sec. 2B we now come to 
Step 3, which together with Step 4 will provide us with 

SL(2, C), SU(2) and SU(l, 1)1 are semisimple and hence 
cannot provide any nonsplit extensions. All other sub­
algebras F j of F are contained in F2 [the only maximal 
solvable subalgebra of LSL(2, C)l and we need only con­
sider F2 and its subalgebras in connection with Step 3. 
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First of all let us construct the matrix representa­
tions (10) of F2 on N. Using the commutation relations 
of Table I, we find 

{3t= (~ H' ~\ &"(~ ~ ~ ~), 
o 0 O~) 0 0 0 -2 

{33= ~o ~ ~~) {34= (~ -0

2 ~ ~) (65) 
0001' 0000' 
0000 0000 

[in the basis given by (33) and (34»). These matrices 
immediately provide us with the basis coboundaries of 
Eq. (16), (17). Indeed, we have 

2Bt = 2X3X2 - 2X~3' 

2B2 = - 2XtXt + 2X~4' 

2B3 = - 2X3Xj - X4X S, 

2B4 = 2x~t +X4X 2. 

(66) 

The four arbitrary constants Xl> ••• , x4 can be used to 
simplify the nontrivial l-cocycles (14). Indeed, adding 
combinations of the coboundaries to cocycles corre­
sponds to simplifying possible generators of subalge­
bras by transformations of the type expN. 

Let us now consider the individual subalgebras FJ of 
LSL(2, e), remembering that the semisimple subalge­
bras F j , F 3, and F4 are of no interest in this connection. 

F 2-The Borel subalgebra F2 does not provide any 
nonsplitting extensions. Indeed the generators of a non­
split subalgebra would be 

and 

_ 4 

Bk =Bk + 6 CkIX" k = 1, ... ,4, 
1·1 

N2,}, j=I, ..• ,4, (67) 

where N2} is one of the invariant subspaces (4]). Putting 
2x3 = Ct2, - 2X2 = Ct3 and subtracting 2Bt from B j we ob­
tain Cj2 = CI3 = 0 in (67). Similarly, put - 2xt = C2j, 2x4 
= c24 and subtracting aB2 from B2, we obtain c21 = C24 
= 0 in (67). Using relations of the type (15) or demand­
ing directly that ili> ... , B4 with N2,} form an algebra, 
we find that for each of the four subspaces N 2,} of (47) 
these conditions lead to the equations 

CkIOOO, kool, ... ,4, iool, •.. ,4, 

i. e., to splitting subalgebras already listed above in 
Table ill. 

F 5-The results in this case are the same as for F 2, 

namely no nonsplitting algebras are obtained. 

Fe-This case leads to new subalgebras, so we con­
sider it in somewhat greater detail. The generators 
involving Fs can be written as 

Bl ooB j +ajXl +a4X4, 

Rs ooB3 +cjXj +C2X 2 +C4X4, (68) 

B4 ooB4 +djX 1 +d2X 2 +dsXs +d4X 4. 
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We have already made use of the coboundaries aBt , 

2B3, and aB4 to eliminate a2, as, and C3' The commuta­
tion relations are 

(Bi> Rs) = 2B4 + (2C2 - a4) XS, 

[Bj, B4) = - 2B3 + 2d2X S - 2dsX2 +a4X 2, 

[B3, B4J = 2d3X t +d4X 3 + 2C2Xj + C4 X 2. 

(69) 

Now consider the individual invariant subspaces NS,J 

of (51). Adding N6 1 =LT4 to (68), we obviously obtain 
the splitting subalgebra PS,j. The other cases are less 
trivial. 

Take NS,2 oo{Xj,X2,XS}' We can immediately put at 
=Ct =cz =dt =d2 "'ds '" 0 in (68). From (69) we find C4 =d4 
= 0 and we obtain the subalgebra: 

(70) 

According to Step 4 of the algorithm we can further 
simplify (70) USing other automorphisms of F 7• Indeed, 
we have 

exp(xBz)(Bj+aX4)exp(-xB2)",Bt+EX4, Eoo±l, (71) 

where exp(2x) = alE and E oo± 1 for sign a oo± 1. The other 
generators are left unchanged by expxB2 and we obtain 
two new algebras: 

~S; 5} B t +EX4, B S,B4,Xl>X2,X3, E =± 1. 
S,6 

(72) 

Note that these algebras are new-not only are they not 
conjugate to any of the splitting subalgebras of Table ill 
but they are not even isomorphic to any of them. 

Now take N6,3 ={XI}. We put aj OOCj oodj '" 0 in (68). The 
commutation relations (69) imply in this case dz ",d4 
=C4 = 0 and ultimately a4 = 0, d3 =cz. The subalgebra in 
this case is reduced to 

Bj,Bs+cX2,B4+cXS, Xu _oo<c<oo. 

This can again be simplified using the outer automor­
phism expxB2 and we again obtain two new algebras: 

;S; v} Bj, B3 +EX2' B4 +EXs, Xl> E = ± 1. (73) 
6, B 

Finally, take NS,4 '" O. The commutation relations (69) 
now imply d1 oodz =d4 =Cj =c4 ooa4 oocz =d3 = O. Thus we 
have 

B j +aX1>BS,B4• 

Again expxB2 can be used to simplify and we obtain two 
algebras 

~6'9} B t +EXh B 3,B4, E=±1. (74) 
6, to 

These are both isomorphic to P S,4 = Fs but not conjugate 
to this algebra under the Poincare group. 

F 7-The generators involving F7 can, after subtract­
ing the appropriate combinations of coboundaries (66), 
be written as 

Bz=Bz+b,XI, B3=B3+ CjX" B 4ooB4+dIX I, 

(75) 
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The commutation relations are 

[B2, B31 = 2B3 - 2c4X4 - 2b3X I , 

[132, B41 = 2B 4 - 2d4X 4 + 2b2Xj, 

[13 3,1341 = 2d3 Xj H]4X4 + 2C2Xj. 

(75') 

Consider the invariant subspaces NT, k of (53). NT,I, 
NT, 2, and N7,5 lead to splitting subalgebras only (all 
b i '" c i ood i = 0). Consider NT. 3 ",{Xb X 2}. We have b2 '" C2 

= dz = 0 and (75') implies C3 = c4 = d3 = d 4 = O. The obtained 
algebra is {B2 +cX3,B3,B4,XI,X2; xt- OJ. The element 
Z2 in the normalizer Nor LCFT [see (40)1 transforms 

Z2(B2 +cX3) Z2"l ooBz - cX3• 

No further simplifications are possible, and so we ob­
tain a class of subalgebras: 

Taking N7• 4 = {Xj} as the invariant subspace, we find 
c; '" d; = 0 (i = 1, ... ,4), thus obtaining the algebra 

(76) 

B z =B2 + b2X 2 + b3X 3, B 3, B 4,Xj; b~ + l)~t- O. The transforma­
tion (expxBj) with 2x = rr/2 - arc tan(bJb2 ) simplifies this 
class of algebras to its final form: 

Fs-We take the generators as 

B 2=B2+b;Xi , E3=B3+ c ;Xi' 

(77) 

(7S) 

Putting Xj = - bi2, X4 = + bJ2, X3 = - c/2 and replacing 
B z, B3 by B2 - aB2, B3 - aB 3, we obtain generators in the 
form (7S) with bl = b4 = c l = O. The commutation relation 
is 

[132,1331 = 2 {B3 - b3X! - C 4 X 4} (79) 

implying that Cz = C3 = C4 '" O. The generators (7S) thus 
reduce to 

E2=B2+b2X2+b3X3, B 3 ",B 3, b~+b~t-O. (SO) 

The only nontrivial outer element in the normalizer of 
Fs is Z2 (40) and its presence makes it possible to con­
sider one of the coefficients b2 or b3 to be nonnegative. 
Now let us consider the individual invariant subspaces 
Na.k (54). Adding 1\'S,b Na.z, or Ns,s to (SO) leads to 
splitting subalgebras only (b; =c; = 0, i = 1, ... ,4). Let 
us consider the other cases. Taking NS,3 ",{X j,X3, X 4J, 
we have b3 '" 0 and we obtain 

Pa.10: B2+0X2,B3,Xl,X3,X4, O<o<oC. (S1) 

Taking Na. 4 = {Xl' X 2}, we have b2 = 0, so that 

PS,l1: B2+aX3,B3,Xl,X2, O<a<oo. (S2) 

Taking N a. 5 = {Xj' X 3}, we have b3 = 0 and we obtain 

Pa.12: B2+0Xz,B3,Xj,X3, 0<0<00. (S3) 

Taking N a. 6 = {Xl> X 2 + bX3, b t- OJ, we obtain 

Pa.13: B2+aX2,B3,Xj,X2+bX3, a"O, bt-O. (S4) 

For Na. 7 = {Xl} we distinguish three cases: 
-
PS,14: B 2+aX3, B 3, Xl, O<a<oO, 

P S,j5: B 2 +aX2 , B 3, Xj, O<a<oO, (S5) 

Pa.16 : B2 + a X 2 + bX3, B 3, Xl' 0<0<00, b t- O. 
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Finally, take Na. 9 = 0, Relation (79) implies b3 = 0 and 
we obtain 

(S6) 

Fs-The same procedure as above shows that the 
subalgebra F9 does not yield any nonsplitting subalge­
bras of P. 

F 10- Using the coboundaries (66) we can write the 
generators as 
- -

B3ooB3+a2XZ+a4X4, B4 =B4+bzX 2 + b3X 3 + b4X 4, (87) 

satisfying 

[133,B41=2(b3+oz)Xl+a4X2+b4X3' (88) 

The normalizer of (F jO + N 1D,k) always includes 
G =exp(xB j +yB2)' except for the case N lo•3 ={Xj,X21 
when only expyB2 and Zl are available (see Table III). 
Let us first consider ,vjO.k of (57) with k t- 3. Then we 
can use G = exp(xBj + vB2 ) to simplify (S7). Writing 

cA u~,~. :), a=l alexp(i1», (89) 
~ 0 0 a*-j 

we can transform {B3,134} into 

B.1 = GB3C- l cos2¢ - GB4G-l sin2¢ 

= I Q 1 2B 3 + (a2 cos21> + b3 sin21> - b2 cos2¢ sin2¢)X2 

+ [(a2 - b3) cos2 1> sin2 ¢ - b2 sin22 ¢ 1 X3 

+ 1~12 (a4cos21>-b4 sin2¢)X4, 

B4 = GB3G- j sin2¢ + GB4G-! cos21> 

= I Q 1 2B 4 + [(a2 - b3) cos21> sin2¢ + b2 cos22¢ lX2 

+ (a2 sin22t/l + b3 cos22t/l + b2 sin21> cos21> ]X3 

+ 1;1 2 (a4sin21>+b4 cos2¢)X4• (90) 

Using the coboundaries (66), again, we simplify to 

B~= \ Q 12B3+ (azcos22cp + b3 sin22¢ - b2 cos2ct> sinct»X2 

+ ~ (a4cos2ct> - b4sin2ct»X4, 

B~ = I Q 1
2B4 + ((oz - bs) sin4¢ + b2 cos41>]Xz 

+ (a2 sin22t/l + b3 cos221> + b2 sin21> cOS2ct»X3 

+ 1~12 (04sin2ct>+b4cos2¢)X4' (91) 

Now consider individual cases. The subspace Nt 0, j can 
obviously not give any nonsplitting subalgebras. 

Take Nlo,z={Xj,X2,X31. Thena2oob2=b3=0. We put 

tan2¢=-bi0 4, laI4=(a~+b~)1/2, 

and obtain the subalgebra 

Pto,6: Bs +X4, B4'Xj, X2, Xs. (92) 

Take Nt 0, 3 = {Xl> X 2}. Then B j is not in the normalizer 
and we must put ct> = 0 or rr/2 in (S9). We have a2 = b2 = 0 
and from (S8) also b4 = O. Taking 1> = 0 in (91), we have 

B; '" I a 12B3 + (aJI Q 12)X4' B4 = I a 12B4 + b3X 3• 
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TABLE IV. List of representatives of nonsplitting subalgebras P i,k of P. 

~otation F j dim~j,k N j ,. Generators not in N j ,. NorpCPi •• Comment 

Pi •• 

eG.5 6 Xj,X2.X3 B I +X4.B3,B4 C 4DPG• I 

eG.s 6 Xt>X2,X3 B I -X4,B 3,B4 C 4DP6•1 
eS,7 F. 

4 XI Bj, B 3+X2,B4+X3 C4r:JPG• l 

e6.S 4 XI B I , B3 -X2,B4 -X3 c4 r:Jl\1 
fe.s 3 ° B j +Xj,B3,B4 C 4OPe•3 ""PS,4 

P 6,I0 3 0 BI -Xj, B 3,B4 C 4DPs,3 "" P e,4 

e7,6 5 X I ,X2 B 2+aX3,B 3,B4, a >0 Pl,2 

Pl.'! Fl 4 XI B 2+aX3,B3,B4, a >0 P l •2 

fS.IO 5 X I ,X3.X4 B 2+aXz,B3, a >0 P S•I "" P S,3 

eS.11 4 X I ,X2 B 2+aX3.B3, a >0 P S,2 

fS.12 4 X I ,X3 B 2+aXz,B3, a >0 P a,2 ""P 8,5 

fS.13 4 Xj,X2,+bX3• b7"O B 2+aX2,B3• a >0 P 8•2 "" Pa,e 

eS.14 Fs 3 XI B 2+aX3,B3• a >0 P S• 2 
eS.15 :3 XI B 2+aX2,B3, a >0 PS,2 "" P S,7 

fS.lo 3 XI B 2+aX2+ bX3,B3, a >0, b 7" 0 P S,2 
p s•n 2 0 B 2+aX2,B3, a >0 p s•s ""PS,9 

1\0.6 5 X I ,X2,X;j B3+ X 4,B4 elO,1 

flo. 'I 4 X I ,X2 B 3+X4,B4+bX3, b7"O flo,s 

e10.8 4 Xj,X2 B 3+X4,B4 P IO,6 

flo,s 4 X I ,X2 B3,B4 +X3 C4DPIO,2 

fIO.IO 4 X I .X2 B3,B4 -X3 C4DPIO•2 
elO.1 1 FlO 3 XI B3. B 4 +X2 C4'::JPIO•2 "" P IO,4 
-1:10.12 3 XI B3+X2,B4+aX2+X3, a>O C4DP lo•2 
-1:10.13 3 XI B3-X2,B4+aX2-X3, a>O C4 OPIO,2 

elO,I4 3 XI B3+ X 2,B(+X3 C4 r::JPS,2 

elO,I5 3 XI B3-X2,B4 -Xj C4 D eS.2 

PIO,IS 2 0 B3,B4 +X2 C4 ::J P IO, 11 ""PIO,s 

fll.1! 4 X\oX2.X3 B I +X4 C4DP12•1 "" P Il,2 
fl2,12 4 X I ,X2,X3 B I -X4 C 4[,PI2•1 "" P 12•2 
-1:12.13 4 X I -X4,XZ,X3 B I +a(XI +X4), a>O C4OP12•1 -P - 12,3 

el2,H 4 XI +X4,XZ.X3 B I +b(XI -X4), b7"O C4 .J(P I2• I U P 12• I ·Z j ) '" P I2,4 
e12.15 3 X 2,X3 B I +X4 C1CPI2,1 "" P I2,6 
f12,16 3 X 2,X3 Bj-X4 C4 uPI2,I "" P 12•6 
f12,17 3 X 2,X3 BI +a(XI +X4), a >0 C4 OPI2,I "'P I2•e 
~12,IS 3 X2,X3 B I +b(XI -X4), b7"O C4 u(P I2,I U P I2,I 'ZI) "" P I2,S 

f12,19 FI2 2 XI B I +X4 C 4DP 12• 5 ""PI2•7 
e12,20 2 XI B I -X4 C4 UPI2• 5 "'P12,7 
fl2,21 2 X I -X4 B I +a(XI +X4), a>O C4DPI2,5 "" P 12•8 
e12,~, 2 X I +X4 B I +b(XI -X4), b7"O C4 LJ (P 12, 5U P I2, 5' Zj) "" P j2 ,9 
el2,23 0 B I +X4 C4OP12• 5 "" P I2,I0 
fl2,24 0 B I -X4 C4LPI2,5 ""P12,10 
f12,25 0 B I +a(XI +X4), a>O C4DPIZ• 5 "" P12.10 
P I2,2S 0 B I +b(XI -X4), b7"O C4U(PI2",UPI2,5' Zj) "" P j2,10 

e13,10 4 X I ,X3,X4 B 2+aX2, a>O P I3,I '" P 13,3 
fl3,II :3 X I ,X3 B 2+aX2, a>O P 13•2 :::-:::: Pt3,~) 
f13,12 FI3 

3 X I ,X4 B 2+aX2, a >0 P 13,1 "'P I3,4 
f13.13 2 XI B 2+aX2, a >0 P I3,Z ""P I3•1 
fl3,14 2 X3 B 2+aX2, a >0 P 13,s "" P 13•a 
P 13,15 1 0 B Z+aX2, a>O P 13,6 '" P I3•S 

f14,IO 4 X I ,X2,X3 B3+ X 4 PIO,I "" P 14•2 
fl4,ll 4 X I ,X3,X4 B3+ X 2 C4uPI4,1 ""PI4• 3 
el4,1Z 4 X I ,X3,X4 B3- X 2 C4 UP14,1 "" P 14,3 
el4,D 3 XI,XZ B3+ X 4 PIO,s "" P 14•4 
el4,l4 3 X l ,X3 B3+ X 4 P I4 ,1 "" P j4 •5 
e14,t!i :3 XI,X, B 3+XZ C4 GP!O,! ""PI4 ,5 
~14.1G 3 Xl,X, B3- X 2 £4:..... P 1O,1 "" P 14 •5 
~14.11 3 X I ,X2+ bX3, b;< 0 B3+ X 4 P 14,10 "" P H•S 
-1:14,18 FI4 

3 X\oX2 + bX3, b 7" 0 B3+ X 2 C4U P IO,2 "" P 14,6 
-1:14,19 :3 X I ,X2+bX3, b>'O B3- X 2 £4 UP!0,2 "" P 14•6 
-1:14,20 2 XI B3+ X 4 P I4 • IO ""P14,7 
e14.21 2 XI B3+ X 2 C4 ['P1O,2 "" P H•7 
e14,22 2 XI B3- X 2 £4 UP IO•2 ""P I4•7 
f14.23 2 X 2 B3+ X 4 f14,13 "" PH,S 
-1:14.24 0 B3+ X 4 P I4,I3 "" P 14,9 
e14,25 0 B3+ X 2 C4 ijP14• 4 ""PI4,9 
P l4 ,2S 0 B3- X 2 C 4 [jP 14•4 "" PH,S 
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The presence of Z2 in the normalizer allows us to take 
a4~0, and then set lal 4 :=a4 (a4,c0) or laI 2 :=±b3 

(a4 = 0, ba ~ 0). Taking ¢ = 17/2 in (91) we obtain the same 
result. Thus, we obtain the algebras 

i\o, 7: Ba +X4, B4 + bXa, X1>X2, b,c 0, 
-
Pto,s: Ba +X4, B 4, X1>X2, 

(93) 

i\o, 9: Ba, B4 +Xa, X 1,X2, 

i\O,10: B 3, B4 -X3, X1>X2, 

Taking N10,4 = {X j} we find a4 = b4 = 0 from (88). In (90) 
we choose tan4¢ = (a2 - ba)/b2 and obtain 

'112 ~ B3= Q B3+ 2 X 2, 

B~= laI2B4+[(a2-by+b~]1/2X2 + a2;bax3 . 

If b3 = - a2 we put 1 Q 12 = (4a~ + b~)j/2 and obtain 

PjO,jj: B 3,B4+X2,Xj. (94) 

If ba,c - a2 we obtain two different subalgebras for 
[(a2 - b3)2 + b~l equal or not equal to zero. Thus, 

P jO,j2: B3 +X2 , B 4+aX2+X3, Xj, o <a<<Xl, 

Pjo,ja; B3 -X2, B4 +aX2 -X3, Xl, o <a <<Xl, 
(95) 

P jO,j4: B3 +X2' B4 +X3, Xj, 

PjO,j5 : B3 -X2, B4 - X 3, Xj' 

Finally, take N jo, 5 = O. Then b3 = - a2, a4 = b4 = O. We 
choose tan4¢ = 2a 2/b2 and 1 Q 12 = (4a~ + b~)j/2 in (91) to 
obtain 

(96) 

Fjj-The algebra F jj does not lead to any nonsplitting 
subalgebras, since alll-cocycies for BcoocoscB j 
+ sincB2, 0 < c < 17, c,c 17/2 can be cancelled by the 
c oboundaries. 

F j2-Putting X3 = a2/2, X2 = - al2 and subtracting ilB j 
of (66) from B j +ajXj , we obtain 

(97) 

To this generator we add the invariant subspaces Nj2,k 
of (59) and then simplify using the outer part of 
Nor LGF j2 , i. e., exp(xB2) and Zj, if these also leave 
the considered Nj2,k invariant. The procedure is abso­
lutely straightforward and we drop it here, listing the 
results in Table IV as Pj2,k' 

F 13-Making use of the coboundary ilB2 in (66), we 
write 

The external part of NorLGFj3 is expxBj and Zj. Using 
these to simplify for each Nj3 k of (60), we obtain the 
subalgebras i\3,k of Table IV~ 

Ft4- Using ilB3 of (66), we obtain 

The outer part of the normalizer of F14 is expxBz, 
expyB4, and Z2' Making use of these to simplify for 
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(99) 

each N 14,k of (61), we obtain the subalgebras i\4,k 
listed in Table IV. 

In Table IV we give a list of representatives of all 
Poincare group conjugacy classes of nonsplitting sub­
algebras of P. In the first row we introduce a symbol 
Pj,k for each sub algebra [the tilde indicates a nonsplit­
ting algebra, k enumerates all algebras, splitting and 
nonsplitting, obtained from the s~me F j (column 2)J, 
Column 3 gives the dimension of P J k and columns 4 
and 5 the generators of Pj,k' The n~rmalizer of Pj,k in 
the Poincare group is given in column 6. In the jast 
column we indicate whether the corresponding Pj,k is 
isomorphic to one of the nonsplitting subalgebras. The 
normalizers of column 6 are easy to derive-we just 
present the results. 

4. CONTINUOUS SUBGROUPS OF THE HOMOGENEOUS 
LORENTZ GROUP EXTENDED BY DILATATIONS 

In this section we apply the algorithm of Sec. 2D, to 
classify all the subalgebras of Dffi LSL(2, C), i. e., the 
direct sum of the dilatation algebra and that of the homo· 
geneous Lorentz group. We use the realization of this 
algebra discussed in Sec. 3A. 

Step 1 has already been performed, namely all sub­
algebras F J of LSL (2, C) and their normalizers Nor LGFj 

are given in Table II. Each F j will in itself be a rep­
resentative of a class of subalgebras of DffiLSL(2, C). 
To each F j we may add the generator D. We thus obtain 
all splitting subalgebras of DffiLSL(2, C). 

Now let us find all non splitting subalgebras, i. e. , 
those obtained by a nontrivial Goursat twist. We let F j 

run through all subalgebras of F = LS L (2, C) (see Table 
II) and perform all the steps of the algorithm. Note that 
the semisimple algebras Fj, F3, and F4 cannot provide 
nontrivial twists. Indeed, for B j E FJ we can obtain a 
generator of the type B j + aD with a,c 0 only if 
Bi E [Fj , Fj], i. e., B j is not in the derived algebra 
of F j • 

F 2-The derived algebra is {B 3, B 4} so we can write 
a nonsplit subalgebra as 

(100) 

Since F2 does not have any outer automorphisms we 
cannot simplify (100). Thus, each pair of real numbers 
_ <Xl < a < GO, _ 00 < b < GO, a2 + b2 ,c 0 determines a different 
conjugacy class of nonsplit subalgebras. 

F5-The derived algebra is {B 3, B 4} and we obtain 

coscBj+sincB2+aD,Ba,B4; a,cO, O<C<17, c,c17/2. 

(101) 

The outer part of the normalizer of F5 leaves a invari­
ant so (101) cannot be simplified. 

Fs-Similar1y, as in F5 we obtain 

B j +aD,Ba,B4, a,cO. 

F7-As in case F5 and Fs we obtain 

B2 +aD,Ba,B4, a,cO. 
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TABLE V. Continuous subgroups of the homogeneous similitude group D0 SL(Z, C). 

Notation F J dim~J,k Twisted generators Nontwisted generators Comment on subgroup 

D"k 

D1,I FI 7 D,Bj, ••• ,Bs D0SL(2,C) 

D1,2 6 B I ,. •• ,Bs expFI~ SL(2,C) 

D 2,j 5 D,B j ,B2 .BJ ,B4 D0B 

4 expF2=B D Z,2 F z Bj,B z,B3,B4 
D Z,3 4 B j +aD,B2+bD, a2 +bz ;< 0 Bs,B4 ""B 

D3,1 F3 4 D ,BbBS - B5.B4 + B6 D0SU(2) 

D 3,z 3 Bj,B 3- B S,B4+B 6 expF3""SU(2) 

D4,1 F4 4 D,B1,B3+B s,B4 -Bs D0SUO,I) 

D4,2 3 Bj,B 3+ B 5,B4 -B6 expF4""SU(1,1) 

DS,! 4 D,Bc ,B3,B4 D0S(3) 

Do,2 Fs 3 B e,B3.B4 expFs"" S(3) 

Ds,s 3 Bc+aD, a>'O B s,B4 S(3) 

D6,I 4 D,B1,B3,B4 D0E(Z) 

D 6,2 F6 3 B 1,B3,B4 expF6"'E(Z) 

DS,3 3 B 1+aD, a;<O Bs,B. E(2) 

D 7,1 4 D,B 2 ,B s,B4 D0(D' OTH) 

D 7,2 F7 3 B 2 ,Bs,B4 expF 7'" W' 0 T H) 

D 7,3 3 Bz+aD, a;< 0 Bs,B. (D'OTH) 

D 8,I 3 D,B2 ,B3 D0C(1) 

D 8,2 Fa Z Bz,Bs expFa'" C(l) 

Da,3 2 Bz+aD,a>'O Bs ""CO) 

D s,l 3 D,B1,B2 D0Te 
Ds,z Fs 2 Bj,B2 expF9'" Te 
D s,3 Z Bl +a coscD,B2 +a sincD, 0 "'T 

a>O,O""c""7r 

D 10,I 3 D,Bs,B4 D0TH 

D 1O,2 FlO 
2 B3,B4 expFlo "" TH 

D 1O,3 Z B.+D Bs "'-TH 

D IO,4 2 B3+D,B4+bD, _00 <b <00 0 "'TH 

D ll,l 2 
D l1,2 FI1 1 
D l1,3 1 Bc+aD, a >0 

D 12,1 2 
D 12,2 F12 1 
D 12• S 1 BI +aD, a >0 

D13;1 2 
D i3•2 F IS 1 
DI3,3 1 B 2+aD, a >0 

DI4,I 2 
DU.2 Fu 1 
D U,3 1 B3+ D 

D iS,1 F 1S 1 

F8-The derived algebra is B s, so we have 

B 2 +aD,B 3, a*O, 

and this cannot be further simplified. 

Fs-This algebra is Abelian, so we can write 

B 1 +aD,B 2 +bD, a2 +b2 *O. 

The element Zj in the normalizer will change the sign 
of a and b, so one of them can be constrained to be non­
negative. Thus we can put 

BI+acoscD,B2 +asincD, a>O, O""C<7T. 

Flo-The algebra is Abelian, so we have 

B 3 +aD,B4 +bD, a2 +b2 *o. 
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(104) 

D,Be D0S(1) 

Be expF 11 "" S( 1) 
0 '" S(1) 

D,B I D00(Z) 
B j expFl2 "" 0(2) 
0 

D,B2 D00(1,I) 
B2 expF 13"" 0(1,1) 
0 0(1,1) 

D,B3 D0E(1) 
B3 expF 14 "'- E( 1) 
0 E(}) 

D D 

This algebra can however be simplified, using the outer 
part of NorLGFjG , i. e., exp(xB1 +yB2). Indeed, if a* 0 
we can transform this algebra into 

B 3 + D, B 4 + bD, - co < b < ao. (105) 

If a = 0 we obtain 

B s,B4 +D. (l06) 

F l1 -We obtain 

The presence of Zj in the normalizer of Fl1 makes it 
possible to take a> 0. 
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F 12-As in Fu we have 

B1 +aD, a> O. 

F 13-As in Fu and F12 we have 

B 2 +aD, a>O. 

(108) 

(109) 

F 14-Making use of the transformation expxB2 in the 
normalizer of F 14 , we obtain one nonsplitting subalgebra 

(110) 

All subalgebras of the "homogeneous similitude al­
gebra" D(fJLSL(2, C) are summarized in Table V. A 
notation D i,k for them is introduced in the first column, 
the second column indicates the subalgebra F j they were 
obtained from and the third column gives their dimen­
sion over the field of real numbers. The generators of 
DJ,k are given in the fourth and fifth columns. In the 
last column we show which groups the corresponding 
Lie subgroups are isomorphic to. The notations are 
the same as in Table II. In particular, Be = COSCB1 

+sincB2 , O<C<7T, c*7T/2. 

5. CONCLUSIONS 

The main results of this paper are given below. 

1. The general method of subgroup classification 
presented in Sec. 2, in particular, the algorithms of 
Secs. 2B-D. 

2. The complete classification of subalgebras of the 
Poincare algebra, summarized in Tables II, III, and IV 
of Sec. 3. Some properties of the subalgebras are also 
listed in the tables. 

3. The complete classification of subalgebras of the 
"homogeneous similitude algebra" D(fJLSL(2, C), sum­
marized in Table V of Sec. 4" 

While finishing this paper we became aware of two 
preprints on the subgroups of the Poincare group. 14,15 

The authors use different methods than we do, but the 
results should be equivalent. We have actually made a 
comparison of the results and found some differences. 
Since neither of these papers has been published (as 
far as we know), we do not find it appropriate to publish 
a comparison. Obviously, we assert that, in cases when 
a contradiction occurs, our results are correct. 

Our future plans were discussed in the Introduction. 
They involve a similar classification of subgroups of 
other relevant groups, a study of the properties of the 
subgroups of the Poincare and similitude groups and 
their physical applications. 
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subalgebras of the Poincare algebra and ours. The only 
differences that occur concern two- and three-dimen­
sional nonsplitting sub algebras (nonsymmorphic 
algebras in their terminology), obtained from the sub­
algebra FlO={B3,B4}={L2+Ku Ll -K2} of the Lorentz 
group Lie algebra (generators Ax and A~ in their nota­
tion). We have only one such two-dimensional algebra 
FIO,IS' they have four (one of which depends on a con­
tinuous parameter) in their Table vrn.1. We have five 
such classes of three-dimensional algebras P 1 

""" 10, 1 

-PlO,15; they have many more in their Table IX.2. The 
arguments that we give in our article between formulas 
(87) and (96) inclusively, prove that we are right, i. e. , 
that the additional subalgebras of Ref. 15 are conjugate 
to others in their (and our) tables. Let uS also note that 
in our article, as in Ref. 15, conjugacy is considered 
with respect to the proper orthochronous Poincare 
group (without parity and/or time reversal). 
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All subalgebras of the similitude algebra (the algebra of the Poincare group extended by dilatations) are 
classified into conjugacy classes under transformations of the similitude group. Use is made of the classification of 
all subalgebras of the Poincare algebra, carried out in a previous article. The results are presented in tables 
listing representatives of each class and their basic properties. 

1. INTRODUCTION 

This article is the second in a series of papers 
devoted to a study of the subgroup structure of Lie 
groups of fundamental importance in physics. In the 
first article, 1 further to be referred to as I, we pre­
sented a general method for classifying Lie subalgebras 
of Lie algebras with nontrivial ideals. The method, 
making use of cohomology theory, was then applied to 
classify all continuous subgroups of the Poincare 
group (inhomogeneous Lorentz group) and of the homo­
geneous similitude group, i. e., the Lorentz group ex­
tended by dilatations. 

In this paper we make use of the previous results to 
provide a classification of all continuous subgroups of 
the similitude group, i. e., the Poincare group extended 
by dilatations. 

Let us mention in passing that related problems were 
treated in two other previous articles. In one of them2 

we found all maximal solvable subgroups of the 
pseudounitary groups SU(p, q) and all continuous sub­
groups of SU(2, 1). In the other3 we discussed all 
maximal solvable subgroups of the pseudo orthogonal 
groups SO(P, q). 

The similitude group se, also called the Weyl 
group, 4 is of considerable interest in elementary parti­
cle physics, the general theory of relativity and other 
fields of physics. Its importance in high energy physics 
is largely related to the phenomenon of scaling in deep 
inelastic scattering and thus to short distance behavior 
in elementary particle theory. For information on 
various approaches to scale invariance we refer to re­
cent reviews and some of the original articles (some of 
them also treat the more general conformal group of 
space-time5

-
10

). The similitude group also underlies 
Weyl's unified field theory4 and can figure as a gauge 
group for field theories involving gravitation. 11,12 

The similitude group is an ll-parameter Lie group 
containing the Poincare group as an invariant sub­
group. In itself it is the largest nontrivial continuous 
subgroup of the conformal group of space-time. 

The motivation for our interest in subgroups of Lie 
groups was given, e. g., in our previous articles. 1-3 

Let us just mention several points. In a situation where 

the similitude group is an invariance group of a physi­
cal system a classification of its subgroups provides 
a classification of possible symmetry breaking inter­
actions (or boundary conditions). If we are interested 
in the representation theory of the group se, then each 
chain of subgroups will provide us with a different 
basis for the representations (at least those subgroups 
the algebras of which have enveloping algebras with non­
trivial centers). Thus, if we wish to use the represen­
tation theory of se to provide expansions of physical 
quantities like scattering amplitudes, we will find that 
different chains of subgroups provide us with different 
expansions having different possible applications. (This 
problem for the Lorentz and Galilei groups is treated 
in detail in the review. 13) Different subgroups of the 
similitude group may be of special relevance for the 
construction of elementary particle dynamics in certain 
frames of reference (see the discussion of the infinite 
momentum frame and its relation to an 8-parameter 
subgroup of the Poincare groupI4). 

In Sec. 2 of this article we review some known re­
sults on the similitude group in order to establish nota­
tion (which is consistent with that used in I) and then 
discuss the method used to obtain all classes of sub­
algebras of the similitude algebra S (up to conjugation 
under the similitude group itself). In Sec. 3 we obtain 
our main results, i. e., a list of representatives of 
each conjugacy class of subalgebras of S, summarized 
in Tables. Section 4 is devoted to the conclusions and 
future outlook. 

2. METHOD FOR CLASSIFYING THE SUBALGEBRAS 
OF THE SIMILITUDE ALGEBRA 
A. The similitude group and its algebra 

The Similitude group se can be defined as the group 
of Lorentz transformations, translations and dilata­
tions of Minkowski space, i. e., the transformations 

x~=hAILvXv+a,", )J.,v=O,1,2,3, (1) 

where h is a real positive number, A!LV are matrix ele­
ments of an 0(3,1) matrix and aIL are real numbers. 
The vectors x'" {xo, xl> x2, X3} are real vectors in the 
four-dimensional Minkowski space with metric ds2 

= dx~ - dXI - dx~ - dx~. 
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We shall, however, make use of a different represen­
tation of 5G, remembering that 5G is a subgroup of the 
conformal group of space-time, i. e., the group of all 
transformations of x"' leaving the element ds 2 form­
invariant: ds 2 

- hds '2 • This group is isomorphic to 
5U(2,2) (for reviews see, e. g., Refs. 5-7 and 10). We 
shall use a somewhat nonstandard realization of 5U(2, 2), 
already introduced earlier, 1-3 namely the group of 
transformations G of a four-dimensional complex vec­
tor space satisfying 

GJG+=J, 

where 

JO~ ~ i ~) 
(the cross on G implies Hermitian conjugation). Ele­
ments X of the Lie algebra of 5U(2, 2) in this realiza­
tion satisfy 

(2) 

(3) 

(4) 

and the general element of the algebra can be written as 

X = (~~ iEb ~aE*) * * ~ ic _ 5* _ (3* , Q - a + 5 - 5 = 0, 

id - ~* - y* - 0* 

where Greek letters denote complex numbers, italic 
letters real ones, and the stars indicate complex con­
jugation. If we now consider the subalgebra of (5) 
leaving a two-dimensional vector space 

invariant, we obtain an l1-parameter subalgebra 

It is easy to verify that this algebra is isomorphic to 
that of the similitude algebra, i. e., its structure is 

5=DrJ(L5L(2, e)D LT4), 

where ~ indicates a semidirect sum, D generates 
dilatations, LT4 four-dimensional translations, and 
L5L(2, e) is the algebra of the special linear group 
5L(2, e). 

For our purposes a convenient basis for the simili­
tude algebra 5 is provided by the following matrices. 

Dilatations: 

D=(~ ~ _~ ~). 
o 0 0-1 

The homoKeneous Lorentz transformations 
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(5) 

(7) 

(8) 

(L5L(2, e)): 

B'(l 
0 

o 0) (' 0 0 

~} -i :i ~ , B2 = ~ -1 0 
0 0 1 
0 o l 0 0 0 -1 

B'O(~ 
1 0 

-r) B,c (~ 
i 0 

!) 0 0 0 0 
0 0 0 0 

(9) 

0 0 0 0 

Be- ( 

0 0 

~} 1'0 - (~ 
0 0 

~) 0 0 0 0 
o 0 0 0 0 0 

0 0-1 0 i 

T1'Ullslafioi/8 : 

X'O(~ 
0 0 

;) X - (: 

0 1 

-J 0 0 0 0 
0 0 o ' 2 0 0 0 o ' 
0 0 o 0 0 0 0 

(10) 

X,- (! 0 

") (' 0 0 

~) 0 0 i 0 0 
0 0 ~ , X 4 

= ~ 0 0 
0 0 0 0 

The dilatations satisfy the commutation relations 

[D,Bil=O, i=1, ... ,6; [D,Xal=2Xa, (/"1, ... ,4, 

and the translations commute: 

[Xa,Xbl=O, a,I>=I, ... ,4. 

(11) 

(12) 

All other commutation relations are given in Table I. 

The usual physical notation is different and less con­
venient for our purposes. Throughout the article we 
shall use the generators Bi and Xa' Their relation to 
the usual generators of rotations L i , proper Lorentz 
transformations (boosts) Ki (i = 1, 2, 3) and translations 
P" (J..l=0,1,2,3) is 

B1 = 2L3, B2 = - 2K3, B3 = - L2 -1\), 

The commutation relations for the usual physical 
generators are 

(13) 

(14) 

[L;, Lk 1 = Eik1L z , [Ki , Kk 1 = - E;kZ L /, [L i , J{k 1= EikZJ{ z' 

[L;,pol=O, [L;,Pkl=E;kzPz, (15) 

[K;, pol = Pi' [K;, Pk 1 = 1)ik PO, 

(i, k, l) = (1, 2, 3). 

An element of the similitude group itself can in the 
considered realization be written as G = exp 5, where 5 
is given by (6), i. e. , 

G=(G l1 G12 ) (16) o G22 

and condition (2) implies that the 2 x2 matrices G ik 
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TABLE I Commutation relations for the Poincare algebra 

B j B2 B3 B4 B5 

B j 0 0 2B4 - 2B 3 - 2B 6 
B2 0 0 2B3 2B4 -2B5 
B3 -2B4 - 2B 3 0 
B4 2B3 - 2B4 0 
B5 2Bs 2B5 -B2 
Bs - 2B 5 2Bs -B j 

satisfy 

G22J1Gil =Jj, G12J1Gil + GllJ1G12 = 0, 

with 

0 B2 
0 B j 

-B j 0 

B2 0 

(17) 

Thus an element of the similitude group can be written 
as 

(~ ~ ~ ~ ~ il=Q15-{3y=A*, (18) g = 0 0 Q* / il - {3* / il ' 

o 0 - y* / il 15*/ il 

with G12 satisfying 

Q* ~ + Q~* + {3*E + {3E* = 0, 

y*~ + 15*E+ {311* + QV* =0, 

y*v+yv* + 15*11 + 1511* = O. 

B. Classification of subalgebras of the similitude 
algebra 

(19) 

In paper I we have provided a list of representatives 
of all conjugacy classes of subalgebras of the Poincare 
group Lie algebra. The results were summarized in 
three tables. The first of these (Table II of I) presents 
all subalgebras of the algebra of SL(2, e) and hence all 
continuous subgroups of the homogeneous Lorentz group 
(these were known previously15,16). Table III of I pre­
sents all subalgebras of the Poincare algebra P that 
split over their intersection with the translations LT4 
(i. e., the bases for these algebras can be written in a 
form containing elements of the type B j and Xc only). 
Table N of I lists representatives of all subalgebras of 
P that do not split over their intersections with L T 4 

(i. e., their bases will always contain elements of the 
type B i + C iaX. whe re Cia are real constants that are not 
all equal to zero and cannot be transformed into zero by 
an inner automorphism of the Poincare group). 

In this paper we take the results of I and build them 
up into a list of all subalgebras of the similitude algebra 
(up to conjugation under the similitude group). We use 
a related notation for the subalgebras of S, namely, 
Sj,k where j runs from 1 to 15 and indicates the sub­
algebra F j of LSL(2, e) that has been extended to Sj,k 
by translations and dilatations. The label k Simply 
distinguishes different subalgebras obtained from the 
same F j • 

The procedure consists of several steps: 

1. Find representatives of all conjugacy classes of 
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B6 Xj X 2 X3 X 4 

2B4 0 2X3 - 2X2 0 

- 2B6 2Xj 0 0 - 2X4 
B j 0 0 2Xj X3 

-B2 0 -2Xj 0 -X2 
0 X3 0 2X4 0 
0 X 2 2X4 0 0 

subalgebras of the Poincare algebra, that are not 
equivalent under the similitude group. To do this we 
must merely remember that the dilatation generator D 
commutes with all generators B j of SL(2, e), but 
multiplies translations by a constant [see formula (11)]. 
The transformation exptD in the group SG will thus 
multiply all generators Xc by a constant, leaving B j 

invariant. The matrix D itself is not of form (18), but 
we shall include it in our group of automorphisms, to 
simplify subalgebras of S. It corresponds to total inver­
sion (parity times time-reversal) and is contained in the 
similitude group, but not in the component connected to 
identity. It follows that the extension of the Poincare 
group by dilatations leads to the coalescence of certain 
nonsplitting subalgebras of the Poincare algebra. In­
deed, we have, e. g. , 

D(B1 -X1)D-l =B1 +Xj, 

eXD (B2 +x2X 3)e-XD = B2 +X3. 

(20) 

(21) 

Thus the algebras B 1 ± X j, while inequivalent under the 
Poincare group, are conjugated under the similitude 
group. Similarly, the continuous set of Poincare sub­
algebras B2 +x2X3' coalesces into one subalgebra 
B2 +X3• 

In Table II of the following section we list conjugacy 
classes of subalgebras of P (and of S) that are inequiva­
lent with respect to the similitude group. 

2. Subalgebras of the similitude algebra containing D 
as a generator. Any subalgebra of this type has the 
form 

D + Pj,k' (22) 

where Pi,k is a subalgebra of the Poincare algebra. It 
follows from the above discussion that we thus obtain 
subalgebras of S if and only if Pj,k is a splitting sub­
algebra of P (Table III of I) and that each splitting sub­
algebra of P provides a different subalgebra (22) of s. 

3. Subalgebras of S not contained in the POincare 
algebra and not containing any conjugate of D under SG, 
such that the intersection with the Poincare algebra 
splits over the translations. ChOOSing one generator of 
such an algebra as 

D+L,a",B",+L,x.xc, (1-""11-""6,I-""a-",,4), (23) 

there has to be at least one a", or Xa nonzero even after 
SG-conjugation. The other generators {B""X.} form one 
of the splitting subalgebras Pi,k of the Poincare algebra 
listed in Table III of I. To find all these subalgebras of 
S we consider each splitting subalgebra Pi,k of P, add 
to it a generator (23) with a", and x. so chosen that we 
obtain an algebra. The element (23) is then simplified 
using the normalizer of Pj,k in the Poincare group and 
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possibly further transformations involving D and nor­
malizing (leaving invariant) the subalgebra PJ,k' 

4. Subalgebras of S not contained in the Poincare alge­
bra and not containing any conjugate of D under SG, such 
that the intersection with the Poincare algebra does not 
split over the translations. We choose one generator of 
each of these subalgebras in the form (23), the others 
{Ba + L,XakXk , Xj} form one of the nonsplitting subalgebras 
Pj,k of P listed in Table N of I. To find all such sub­
algebras of S we consider each nonsplitting subalgebra 
Pj,k of P separately and choose aIL and xa in (23) i~ the 
most general manner that forms an algebra with Pj,k • 
The element (23) is then simplified, using the normaliz­
er of Pj,k in the Poincar~ group, supple~ented by ele­
ments involving D and ~so normalizing Pj,k (i.e., we 
use the normalizer of Pj,k in the similitude group). 
This method provides a list of all subalgebras Sj,k of 5. 

Several comments are in order. 

1. The subalgebras of 5 obtained by applying the above 
steps 3 and 4 correspond to a generalization of the 
"Goursat twist,,17-19 method for obtaining subgroups of a 
group that is in itself the direct product of two sub­
groups [e. g., 0(4) as O(3)xO(3)]. 

2. We could have applied directly the general method 
developed in I for classifying subalgebras of a given 
algebra. The Poincare algebra would then have served 
as a nonabelian invariant subalgebra whose subalgebras 
are known. In this particular case we found the method 
described above to be more convenient. 

3. COMPLETE LIST OF CONJUGACY CLASSES OF 
SUBALGEBRAS OF THE SIMILITUDE ALGEBRA 
A. Subalgebras of the Poincare algebra P as subalgebras 
of the similitude algebra 

All subalgebras Pj,k listed in Table III of I split over 
their intersection with the translations. These sub­
algebras are not affected by dilations. Hence Table II 
of I also provides a list of representatives of conjugacy 
classes of subalgebras of the similitude algebra Sand 
no two entries are conjugate to each other under the 
similitude group. We shall not reproduce the table here 
but only refer to I. For the purposes of this article all 
subalgebras Pj,k of Table III of I will be denoted 5 j ,k 

(same value of j and k). 

Table N of I, listing all nonsplitting subalgebras 
Pj,k of P is modified when conjugacy is considered 
under the similitude group. In view of formulas of the 
type (20) and (21) many classes coalesce. Thus Table 
N of part I is replaced by the following Table II. 

The first column in Table II introduces a notation for 
the subalgebra, the second tells us from which sub­
algebra of L5L(2, C) it was obtained, the third lists the 
subalgebras Pj,k of P that coalesce to form the same 
subalgebra of 5 up to 5G conjugacy. The fourth column 
gives the generators of 5 j ,k and the last one its dimen­
sion (over the real numbers). 
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B. Subalgebras of the similitude algebra containing D as 
a generator 

A complete list of such algebras is obtained by taking 
each splitting subalgebra of the Poincare group and 
adding D to the basis. Thus, we take all algebras listed 
in Table III of I and add D to them. No other subalgebras 
of 5, containing D as a basis element exist. Again, we 
shall not reproduce this table and refer the reader to 
I. We thus obtain subalgebras which we denote 

51,3,51,4; 52,5, -, S2,8; 53,5, -, 53,8; S4,5, -, 54,8; 

55,5- 55,8; 56,8- S6,11; S7,8- S 7,12; 58,18- 58,27; 

TABLE II. List of subalgebras Sj,k that are nonsplitting sub­
algebras of the Poincare algebra and that are nonconjugate un­
der the similitude group. 

Notation F j Pj,k Generators of Sj,k dimR5 j,k 

Ai "" S6,5 Fs .f6,S,.fS,6 Bl +X4,B3,B4,Xj,X2,X3 6 

S6, S f.s,h-ES,8 Bj, B 3+ X 2,B4 +X3,Xl 4 

~ __ ~~9,P6.10 BI+Xjo B 3,B4 :J 

S7,6 F7 e7,6 B2 +X3,B3,B4,Xl,X2 5 

S7,7 P 11 B2+X3,B3,B4,Xl 4 

S8,I0 F8 e8,10 B2+X2,B3,Xl,X3,X4 5 

S8,11 eS,11 B2+X3,B3,XjoX2 4 

S8,I2 eS,12 B2+X2,B3,Xl,X3 4 

S8,lo eS,13 B2+X2,B3,Xl,X2+ bX3,b '" 0 4 

S8,H eS,I4 B 2+X3,B3,XI 3 

S8,1, eS,15 B 2+X2,B3,XI 3 

SS,16 eS,16 B2+X2+bX3,B3,XI,b", 0 3 

SI'>, 11 ~1 B 2+X2,B3 2 

S10,6 FlO flO,s B3 +X4,B4,XI,X2,X3 5 

S10,7 e10,1 
B 3+X4,B4 +X3,Xl ,X2 4 

S10,S elo,S ~ B3+X4,B4,XI,X2 4 

S10,9 el0,9,P1O,10 B3,B4 +X3,Xl ,X2 4 

S10,10 elo,il ~ B3,B4 + X 2 ,XI :3 

SlO,l1 fl0,12,etO,t3 B 3+X2,B4 +bX2+X3,Xjob '" 0 3 

S10,12 el0,14,P l0,15 B3+X2,B4+X3,Xt 3 

S10,n P IO,IS B3,B4+X2 2 

S12, II 1'"12 ~;~:~~;2 BI+X4,Xt,X2,X3 4 

SI2,I2 el2,13 B j +XI +X4,XI -X4,X2,X3 4 

S12,I3 el2,14 ~ B1+Xl-X4,Xl+X4,X2,X3 4 

SI2,14 eI2,15,Pt2,16 B I +X4,X2,X3 :l 

SI2,15 el2,11 Bl+XI+X4,X2,X3 3 

SI2,16 el2,18 ~ Bl+Xt-X4,X2,X3 :l 

5 12,17 el2,19,Pt2,20 BI +X4,Xl 2 

S12,18 et2,21 BI+XI+X4,XI-X4 2 

SI2,19 el2,22 ~ B t +XI -X4,XI +X4 2 

S12,20 fl2,23,P t2,24 B1 +X4 1 

S12,21 et2,25 B t +Xt +X4 1 

S12,22 P 12,26 BI +Xl -X4 1 

S13,10 Fn e13,I0 B2 +X2,XI ,X3,X4 4 

S13,Il et3,l1 B 2+X2,XjoX3 3 

SI3,12 fl3,12 B 2+X2,XjoX4 3 

SI3,13 el3,13 B 2+X2,XI 2 

5 1:!,14 et3,t4 B 2+X2,X3 2 

SI3,15 P 13,15 B 2+X2 

S14,tO Ft4 el4,I0 ~ B3+X4,Xl,X2,X3 4 

SI4,l1 e14,l1,P14,12 B3+X2,XI,X3,X4 4 

SI4,12 el4,13 B 3+X4,Xl ,X2 :J 

S14,13 fl4,14 ~ B 3+X4,Xl ,X3 3 

5 14,14 et4,15,P14,16 B 3+X2,XI ,X3 3 

S14,I5 et4,t1 ~ B 3+X4,XjoX2+bX3,b'" 0 3 

S14,16 e14, 18,P14, 19 B3 +Xz ,XI ,X2 + bX3, b '" 0 3 

S14,17 et4,20 ~ B 3+X4,X1 2 

5 14,18 et4,21,P14,22 B 3+X2,Xl 2 

5 14,19 e14,23 B 3+X4,X2 2 

5 14,20 -E14,24 ~ B3+ X 4 1 

S14,21 P 14,25,P14,26 B3+ X 2 1 
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S9, 7 - S9,12; S10, 14 - S10,18; S11, 7 - Sl1,12; 

S12,23 - S12, 32; S13, 16 - S13,24; S14,22 - S14,30; S15, 12 - SIS,22' 

Note that algebra S1S,22 is generated by D alone. 
(24) 

form an algebra. However, the transformation 
exp[ - tx(XI + X 4)] is in the normalizer of P3,4 and we 
have 

(26) 

C. Subalgebras of S that are not contained in the 
Poincare algebra do not contain any SG-conjugate 
of D and are such that the intersection with the 
Poincare algebra splits over the translations 

exp[ - h(X1 +X4)][D +X (Xl +X4)] exp[h(XI +X4)] = D, 

so that the algebra (26) is conjugate to one of the split­
ting subalgebras of (24) (and will hence not figure in 
Table III). 

We consider each subalgebra P J k of Table In of I, 
add the generator D =D+a"B" +x;a to it and find a" and 
xa in such a manner as to obtain an algebra. We put 
a,,=xa=O for those generators B" andXa , that are con­
tained in PJ,k' This algebra must then be simplified 
using transformations contained in NorsGPj,k (normal­
izer of Pj,k in the similitude group). 

As a further example, consider the algebras Pl0,k of 
Table In of paper I, derived from FlO' The generators 
of the homogene<!.us part of PI 0, k (i. e., of FlO) are B3 
and B 4. Putting D = D + alB 1 + a2B2 + asBs + asBs + x~a and 
commuting with B3 and B 4, we find as = as = O. Algebra 
P l0,1 is thus extended to 

In view of the fact that transformations of D by trans­
lations produce all expressions 

D =D + L;ax~a (25) 

D =D + aB 1 + bB2• B 3• B4.Xj, X 2,X3• X 4, 

- <xo < a < 00, - <xo < b < 00, a2 + b2 *- O. 

The algebra Pl0,2, on the other hand, leads to 

i5 =D +aB I + bB2 +xX4, B 3• B 4.Xl ,X2, X 3. 

it follows that for no SG-conjugate of fHD can we have 
a" = 0, /1 = 1, ... ,6. 

We consider several examples to illustrate our meth­
od and then list all subalgebras of this type in Table ill. 

The algebras P l,k and P2,k (derived from Fl and F2) 
of Table ill in I cannot be extended in this way (i. e. , 

The tranSformation expyX4 leaves P 10 2 invariant but 
takes X into zero in D, if we put y =xh(l- b) for b*- 1. 
For b = 1, on the other hand, the transformation expyD 
with eY =x-l /2 for x> 0 or D expyD with eY = (- xrl /2 for 
x < 0 will take x into 1. We thus obtain from P l0,2 two 
types of subalgebras of S: 

a" = xa = 0). Consider those derived from F 3• The gen­
erators of the homogeneous part of P 3,J are Bj, B3 - B 5, 

B4 +B6' Hence we could have 

i5 = D + aB2 + b(B3 +Bs) + c(B4 - Bs) +x~a' and 

D+aBj +bBz,B3,B4,Xj,X2,X3, (27) 

- <xo < a < <xo, - 00 < b < <xo, a2 + b2 *- 0, 

Commuting i5 with B l , we obtain b = c = 0, commuting 
with B3 - Bs, we find a = O. Now consider, e. g., P3 4, 
not containing any translations. Commuting i5 with 'Bj, 
B3 - Bs and B4 +Bs, we find X2 =X3 = 0, Xl =X4, i. e. , 

We proceed quite analogously with all subalgebras of 
Table ill of I. The results are summarized in Table III. 

TABLE III. Subalgebras of 5 that are not contained in P, do not contain any 5G-conjugate of D and are such that their intersection 
with P splits over the translations. 

~ 

Notations F j PJ,k D Generators of P j,k dim~J.k 

5;.s F; P S•1 D+aB 2, a'" 0 coscB I + sincB2,B3,B4,X! ,X2,XS,X4, 0 <c <IT, c '" ~/2 8 

5;,10 P S,2 D+aBz. a'" 0 coscBI +sincB2.Bs.B4,XI,X2,XS, o < c < IT, C '" IT /2 7 

5;,11 Ps,s D+aB2, a"'O coscBl +sincB2.B3,B4.XI , o < c < IT. C '" IT /2 5 
5 12 P,,4 D+aB2 • a'" 0 coscBI +sincBz.B3,B4• O<c<rr. c"'rr/2 4 

5 6,12 F6 P 6,1 D+aB2, a'" 0 Bl,B3,B4,Xl,X2,X3, 8 

56,13 P 6,2 D+aB2, a'" 0 Bjo B 3,B4,XI' Xi ,X3, 7 

5 6,14 P 6,2 D+Bz +X4 B I , Bs ,B4, XI' X2, Xs 7 
5 6,1; P 6,3 D+aB2, a"'O B I , B S,B4t X 4 5 

56,16 P 6,4 D+aB2, a'" 0 BjoBs ,B4 4 

56 17 P 64 D-Bz'+X, B ,B ,B4 4 

57,IS F7 P7,1 D+aBI • a'" ° B 2,Bs, B4,Xj,X2,X3,X4 8 

57,14 P 7,2 D+aBjo a'" 0 B2 ,B3,B4,X1t Xi ,Xs 7 

57, IS P7,4 D+aiJj • a'" 0 B2 , B 3, B4, XI 5 
57 16 P 7 s D+aB,a"'O Bz B, B 4 

5 10,19 FlO P IO,I D+aBj +bB2, tr +~ >' 0 Bs,B4,Xl,X2,Xs,X4 '( 

5 10,20 P lO,2 D+aBj +bBz, a2 +b2 '" 0 B3,B4.XI,X2,XS. 6 

5 10,21 P lO,2 D+aB I +B 2+X4,-"" <a <"" B3,B4,XI,X2,X3 6 

5 10,22 P 10,s D+aBz, a>' ° Bs.B4tXI,X2 5 
5 10,23 P jO,4 D+aBI +bBz. a2 +b2 >' 0 Bs.B4,Xj 4 
5 10,24 P jO,; D+aB\ +bBz. a2 +b2 '" 0 B3,B4 3 
5 10,25 PIO,s D+aB I -B2+Xlo -oo <a <00 B 3,B4 3 
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TABLE III (Continued) 

S11,13 F1! PI1,I D+aB l , a >0 coscBl + sincB2,X1oX2,X3,X4, 0<C<rr,c"'rr/2 6 
8 11 ,1'1 P l1,2 D+aB l , a'" 0 coscBl + sinc~. XI' Xi. X 3, o < c < rr. c '" IT /2 5 
Sl1,15 P l1,3 D+aB l , a >0 coscBl + sincB2,X2,X3, 0<C<rr,c"'rr/2 4 

S11,16 Pl1,4 D+aBIo a>O coscBl + sincB2• XI' X4• o < c < IT. C '" IT /2 4 
S11,17 P 11,5 D+aBI• a'" 0 coscBl +sinc~,Xl' o < c < IT. C '" IT /2 3 
S lR P .6 D+aBlo a>O coscB +sincB;. o < c < IT. C '" rr /2 2 
S12,33 F12 P 12,1 D+aB2• a>O Bl,Xl.X2.X3,X4 6 
S12,34 P 12,2 D+aB2, a'" 0 B l ,Xl ,X2>X3 5 
S12,35 P 12,2 D+B2+X4 B l ,Xl ,X2,X3 5 
S12,36 P I2,5 D+aB 2,a >0 B l ,Xl ,X4 4 
S12,31 P 12,6 D+aB2, a>O Bl ,X2,X3 4 
S12,o8 P 12,6 D+B2+X4 Bl ,Xi,X3 4 
S12,3:1 P 12,7 D+aB 2, a'" 0 Bl ,Xl 3 
S12,40 P 12,7 D+B2+X4 Bl ,Xl 3 
S12,41 P 12,10 D +aB 2, a >0 Bl 2 
S12.42 P I2.jO D+B2+X4 B 2 
S13,25 ·1"13 1:' 13,1 V+aBIo a >0 B2,Xl,X2,X3,X4 6 
S13,26 P 13,2 D+aB l , a"'O B 2,Xl ,X2,X3 5 
S13,21 P 13,4 D+aBIo a> 0 B2.Xl ,X4 4 
S13,28 P 13,6 D+aBl , a> 0 B2.X2,X3 4 
S13,2:1 P 13,7 D+aBl , a'" 0 B2,Xl 3 
S13 30 P 139 D+aBIo a>O B2 2 

S14,31 F14 1:' 14,1 v+aJ:J2, a"'U B3.Xl,-"2.X3,X4 6 

S14,32 P 14,1 D+B4 B3,Xl ,Xi.X3,X4 6 

S14,33 P 14,2 D+aB z, a'" 0 B3,Xj,X2,X3 5 
S14,34 P 14,2 D+B2+X4 B3,Xl ,Xi,X3 5 

S14,35 P 14,2 D+B4 B3,Xl ,X2,X3 5 
S14,36 P 14,3 D+aB2,a"' 0 B3,Xl ,X3,X4 5 

SI4,3': P 14,4 D+aHz', a'" 0 B 3,Xl ,X2 4 
S P 14,4 D+B4 B3,Xj,XZ 4 14,38 

S 14, 39 P 14,5 D+aB2,a '" 0 B3,Xjo X 3 4 

S14,40 P 14,5 D+B2+X4 B3,Xjo X 3 4 

S14,41 P H,5 D+B4 B 3,Xl .X3 4 
S14,42 P 14,6 D+aB2, a"'O B3,Xj .Xi +cX3, c"'O 4 

S14,43 P 14 ,6 D+B4 B3,Xl ,X2 +cX3, c"'O 4 

S14,44 P14,7 D+aB 2, a'" 0 B3,Xl 3 
S14,45 P 14,1 D+B4 B3,Xl 3 
S 14,46 P 14,8 D+aB 2, a'" 0 B 3,Xi :3 

S14,47 P 14,8 D-B2+Xl B3,Xi 3 

S14,48 P 14,s D+aB 2, a'" 0 B3 2 

S14,49 P 14,9 D-B2+Xl B3 2 

S14 50 P 14•9 D+B4 B3 2 

ii 15, 23 1"1" P 15 ,1 v+a\coscJ:Jl +smcllz), a>O, O:Sc<rr Xl ,Xi,X3,X4 5 

S15,24 PH;' 1 D+B3 Xl ,Xi ,X3,X4 5 

S15.25 P 15,2 D+a(coscBl +sincB2), a>O, O:S c < 2IT X l ,XZ,X3 4 
S15,2(; P I5,2 D+B3 X Io X 2,X3 4 

S15,21 P I5,3 D+aB l , a >0 X l -X4,X2,X3 4 

S15,28 P l ·,4 D+aB l , a >0 XI +X4,X2,X3 4 

SI :,2:' P I5,4 D+a(B4 -B6), a >0 X l +X4,X2,X3 4 

SI5,30 PI5,4 D+Bl +B3+BS XI +X4,Xi,X3 4 

SI:,31 P15,5 D+aB2, a'" 0 X 1o X 2 3 

S15,32 P I5,S D+ (cOSCB3 + sincBJ, O:S c <rr X l ,Xi 3 

SI5,33 P I5,6 D +a(coscBl + sincB2), O:S c <rr Xj,X4 :1 
S15.:l4 P I5,1 D+a(coscB1 + sincB2), O:S C <rr X 2,X3 3 

SI5.35 P 15,8 D + a(coscB l + sincB 2) O:Sc <2rr XI 2 

S15,36 P I5,8 D+B3 XI 2 

$15,37 P 15. 9 D+aB I• a >0 X l +X4 2 

SIS,38 P I5,10 D+aBIo a >0 X 1-X4 2 

SI5,39 P 1S ,10 D+a(B3+B~. a >0 X 1-X4 2 

S15,40 P I5,10 D+Bl- B 3- B S X 1-){4 2 

~IS,41 P I5,11 D +a(coscB l + sincB 2), a >0, O:Sc <rr 0 1 

15,42 P I5,l1 D+B3 

In the first column the symbol Sj,k indicates that this 
is the kth algebra obtained as an extension of F j by 
dilations and translations. The second column lists the 
subalgebras F j and the third column gives Pj,k" i. e. , 

1620 J. Math. Phys., Vol. 16, No.8, August 1975 

0 1 

the subalgebra of the Poincare algebra that we are add­
ing the generator f5 to. All generators of Sj,k are in 
columns 4 and 5. The dimension dimRSj,k of Sj,k over 
the field of real numbers is given in column 6. 
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TABLE IV. Subalgebras of S that are not contained in P, do not contain an SG-Conjugate of D and are such that their intersection 
with P does not split over the translations. 

Notation F j Pj,k D 

SI;,18 Fe 
5 0,19 

5 6,5 D+B 2+xX4,-"" <x <'" 
5 0,6 D+B2 

5 0,20 
S10,26 FlO 

5 10,27 

5 6,'1 D-B2+xX),-'" <x <'" 
SIO,C D+ ~B2 
5 10,8 D+!Bz 

S 10, 28 5 10,9 D+Bz 

S10,29 SIO,IO D+Bz 

SIO,~O SIO,II D+B2 

SIO,~I SIO,I2 D + aBI + B 2, - '" < a < 00 

S10,32 5 10. 13 D+B2 

S12,43 F12 S12, )1 D+B 2+xX4, _00 <x <00 

5 12,4.1 5)2,14 D+Bz +xX4' - '" < x< '" 

S12,45 5 12,1'i D+Bz+xX4' _oo<x<", 

5 12,46 
S14,51 1"14 

5 12,20 D+B2+xX4,-'" <x <'" 
814,10 D+~B2 

S14,52 
S1<1,53 
S14,54 

5 14,11 D+B2 

S14,12 D+!B2 

S)4,13 D+!B2 

S14,55 
Sg,56 

S14,14 D+B2 +xX4,-'" <x <00 

5 14,15 D+~B2+b(B4+aX4)'-'" <b <00 

S14,57 
S 14, 5~ 

5 14, Ie D+hB 2+2a(h -1)X4,_oo <b <00 

5 14, j'( DdB2 

5 14 ,59 

SI4,60 
S14,61 

5 14,18 D+B2 

S14,19 D+!B2 

S 14,20 D+r,B2 

S14,62 SI4,21 D+B2+b(B4-X3), b?:O 

D. Subalgebras of S that are not contained in the 
Poincare algebra, do not contain any SG-conjug.3te of 
D and are such that the intersection with the Poincare 
algebra does not split over the translations 

We consider individually each subalgebra 5 j ,k == Pj,k 

of Table II of the present article, i. e., the algebras ob­
tained from Table IV of I by using dilatations to make 
certain classes of subalgebras of P coalesce. To the 
generators of 5 j ,k we again add a further operator 15 
=D +a"B" +x"xa, putting the coefficient a" and xa equal 
to zero if the corresponding B" or Xa figures in Pj k 

(we can set a" = 0 if B" E Pj,k or B" + Y";,X'k E Pj,k where 
Y"k are real constants). Restrictions on the possible 
values of au and xa are obtained by requiring that 15 
+ Pj,k forms a Lie algebra. The element 15 of the algebra 
is then simplified using transformations belonging to 
the normalizer ~of Pj,k in the similitude group, i. e., the 
normalizer of Pj,k in the Poincare group, listed in 
Table IV of I, supplemented by the discrete element D 
in the similitude group and transformations of the type 
~xp{D + buB u +y"xa} with b" and Ya so chosen as to leave 
Pj,k invariant. 

We shall consider some examples and then list all 
subalgebras of 5 obtained in this manner in Table IV 
above. 

_ Consider the algebras 56,k of Table n. The element 
D can be of the form D + aB2 + bB5 + eBB + x "X /L' Commut­
ing with Bl +X4' Bl or Bl +Xj, as the case may be, we 
find b = e = O. Consider first case 56,5, i. e. , 

D=D+aB2 +xX4, Bl+X4,B3,B4,Xl,X2,X3' (29) 

We have 

[D, Bl +x41 = 2(1 - a)X4 

and hence a = 1. Algebra (29) with a = 1, x arbitrary real 
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Generators of P j,k dim~j,k 

Bl +X4,B3,B4,Xj,X2,X3 7 
B 1,Ba+X2,B4 +X3,Xj 5 
BI +XI,Ba,B4 4 
B3 +X4,B4,XI,X2,X3 6 
B 3+X4,B4,Xj,X2 5 

B3,B4 +X3,XI ,X2 5 

B3,B4 +X2,XI 4 
B3 +X2,B4 + bX2 +X3,XI' b"'O 4 
B3+X2,B4 +X3,XI 4 

B a,B4 +X2' 3 

BI +X4 ,Xj,X2,X3 5 
B I +X4,X2,X3 4 
B 1+X4 ,X1 3 
B 1+X4 2 
B3 + X 4,XI ,X2,X3 5 
B3+ X 2,Xj, X 3,X4 5 
B a+X4,Xt>X2 4 
B3+ X 4,Xj, X a 4 
Ba+ X 2,Xj, X 3 4 
B3+X4,Xl,X2+aX3,a '" 0 4 
B a+X2,Xt>X2+aX3,a '" 0 4 
B 3+X4,X1 ::J 
B 3+X2,XI 3 
B 3+X4,X2 3 

B3+ X 4 2 

B3+ X 2 2 

should be further simplified, i. e., we must attempt to 
restrict further possible values of x. The normalizer of 
56,5 contains transformations generated by D + B 2 , Bl and 
X4 (in addition to the inner automorphisms exp56,5)' 

Using the commutation relations of Table I, it is easy 
to see that none of these change the value of x and 
hence (29) cannot be further Simplified. Similar results 
are obtained for 56,6 and 56,7 (see Table IV). 

It can be verified directly that none of the algebras 
57,k or 58,k of Table II can.be extended by dilatations. 
Now consider algebras 510,6 and 510,8 involving B3 +X4, 

B 4, Xj, X 2 and in the case of 510 6, also X 3• In the case 
510,6 we find that the most gener~l operator 15 forming 
a Lie algebra with 510• 6 is 

D::::D+JB2+XX4. 

The normalizer of 510 6 is generated by B 3, B 4, Xl> X 2, 
1 ' X 3, X4 and D + 2. B2• We have 

exp(yX4)15 exp(- yX4) =D + iBz 
if we put y =x. We thus obtain a single algebra generat­
ed by 

D + iB2, B3 + X 4, B 4, Xl, X 2, X 3. 

Similarly, for 510,8 we find that 
- 1 
D =D+ 2B2 +xX3 

provides an extension for all x. However, expyX3 
belongs to the normalizer of 510• 8 and 

exp(yX3)15 exp(- yX3 ) =D + ~B2 

if we put y =x/2. We again obtain a Single algebra 

D + ~B2,B3 +X4• B 4, Xj,X2• 

Continuing along the same lines we obtain the results 
presented in Table IV. The first column simply 
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enumerates the subalgebras of this type, the second 
tells us which subalgebra of LSL(2, C) they were derived 
from, the third lists their intersections with the 
Poincare algebra using the notations of Table II, the 
fourth and fifth column give all the generators and the 
last column gives the dimensions of the subalgebras. 

This completes the list of all conjugacy classes of 
subalgebras of the similitude algebra. 

Since the subalgebras of the homogeneous similitude 
algebra (the algebra of the homogeneous Lorentz gTOUp 
extended by dilatations) represent separate interest we 
provide a separate table of these (Table V). We suggest 
the name "scaling group" for this group. In Table V 
we use somewhat different conventions than in the rest 
of this article, in order to be able to show the mutual 
inclusions of the subalgebras. In this table Ex = COSXEl 

+ sinxE2 with 0 z x < 1T, i. e., we include the points x = 0 
and x = 1T/2. Subgroups of DC') SL(2, C) that are con­
tained in 8L (2, C) are separated out graphically. The 
lines connect each subalgebra (or continuous subgroup) 
with its maximal subalgebras. A full line indicates that 
the inclusion holds always, a dotted line indicates in­
clusion for specified values of the parameters only. 
Note that the way of writing the subalgebras in Table V 
corresponds more directly to Sec. 4 of article I than to 
the conventions of the rest of the present article. 

4. CONCLUSIONS 

The result of this paper is the complete classifica­
tion of all subalgebras of the Lie algebra 8 of the 
similitude group 8G. These subalgebras are of several 
types. 

1. Subalgebras of S that are also subalgebras of the 
Poincare algebra P and are splitting extensions of sub­
algebras of L8L(2, C) by translations. Conjugacy class­
es of such algebras under the similitude group coincide 
with conjugacy classes under the Poincare group. Rep­
resentatives of all such algebras are listed in Table 
III of I and are not reproduced here. Their labels 8 j ,k 

are obtained by setting j and h equal to the values they 
take in Table III of I. 

2. Subalgebras of 8 that are also subalgebras of P 
and are nonsplitting extensions of L8L(2, C) by transla­
tions. Many independent conjugacy classes under the 
Poincare group coalesce under the similitude group. 
Representatives of all conjugacy classes of such alge­
bras (under the similitude group) are given in Table II 
of this paper. 

3. Subalgebras of S that contain D (the dilatation) as 
a generator. Representatives of all such algebras are 
obtained by taking Table III of I and adding the element 
D itself to the generators. We do not reproduce these 
subalgebras here; they are however assigned labels 
8 j ,k [see (24)]. 

4. Subalgebras of 8 such that (i) they contain an ele­
ment D=D+L,a",E",+L,x,?{a, but no 8G-conjugate of D, 
(ii) their intersection with P splits over the transla­
tions. Representatives of all such algebras are listed 
in Table III above. 
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5. Subalgebras of S satisfying condition 4(i) above, 
but such that their intersection with P does not split 
over the translations. Representatives of all such alge­
bras are listed in Table IV above. 

The notations of this article are not entirely self­
evident. It is, however, quite trivial to return to the 
usual physical notations. For the generators, indeed, 
the connection is given in formulas (13) and (14). Note 
that in our tables we have sometimes let the continuous 
parameters range through closed regions, e. g., 0 ~ c 
< 21T in 815,25, sometimes through open ones like 0 < C 

<1T/2, 1T/2 < c < 1T in 85,9' In the last case the end points 
are separated out and listed separately. We could clear­
ly have bunched more algebras together under one 
heading, but we did not find this appropriate, since the 
algebras, corresponding to the limiting values of the 
parameters often have quite specific properties. 

The homogeneous similitude group expD>,) 8L(2, C) is 
of separate interest and has already been treated in I. 
Indeed, in Table V of I we gave a complete list of sub­
algebras of DIB L8L(2, C), obtained by USing a version of 
the "Goursat twist method, ,,17-19 also presented in I. 
The results of Table V of I are actually contained in the 
tables of this paper in a somewhat different, but equiv­
alent form. Table V of the present paper is new and 
shows the mutual inclusions of various conjugacy class­
es of subgroups of the homogeneous similitude group. 

Let us just mention some related work on the classi­
fication of continuous subgroups of real Lie groups. All 
one-dimensional subgroups of U(p,q) and 8U(P,q) 
groups are known. 20 A classification of the real semi­
simple subgroups of real semisimple groups was per­
formed. 21 Subgroups of the Poincare group were also 
considered by other authors22 and some work has been 
done on certain subgroups of the conformal group, 
Galilei group and others. 23 

In the following papers of this series we plan to 
provide similar lists of subalgebras and continuous 
subgroups for further groups of interest (de Sitter, 
conformal and others). We shall also return to the sub­
groups of the Poincare and similitude groups and dis­
cuss some of their properties (mutual inclusions, 
isomorphisms, existence of Casimir operators, etc.). 
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Structural equations for Killing tensors of order two. 11* 
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In a preceding paper, a new form of the structural equations for any Killing tensor of order two 
were derived; these equations constitute a system analogous to the Killing vector equations \l a K ~ 
= Wa~ = -w{Ja and \ly wa{J = R afJn K 8. The first integrability condition f?r the Killing tensor 
structural equations is now derived. Our structural equations and the integrabIlity condItIOn have 
forms which can readily be expressed in terms of a null tetrad to furnish a Killing tensor parallel of 
the Newman-Penrose equations; this is briefly described. The integrability condition implies the new 
result, for any given space-time, that the dimension of the set of second order Killing tensors attains 
its maximum possible value of 50 only if the space-time is of constant curvature. Potential 
applications of the structural equations are discussed. 

1. INTRODUCTION 

Lower case Greek letter scripts with values 1, 2, 3, 
4 will be used to designate components. The signature 
of our metric is + 2, and we choose the sign of the 
Riemann tensor so that 2V[,VBIK", =RB,,,,,,K", where VB 
is the covariant differentiation operator, and KOI is any 
vector field. 

In the precursor 11 of this paper, we introduced the 
following two tensors corresponding to any given sym­
metric tensor KOIB of order two: 

L aB,= V ~(Jy - VaKOI" 

M 01 Itt 6 = i~~~t~(v wL<tJ X~), 

where 

(1) 

(2) 

(3) 

LaB, has the symmetries LOIB,=L[OIBIr and L[aB,I=O, and 
M OIBr6 has the same symmetries as the Riemann tensor. 1 

If KaB is regarded as a small perturbation on gOlB' then 
L OIB, and M OIB,6 can be simply related to the corresponding 
first order perturbations in the affine connection and 
Riemann tensor, respectively. This geometriC 
interpretation is giving in Appendix A. 

When KOIB is a Killing tensor, the following equations 
were shown 1,2 to be satisfied by K OIB' L OIB, , and M OIB,6 
and were called the structural equations for a Killing 
tensor of order two: 

V oL 01 By = o~~ [~R<tJX6V KVy + t R<tJXyvKV6 

+ t R 6XYV KV <tJ + t R yx6v K
V 

q,} + M aB,6' 

VxM 0I8y6= ~!\~t a (V .fi<tJx.)K\ + t(V .fi<tJXH)W w 

-t(VxRq,x.)KV w - t R<tJXX vL"wv 

+ tR <tJ A/ Lxvw + tR<tJ./Lwxv 

+ -tr R<tJx/( 5L xvw + 7Lwxv)}' 

(4) 

(5) 

(6) 

Equation (4) is equivalent to the definition of a Killing 
tensor, Eq. (5) is the integrability condition for Eq. (4), 
and Eq. (6) is the integrability condition for Eqs. (4) 
and (5). These equations are to be regarded 1 as a 
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system of linear homogeneous first order equations in 
K OIB , L OIBy , and MOI {J,6' in the same way that the Killing 
vector equations 

V aKB = WaB' V yWaB =RaBrOK6, 

are often regarded as a system of first order equations 
in the Killing vector KB and the corresponding bivector 
WaB = - w BOI ' The tensors L",Br and M",BY6 are Killing 
tensor analogs of W"'B' 

The structural equations can be used to attack the 
problem of computing the second order Killing tensors 
of any given space-time. They also constitute a tool 
for the attempts to classify and discover new space­
times which admit Killing tensors and which are perhaps 
subject to some additional constraints on the metric 
tensor, the Killing tensor, or both. Examples of suitable 
constraints are the demands that the matter tensor 
vanish or be that of a perfect fluid, restriction of the 
Weyl conform tensor to some algebraic special type, 
speCification of the Jordan canonical form of the Killing 
tensor, and the existence of some symmetry group. 

The objective of this paper is to augment our general 
formalism until it is ready for such specific applications. 
The new addition to our formalism is the integrability 
condition for Eq. (6). This is derived in Sec. 2. The 
result is a system of equations of the form 

where 5[",BI [rOI [AIL 1 is totally symmetric in its three 
bivector scripts [ai3], [Yo], [~j.I.] and is a linear com­
bination of the components K OIB' L ",By' and M ",arO' The 
coefficients in this linear combination depend only on 
the Riemann tensor and its first and second covariant 
derivatives. 

The basic idea of the structural equations and of their 
integrability condition is far from new. In 1923 Veblen 
and Thomas 2 considered quadratic first integrals 
KaBx"'X B along the paths of an affinely connected space 
and calculated equations analogous to ours, using the 
first and second extensions of KOla in place of our L ",By 
and M ",6r6' respectively. Their results can be special­
ized to a Riemannian geometry, and equations which are 
equivalent to ours but quite different in form would 
thereby be obtained. 

Copyright © 1975 American Institute of Physics 1625 



                                                                                                                                    

In fact, in 1971, Collinson 3 did consider the problem 
for an n-dimensional Riemannian space and obtained an 
equation which is algebraically equivalent to our Eq. (6). 
He used the first and second covariant derivatives of 
K "a in place of our L "a. and M "aro' respectively, and he 
derived an expression for 'il ~ 'ilo'il ,K"B as a linear com­
bination of the components of 'il,K"a and 'ilo'ilrK"a' Col­
linson also briefly described the process of deriving the 
integrability condition, but he chose to give its explicit 
form only for a special type of Killing tensor, viz., one 
which satisfies the equation 'iloVrK"a=2R~6.("KBl~' 

The difference between our forms of the structural 
equations and those introduced by Collinson 3 derives 
from our employment of the tensors L"B' and M "B.o' 
These tensors were deliberately chosen to make the 
equations amenable to the use of a null tetrad basis and 
of the corresponding bivector basis whose members 
are eigenvectors of the duality operator. What we are 
propOSing here is a null tetrad formalism for second 
order Killing tensors in space-time similar to that 
used by Kerr and Debney 4 in their study of the Killing 
vectors of algebraically special space-times. Some 
technical aspects of this null tetrad formalism 5 for 
Killing tensors are given in Appendix B. 

In the discussion of Sec. 3, we point out that there is 
a natural isomorphism between the linear space of all 
second order Killing tensors K ,,8 and the linear space of 
all ordered triples of the tensors K"B' L "a., /\11 "B .0' 

With the aid of this fact and the integrability condition, 
we prove the new theorem that the dimension of the set 
of second order Killing tensors in space-time attains 
its maximum value of 50 only if the space-time is of 
constant curvature. Finally, we suggest how the struc­
tural equations and their integrability condition can be 
used. In particular, current efforts on axially sym­
metric stationary space-times (vacuum and nonvacuum) 
which admit Killing tensors having the same Segre 
characteristic as the Carter Killing tensor for the Kerr 
metric are described. Also, current efforts on some 
algebraically special vacuums are described. Results 
will be given in a sequel to this paper. 

We now return to the structural equations and briefly 
outline the derivation of their integrability condition. 

2. THE INTEGRABILITY CONDITION 

We start by expressing 'il[~ 'il'IM"a.o as the usual linear 
combination of components of l'Vi"aro with Riemann tensor 
coefficients; this linear combination is set equal to that 
expression for 'ill~ 'il,IM"Bro which is obtained by ap­
plying the operator 'il~ to the right side of Eq. (6) and 
then replacing the covariant derivatives of K"B and L"ar 
with the right sides of Eqs. (4) and (5). After much use 
of the tensor symmetries, the Bianchi identity, and 
simple doggedness we obtain the following final result 2: 

(7) 
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where 

(8) 

for any bivector scripts A, B, C, D, E, F. The above 
result is applicable, as are Eqs. (4), (5), and (6), to 
an arbitrary Riemannian space. 

It is easily verified and is important to note that, in 
Eqs. (5), (6), and (7), the Killing tensor K"a may be 
replaced with its traceless part, 

(9) 

i. e., the isotropic part of the Killing tensor drops out 
of Eqs. (5), (6), (7). However, it must be retained in 
Eq. (4). 

It is now time to assess our results. We start Ollr 
discussion with an aerial view of the structural equa­
tions and with some elementary observations on the 
number of linearly independent solutions of these equa­
tions. Then, we will consider possible applications. 

3. DISCUSSION 

Consider the structural equations as an example of a 
system of linear homogeneous partial differential equa­
tions of the first order. 6 As such, they can be lumped 
into a single matrix equation 

dK= rK, (10) 

where K is a column matrix with fifty elements con­
sisting of ten independent components of K"B' twenty in­
dependent components of L "B. ' and twenty independent 
components of M "B.o' As regards r, it is a square 
matrix whose elements are I-forms depending on the 
metric tensor and its partial derivatives up to the 
fourth order. The exact dependences can be read off 
from Eqs. (4), (5), and (6). 

The second order Killing tensors in any given space­
time constitute a real linear space V(K,2). We let 
V(K, red, 2) denote that linear manifold which is 
spanned by the set conSisting of g"a and of all Killing 
tensors of the form A("BBl where A" and Ba are any 
Killing vectors. The Killing tensors in V(K, red, 2) 
will be called redundant. 

The set of all ordered triples of the tensors K"B' L"B" 
and i'vl "Br6 is also a real linear space V(K, 2), which is 
represented by the column matrix solution set of Eq. 
(10). Any member of V(K, 2) will be called a Killing 
tensor data set. 7 

There is an obvious linear isomorphism oj V(K, 2) 
onto V(K, 2); hence, the dimensions oj V(K, 2) and 
V(K, 2) are equal. Furthermore, it is a standard 
theorem concerning differential equations such as Eq. 
(10) that, for any given point xO' and for any given 
specification of the value of K at xo, there exists not 
more than one solution of Eq. (10). Since the set of all 
column matrices K(xo) is a 50-dimensional real linear 
space, it follows that the dimension of V(K, 2) is "" 50. 
In other words, the general solution for K"a will contain 
not more than 50 essential real parameters. 8 This is a 
special case of a theorem which was proven by Thomas 9 

and which applies to arbitrary n-dimensional affine 
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spaces. An elegant alternative proof for n-dimensional 
Riemannian spaces has been given by Sommers. 10 

Flat space is an example where the dimension 8 of 
V(K, 2) is 50. This was proven by Thomas. 9 Katzin and 
Levine 11 have given another proof, which is more in 
tune with the soul of a physicist and which uses the 
natural linear isomorphism between V(K, 2) and the set 
of all quadratic constants of geodesic motion KaB(x)PaP B. 
(P a is particle momentum). The proof proceeds by in­
troducing rectilinear coordinates x a and noting that 
Minkowski space admits exactly 10 linearly independent 
first order constants of geodesic motion, viz., Pa and 
LaB=xaPB-xaPa' Therefore, V(K, 2) is spanned by the 
Killing tensors corresponding to the following 56 
quadratic constants of geodeSic motion: 

gaBpaPB, PaPB' LaaP" L"'BL,o' 

On account of the identities gaBpaPB = P1P1 + PzP2 + PsP3 

- PJ>4' and 

L[aaP,l=O, L[aB L ,16=0, 

we are left with a maximum of 50 linearly independent 
quadratic constants of geodesic motion. A detailed and 
fairly straightforward argument, 11 which we do not re­
produce here, shows that the residual 50 quadratic con­
stants of geodesic motion are linearly independent. 
Therefore, the dimension of V(K, red, 2) is 50. There­
fore, the dimension of V(K, 2) is 50. 

More generally, the dimension of V(K, 2) is 50 for 
any space-time of constant curvature. This is a special 
case 8 of a theorem which was proven by Katzin and 
Levine 11 for n-dimensional Riemannian spaces. An 
alternative proof was given by Collinson. 3 We will now 
give still another proof which is in the same spirit as 
the proof given above for flat spaces and which uses 
that model of the de Sitter space in which it is rep­
resented as a hypersphere in a five-dimensional flat 
space with rectilinear coordinates z/. The equation of 
the hypersphere is E ijz jZ j = k = const, where EiJ = 0 if 
i * j, and Eji = ± 1 if i = j. There are exactly 10 linearly 
independent first order constants of geodesic motion, 
viz. , 

L jj = Z jP j - Z jP j , Pi = Z i' 

Therefore, V(K, red, 2) is spanned by the Killing ten­
sors corresponding to the following 56 quadratic con­
stants of geode sic motion 12: 

EijPiPj' LjjLkZ 

However, if we use the constraint equations, Ejj2jZj=k 
and EjjZ jZ j = 0, we obtain 

EjkEiZL jiL kl = 2kEk1 PkP1· 

Also. there is the identity. L[ijLk11 =0. Therefore, 
there is a maximum of 50 linearly independent quadratic 
constants of geodesic motion in V(K, red, 2). A de­
tailed argument, which we do not reproduce here, 13 

shows that the residual 50 quadratic constants of geo­
desic motion are linearly independent. Therefore, the 
dimension of V(K, red, 2) is 50, and V(K, red, 2) 
= V(K, 2). 

Conversely, if the dimension of V(K, 2) is 50, then 
the space-time is of constant curvature. As in the case 
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of the analogous theorem for Killing vectors, the 
proof 8,14 employs the integrability condition. If the 
dimension of V(K, 2) is 50 (case of complete integra­
bility), th~n the coefficient of each independent com­
ponent of Kin Eq. (7) must vanish identically. In parti­
cular, if this requirement is applied to the M aBr6 terms 
of Eq. (7), an explicit calculation of these terms re­
veals that the Weyl conform tensor and the traceless 
part of the Ricci tensor vanish. So, 

whereupon the Bianchi identity yields R = const. There­
fore, the space-time is of constant curvature. In sum­
mary, we have established the new result that the 
dimension of V(K, 2) is equal to 50 only if the space­
time is of constant curvature. 

When the dimension of V(K, 2) is less than 50, i. e. , 
when the integrability condition is not satisfied identical­
ly, the classification of space- times according to the 
number and types of Killing tensors which they admit is 
an open field of investigation. We have in mind some­
thing analogous to what has been done on the classifica­
tion of space-times by the groups of motions which they 
admit. 15 However, the hierarchy of compatibility con­
ditions for the Killing tensor structural equations are so 
complex compared with their Killing vector counter­
parts 16 that we are uncertain about the practicality of 
such a program at the present time. 

We are more interested in definitive programs, which 
can be handled in a reasonable time with tools presently 
at our disposal. One feasible program would be a partial 
return to the early treatment 17 of Killing tensors, 
wherein an orthonormal tetrad was chosen such that the 
Killing tensor assumed its Jordan canonical form rela­
tive to that tetrad. We would like to see this approach 
tried in terms of a null tetrad. In addition, the space­
time may be reqUired to be axially symmetric, sta­
tionary, or both axially symmetric and stationary. For 
example, as a first simple step, one of us is now 
looking at those axially symmetric stationary space­
times (vacuum and nonvacuum) which admit a nonre­
dundant Killing tensor whose Lie derivatives with 
respect to the given Killing vectors vanish and whose 
Segre characteristic is [(11) (11)]. These are the same 
conditions which are satisfied by the nonredundant 
Killing tensor associated with the Kerr metric and 
discovered by Carter. 18 

Another feasible program is the systematic search 
for algebraically special vacuums which admit nonre­
dundant Killing tensors. Anyone who is interested in 
this program may find it helpful to refer to a paper of 
Debney, Kerr, and Schild 19 on algebraically special 
electrovacs and to another closely related paper of Kerr 
and Debney 4 on symmetry groups of algebricaUy special 
vacuums. On the basis of simplicity, it is wise to con­
sider only one Petrov type at a time; types lId' III, and 
Ia (Ref. 20) are Simplest. Each calculation should start 
by substituting into the null tetrad form of Eq. (7) and 
exploring those implications which derive from the de­
finition of the Petrov type and from the known depen­
dences of the affine connection and the conform tensor 
on the complex divergence. 

I. Hauser and R.J. Malhiot 1627 



                                                                                                                                    

ACKNOWLEDGMENTS 

We thank Frederick J. Ernst and Richard A. Isaacson 
for their encouragement and for many instructive dis­
cussions. and we want to express our appreciation to 
Werner Dietz for sending us a copy of his thesis. which 
provides a good review of the subject of first integrals 
of the motion in space-times. 

APPENDIX A 

We want to interpret the tensors defined by Eqs. (1) 
and (2) in terms which regard K,,"s as a small perturba­
tion on the metric. Consider the alternative metric 

where f is a real parameter. The difference of the 
Christoffel symbols corresponding to the two metrics is 
a tensor. 21 

r::a - r~B = b:B • (AI) 

where 21 

g 'rl" b~B = ~ f(VsK"r + V "KBr - V ~"B)' (A2) 

The corresponding Riemann tensor increment is 21 

R'",al"" -R"B"" ='i7"ba" -'i7Bb~" 

+ b~" b~" - b:;" b~". (A3) 

Let 

13/=(Of) 
Of ,=0 

for any function f of to Then. Eqs. (AI) to (A3) yield the 
usual first order equations 

(A4) 

(A5) 

From Eqs. (1). (2). (A4). and (A5). we obtain our re­
sults. 

L",Br= - 2gl"['" 6r~lr' 

AI "Br6 = - i t:..~::6W( 13R0 x/)gvw' 

(A6) 

(A7) 

We have thus shown how L"Br and M"Bra can be defined in 
terms of the first order changes in the affine connection 
and the Riemann tensor, respectively. This result is 
worth noting, but its importance for the subject of 
Killing tensors is unknown and may be nonexistent. 

APPENDIX B 

We shall here sketch some of the relations required 
for expressing Eqs. (4) to (7) in a null tetrad form. 5 

This appendix covers only the problem of the null tetrad 
components of the tensors K"s and L"Sr , since these 
subjects cannot easily be found in the literature. Full 
details on the null tetrad forms of Eqs. (4) to (7) are 
available in the form of a seminar report 5 by the 
authors. 

Let I? m, t. t * denote any null tetrad which consists 
of I-forms such that k and m are real, t* is the complex 
conjugate of t, and k • m = t· t* = 1. Various null tetrad 
components of tensors are designated by using k, m, t, 
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and t* as scripts. For example, Kkk=k"'kBK",B and Kkt 
=k"'tBK",B' There is no loss of generality in assuming 
that K"B is real. Thereupon, the Killing tensor has four 
real components Kkk' K km , K mm , and K tt* and three in­
dependent complex components Kkt' K mt , Ktt' with the 
remaining complex components equal to (Kkt)*, (Kmt)*, 
(K tt )*· 

As regards L"'8r' the condition L["8rl =0 can be shown 
to be equivalent to the set of four equations 

L kmk + L tt*k = - 2L ktt * + L k' 

L kmR + L tt*m = 2L mt*t- Lm. 

L km t + L tt * t = 2L k tm + L t, 

L kmt* + L tt*t* = - 2Lmt*k - L t* 

where L k, Lm. L t , L t* are the null tetrad components of 
L" =L,,/. With the aid of the above identities, each 
component of L "BY can be reduced to a Simple linear 
combination of the two real fields Lk and Lm. the nine 
complex fields L t, L ktk , L ktm , L ktt , L ktt *, Lmt*k' Lmt*m. 
Lmt*t, Lmt*t*, and the complex conjugates of these 
nine fields. 

As regards M",Br6' it has the same symmetries as the 
Riemann tensor. So. we can express any null tetrad 
component of this tensor in terms of five complex fields 
which are analogous to the Newman-Penrose 22 com­
ponents <PO' <PI' <P2' 03 , <P4 of the Weyl conform tensor, 
the null tetrad components of an analog of the traceless 
part of the Ricci tensor, and an analog of the curvature 
scalar. This is the same kind of decomposition which 
is applied to the Riemann tensor in the Newman­
Penrose equations. 22 

*A preliminary report of this paper was published in Bull. Am. 
Phys. Soc. 19, 108 (1974). 

II. Hauser and R.J. Malhiot, J. Math. Phys. 15, 816 (1974), 
To suit the purposes of the present paper, we have slightly 
modified the forms of the structural equations derived in I. 

2 Our Eqs. (4) to (7) are contained implicitly in Eqs. (19.16), 
(19.18), and (19.21) of O. Veblen and T. Y. Thomas, Trans. 
Am. Math. Soc. 25, 551 (1923). 

3C.D. Collinson, J. Phys. A: Gen. Phys. 4, 756 (1971), 
Collinson's Eq. (2.6) is equivalent to our Eq. (6). 

4R. P. Kerr and G.C. Debney, J. Math. Phys. 11,2807 
(1970). 

5Full details of this null tetrad formalism are available in a 
seminar report by I. Hauser and R.J. Malhiot, Proceedings 
of the Relativity Seminar 15 (HI. Inst. of Tech., 1974), 

SA discussion of this kind of system of equations is given by 
W. Dietz, "Erhaltungsgrossen Freier Teilchen in Raumzeiten 
mit Gravitationsfeld," Diplomarbeit, University of Wurzburg, 
December 1973 (unpublished). In particular, see pp 28-33. 
This thesis is a fairly comprehensive review of Killing ten­
sors and related objects such as Killing spinors and confor­
mal Killing tensors. 

7This term was suggested by the term "Killing vector data set" 
as used in a similar context CR. Geroch, seminar) for the 
ordered pairs c"nsisting of any Killing vector K" and its 
corresponding bivector wa B='i7a KB. 

8Clearlv" these statements also hold for an arbitrary n-di­
mensional Riemannian space if we replace 50 with 
n(n+l)2(n+2)/12. However, we do not know how to complete 
the proof [based on Eq. (7)J that the Riemannian space is of 
constant curvature if the dimension of V(K,2) is 
n(n + 1)2 (n +2)/12; we have proven this theorem only for 
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space-time, by using Eq. (7) as described in our discussion 
of Sec. 3. 

sT. Y. Thomas, Proc. N.A.S. 32, 10 (1946). 
lOp. Sommers, "Killing Tensors and Type {2, 2} Spacetimes," 

Ph.D. thesis, the University of Texas at Austin, 1973 (un­
published). Page 17 of this reference outlines a neat proof of 
the theorem that, given any Killing tensor of order m, its 
covariant derivative of order m + 1 is expressible in terms 
of the Killing tensor, its first m covariant derivatives, and 
the Riemann tensor. tthrough Ref. 9 alludes to a theorem 
like this for arbitrary m, no proof is given.) 

t1G.H. Katzin and I. Levine, Tensor N.S. 16, 97 (1965). 
12This fact that the number of all possible symmetrized direct 

products of the Killing vectors is greater than the dimension 
50 of V(K, 2) was pointed out to us by Abhay Ashtekar. 

13The argument is much like the one used by Ref. 11 for flat 
spaces. 

14We found it convenient to use the null tetrad form of the in-
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tegrability condition when we did this proof. For details, see 
Ref. 5. 

15See , e.g., A.Z. Petrov, Einstein SPaces (Pergamon, 
Oxford, 1969), pp. 132-256. 

16See, e. g., Ref. 15, pp. 133, 134. 
17See, e.g., L. P. Eisenhart, Riemannian Geometry (Princeton 

U.P., Princeton, N.J., 1926, 1960 printing), p. 128. 
lBB. Carter, Phys. Rev. 174, 1559 (1968). 
I SG. C. Debney, R. P. Kerr, and A. Schild, J. Math. Phys. 10, 
1842 (1969). 

20As regards type Id vacuums and electrovacs, some theorems 
on conformal Killing tensors and Killing tensors have been 
instructively proven by M. Walker and R. Penrose, Commun. 
Math. Phys. 18, 265 (1970); also, see L. P. Hughston and 
p. Sommers, Commun. Math. Phys. 32, 147 (1973). 

21See Ref. 17, problem 18, p. 33. 
22E. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962). 
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A direct variational method is developed for studying the asymptotic behavior of a wide class of 
nonlinear oscillation and wave problems. From some judiciously chosen trial solutions with adjustable 
parameters, equations governing the change of amplitudes and phases are derived and solved. The 
method is simple in concept and straightforward in application. Different aspects of the method are 
illustrated by applications to various examples: the oscillation of a pendulum with changing length; 
the motion of a charged particle in a strong magnetic field; the linear and nonlinear Klein-Gordon 
equations; and the linear and nonlinear Korteweg-de Vries equations. 

1. INTRODUCTION 

An approximate, direct variational method has been 
developed to deal with the forced oscillations of non­
linear systems. 1 The method starts with reformulating 
the problem by an equivalent variational problem; then 
some judiciously chosen asymptotic trial solutions with 
adjustable parameters are substituted into the function­
al to be varied. The examples chosen to illustrate the 
scheme in that previous study all had sinusoidal func­
tions as the forcing term. Therefore, it was natural 
also to assume that the solutions to behave in a simi­
lar manner. In this paper, we shall extend the method 
to treat other class of problems whose intrinsic oscil­
latory behavior is not necessarily sinusoidal, and thus 
it is a part of problem to determine the oscillatory be­
havior. The examples treated in the previous study are 
all second order ordinary differential equations. In this 
paper, we shall extend our method to partial differen­
tial equations, hence the study of wave propagations. 

The basic idea underlying this method is to make use 
of whatever prior information there is as much as 
possible and incorporating it into the form of the trial 
solution. Thus it is expected that the system of equa­
tions governing the adjustable unknown parameters 
would be much simpler than the original problem. In 
this paper as well as in the previous study, we are 
mainly interested in the asymptotic oscillatory solu­
tions. Therefore, approximate solutions for the am­
plitude and phase can be obtained by singling out the 
secular terms. In this sense the spirit of this method 
is similar to the methods developed by others. 2,3 Our 
basic approach is very close to Whitham's variational 
method,4 especially to his application of the variational 
method to the problem of water waves. 5 However, the 
details are different. Moreover, as demonstrated in 
our treatment of the Korteweg-de Vries equations, the 
existence of Lagrangian is not required. 

In the following, we shall again employ various ex­
amples to illustrate the procedure of the scheme. 

We begin with a linear ordinary differential equation 
for the study of adiabatic invariants to illustrate how 
the intrinsic oscillatory behavior can be determined. 
Then we apply the same method to find the adiabatic 
invariant for the nonlinear problem of the motion of a 
charged particle in a magnetic field. Next we apply the 
same idea to linear and nonlinear dispersive waves, 

using Klein-Gordon equations and Korteweg-de Vries 
equations as examples. 

2. ADIABATIC INVARIANT 

Let us first consider the simple example of the linear 
oscillation of a pendulum whose length is changed at a 
very slow rate. Thus, the differential equation is 

(2.1) 

where w is a slowly varying function of t. Equation (1) 
is equivalent to the statement that the following function­
al J is stationary: 

J = Jot i(x2 - W2X 2) dt. (2.2) 

Let us now look for solutions such that 

x =A(t)<p(5(t», (2.3) 

where A and 5 are both slowly varying functions of t and 
<P(5) is a periodic function such that 

<p(5+2rr) = <P(5), 

(<P) = irr [2. <p(5)d5=0, 

(<p2) =1. 

(2.4) 

(2.5) 

(2.6) 

Since A and 5 are yet to be determined, conditions (2. 4) 
and (2.6) can be imposed without loss of any generality. 
Condition (2.5) is, however, dictated by our anticipa­
tion of the solution. 

From (3), we obtain 

x = A<P +AS¢ . (2.7) 

Let us substitute (2.3) and (2.7) in (2. 2), making use of 
the slowly varying nature of A, 5, and w, then since 
(<P¢) = 0, we obtain for large t, as we have done in the 
previous study, 1 that 

1 1. t ['2 ('2 2 2] Jr::. z 0 A + a5 - w)A dt, 

where 

By varying A and 5 in the approximate functional as 
given by (2.8), we obtain the Euler's equation 

(2.8) 

A - (aiP- - w2)A = 0 (2.9) 

1630 Journal of Mathematical Physics, Vol. 16, No.8, August 1975 Copyright © 1975 American Institute of Physics 1630 



                                                                                                                                    

and 

~ (QlSA2) = 0 dt • (2.10) 

Now the periodic function ¢ is yet not determined. As 
a direct variational method, any ¢ satisfying (2. 4)-
(2. 6) will do to achieve various degrees of accuracy for 
our approximate solution. To obtain best results, we 
shall seek our guidance from the original equation (2.1) 
or (2.2). Thus the natural choice is 

¢(S) = v'2 sinS. (2.11) 

Then 

QI=(~2)=1. (2.12) 

Now since A is a slowly varying function of t, we thus 
obtain from (2.9) the first approximation: 

S = r wet) dt. (2.13) 

Equation (2. 10) then yields 

wA2 = const. (2.14) 

The last two equations are the familiar results for 
adiabatic invariants. As we can see here, the proce­
dure is very straightforward once the trial solution of 
the form (2. 3) is chosen. Corrections to the first ap­
proximation may also be carried out based on Eqs. (2.9) 
and (2.10). 

3. MOTION OF A CHARGED PARTICLE IN A 
STRONG MAGNETIC FI ELD 

The equation of motion of a particle of charge q and 
mass m acted on by an electric field E(r, t), a magnetic 
field B(r, t) and a gravitational potential G(r, t) is (see, 
for example, Bernstein6) 

x=a- axx, 

where 

a=qE(x, t)/m- VG(x, t), 

Q=qB(x, t)/mc. 

(3.1) 

(3.2) 

(3.3) 

Now the magnetic field B and the electric field E can be 
expressed in terms of the vector potential A and the 
scalar potential ¢: 

1 OA 
B=VxA, E=-Vcp-cat' 

Let us denote 

V=qA/mc, F=q¢/m + G; 

then Eq. (3. 1) is equivalent to the statement that the fol­
lowing functional J is stationary subject to the variation 
of x: 

(3.4) 

The physical problem we are concerned with has a 
strong magnetic field in one direction, say the X3 direc­
tion. The electric and gravitational fields as well as the 
magnetic field in other directions are assumed to be 
weak. Thus we may take 

v = (- Qx2, V2, V3), 

F= ftx t + hX2 + hX3, 
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(3.5) 

(3.6) 

where n, V2, V3, ft, f2' and f3 are all slowly varying 
functions of (x, t), andft> 12, andh are not large. 

Now let us look for trial solution in the form 

Xi =RI(t) + PI(t) sin[21T6(t) + ¢I(t)], i = 1,2,3, (3.7) 

where Rh Ph and ¢i are all slowly varying functions 
of t and we can take ¢t (t) = 0 without loss of any general­
ity. We have taken the sinusoidal function to represent 
the periodiC behavior directly to simplify the computa­
tion somewhat. They are indeed suggested by a crude 
analysis taking external fields as constant. From (3.7) 
we obtain 

xi = Ri + Plsin(21T6 + ¢i) + (21T8 + ~i) Pi COS(21T6 + ¢I), 

i=1,2,3, (3.8) 

Now we substitute (3.5)-(3.8) into (3.4) and evaluate 
the integral. To evaluate the integral, let us consider 
one term to illustrate the procedure. Take 

fo t xl VI dt = fo t - n[R2(t) + P2(t) sin(21T6 + ¢2)] 

x [Rt + PI sin21T 6 + 21T liPl COS21T 6] dt. 

Now n is a slowly varying function of (x, t); thus we can 
expand as follows: 

a(x, t) 

= a(R(t), t) +y Pi sin(21T6 + ¢I)' :~ (R, t) + .•. 0 

If we only take two terms of expansion of a, then for 
large t, since only the secular terms dominate, we ob­
tain approximately 

. . '"5: an 
+ 1TP2Pl 6 sm¢2) - ;[ 'T Pi aR

I 
(R, t) 

x[p2Rl COS(¢I- ¢2)+P1R2 COS¢i 

+ 21TBplR2 sin¢i]) dt. 

To make the phrase "slowly varying function" more 
precise, let us take E as a small parameter, and con­
sider in general a/aRi = O(E), d/ dt = O(E)o Furthermore, 
assume n, PI, ¢i' Rj, and R2 are 0(1); f., V2, and V3 
are O(E); and Band R3 are 0(1). Then after some 
straightforward computations, we obtain up to O(E): 

J = f/ f) dt, (3.9) 

where 

2 O 2 2 2 2 . 2' 2 0 1 '2 f) "'1T 6 (Pl+P2+P3)+1T6(P2¢2+P3¢S)+;[R3 

- n(R, t)(R2R1 + t P2Pl COS¢2 + 1TP1P28 sin¢2) 

. f. an . an.) 
- 1TP1R 2 e f2 aR

2 
sm¢2 + P3 aR

3 
sm¢3 

+ V3R3 - flRl - f2R2 - f3R 3• 

The variation of the functional J with respect to R., 
Pi, ¢h and e then leads to the following Euler equations: 

2'2 . . 0 aa 
0P3: 21T 6 P3=- 21T6¢3P3+1TP1R2e-R sin¢3, a 3 
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(3.12) 

Since the right-hand side of (3.11) is O(E), we obtain 
that, for the leading order, 

P3 = o. (3.13) 

Thus the term associated with P3 can be ignored from 
further consideration. The variation with respect to ¢2 
now leads to 

• aQ 
+ 7TP1R 2 8P2 aR

2 
COS¢2' (3.14) 

Again the right-hand side is O(E), thus if we assume 
PI> P2, and 8 to be nonzero, we obtain for the leading 
order that 

¢2 = 7T/2. 

The variation with respect to PI and P2 now gives 

2'2 . , 1 d 
0Pl: 27T P1 8 - 7TP2 Q8 sm¢2 = - '2 dt (P2 Q COS¢2) 

aQ , "'\ 
+ P3 aR3 sm'l'3J ' 

2'2 . , " l' 
27T P28 - 7TPI Q8 sm¢2 = - 27TP2 8¢2 + 2 PI Q COS¢2 

• aQ 
+ 7TP1R 2 8 aR

2 
sin¢2. 

(3. 15) 

(3.16) 

(3.17) 

Again the right-hand sides are O(E). Thus the leading 
order equations are 

2'2 . 
27T P18 = 7TP2Q8 

and 

27T2p282 = 7TPI Q8, 

which lead to 

and 

e = Q/27T, or 8 = (1/27T) 10 t Q(R (t), t) dt 

The variation with respect to 8 now yields 

d [ 2' (2 2) '1 dt 27T 8 PI + P2 - 7TQplP2 sm¢2 

= - :t [7T( P~cP2 + P~cP3) - 7TP1R 2 ~2 ::2 sin¢2 

+ P3 :~3 sin¢3) l (3.20) 

Setting the leacijng order left-hand side to zero and 
using (3.18) and (3.19), we obtain 

:t (Qp2) = 0, or Qp2 = const. (3.21) 

Qp2 is known as an adiabatic invariant. 

The variations with respect to R j , R 2, and R3 now 
yields, to the leading order, 
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• • aQ 
oR2: - QRl - f2 - 27TP1P2 8 aR

2 
sin¢2 = 0, 

•. • aQ 
R3 + f3 + 7TP1P2 8 aR

3 
sin¢2 = O. 

These equations give the well-known motion of guiding 
center as well as the first order correction of the mo­
tion, 6 We can also find the next order correction for 

PI> P2, 8, and ¢2 by making use of the right-hand side 
of Eqs. (3.14), (3.16), (3.17), and (3.20). The details 
will not be presented here. 

4. NONLINEAR DISPERSIVE WAVES-THE 
KLEIN-GORDON EQUATION 

Let us now turn to partial differential equations and 
consider the following nonlinear wave equation: 

Utt - u xx + f(u) = O. (4.1) 

When f(u) =u, we have the usual Klein-Gordon equation. 
This equation has been investigated by Whitham3 and 
Moser. 7 Here we shall employ the variational method 
to study the problem. 

Let us define the function F(u) by 

F'(u) =f(u). (4.2) 

Then Eq. (4.1) is equivalent to the statement that the 
following functional J is an extremum: 

1, t j' +00 1 2 1 2 J= dt dt[- 2Ut+2Ux+F(U)]. o _00 
(4.3) 

Our purpose is again to find asymptotic solution for 
large t, which exhibits certain oscillatory behavior. 
Thus let us look for trial solution of the following form: 

u =A(x, t)¢(S(x, t)), (4.4) 

where A and the derivatives of S are both slowly vary­
ing functions of (x, t) and ¢ is a periodic function of S 
which satisfies the following conditions: 

¢(S + 27T) = ¢(S), 

(¢) '" (1/27T)jo 2. ¢ dS = 0, 

(¢2)=1. 

(4.5) 

(4.6) 

(4.7) 

The conditions (4. 5) and (4. 7) are made specific with­
out loss of generality since A and S are yet to be deter­
mined. It follows from (4. 5) that 

(¢¢') = 0, 

and we shall denote 

(¢,2) = a. 

From (4.4) we have 

lit =A t ¢ +AS t¢', 

Ux =Ax¢ +ASx¢'. 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

Substituting (4.4), (4.10), and (4.11) into (4.3), making 
use of the periodic properties of ¢ and slowly varying 
behavior of A and S, we obtain for large t 

j ' t j'+OO 1 2 2.-.2 2 2.-.2 1 J= 0 dt _00 dX[2(-A t - aA "t+Ax+ aA ,,~)+G(A), 

(4.12) 

Din-Yu Hsieh 1632 



                                                                                                                                    

where 

G(A) =<F(A¢». (4.13) 

The variation with respect to A and S then lead to 

M: Att-Axx-aA(~-S~)+G'(A)=O, (4.14) 

I5S: (aA2St)t- (aA2Sx)x=0. (4.15) 

Since A is supposed to be a slowly varying function of 
(x, f), (4.14) can be approximated by 

A(~- S;)- G'(A) = O. (4.16) 

In order to determine a and G(A), we need to find ¢ 
explicitly. In the spirit of the direct variational method, 
we have a great deal of freedom for the determination 
of ¢. Of course, the closer ¢ approaches the real solu­
tion, the better is our approximate solution as a whole. 
We could artificially take ¢(S) = (1/12) sinS, but it may 
not be a very good trial solution for many cases. We 
shall instead use the original equation as a guide to sug­
gest a better solution. 

Let us write 

u = ¢(s(x, t)), (4.17) 

and substitute into (4.1) or (4.3). If we use (4.1), we 
obtain 

(S~ - s~)¢" + f(¢) = (sxx - S tt)¢'. (4.18) 

Assume stand Sx to be constants and write 

we thus obtain 

(4.19) 

In (4.19), w2 is a parameter still to be determined. 
However, the conditions (4.5), (4.6), and (4.7) will 
usually determine ¢ completely. When ¢ is found, a 
and G(A) can be obtained. Then (4.15) and (4.16) can be 
used to find A and S. 

Let us consider a few examples to illustrate some of 
the details. 

(i) The Klein-Gordon equation: f(u) =U. The equation 
we consider is 

utt-uxx+u=O. (4.20) 

For this case, it is evident from (4.19), (4.5), (4.6), 
and (4.7) that 

¢(S) = v'2 sin(S+ zp), (4.21) 

where zp is a constant. Then from (4.9) and (4.13), we 
obtain 

a = 1, G'(A) =A. 

Thus (4.16) becomes 

~- S;=1. (4.22) 

Use the Charpit's method (see, for example, Sneddon8); 

a complete integral of the above equation is 

(4.23) 

where a and b are two arbitrary constants. They rep­
resent the ordinary travelling wave solutions. A more 
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interesting solution is the singular solution which is the 
envelope of the family of solutions represented by (4.23). 
This gives 

S= ([2 _x2)1!2, (4.24) 

which is also that given by Moser. 7 

Substituting (4.24) into (4.15), we obtain 

(4. 25) 

The general method fOJ> solving linear partial differen­
tial equations of the first order (see, for example, 
SneddonB) then leads to the general solution 

A = (1/fi)p(x/t), (4. 26) 

where P is any arbitrary function. This solution is con­
sistent with the asymptotic expression for large t of the 
general solution of (4.20). In particular, if we assume 
A is a function of S as Moser7 did, or equivalently take 

then we obtain 

A= (Ao/I2)(t2 _x2)-1/4. (4.27) 

Hence 

u = [AoI(t2 _x2)1/4) sin[(t2 _ x 2)1/2 + zp). (4.28) 

(ii) A nonlinear Klein-Gordon equation: f(u) =u3• The 
equation we consider now is 

The function cp(S) is to be determined from 

W2¢,,+¢3=0. 

Thus 

(wcp/)2 =t(C4- ¢4), 

(4.29) 

(4.30) 

where C is an integration constant, which will be taken 
as real for ¢ to be periodic. Thus, ¢ is an elliptic func­
tion, or 

S f~ d~ 
-;;; = (tC4 _ ;. y4)1/2 • (4.31) 

The condition (4.5) is now 

f c dy 
21T = 2w -c (tCL b4)1 /2 , (4.32) 

and the condition (4.7) now determines completely the 
value of wand C. Then the value a as well as <¢4) can 
also be explicitly determined. 

From (4. 13) we obtain 

G'(A) =(cp4)A3. 

Equations (4.16) thus becomes 

~ _ S; = «¢4)/ a)A2. 

(4.33) 

(4.34) 

To solve the coupled equations (4.34) and (4. 15), let us 
first use the linear example as a guide and look for par­
ticular solutions such that S and A are both functions of 
A, where 

(4. 35) 
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Then Eqs. (4.34) and (4.15) become 

(
dS)2 = (cf>4) A2 
dA a ' 

and 

From (4.37), we obtain 

2 dS 
AA dA = const. 

Substituting (4.36) into (4.38), we obtain 

S=a"A2/3 +b 

and 

A = ia«cf>4>/ 0')1 12 A-l 13, 

where a and b are integration constants. Thus 

(4.36) 

(4.37) 

(4.38) 

(4.39) 

(4.40) 

u = ia«cf>4) / O')1I2(t2 - x2t I/6 cf>[ a(t2 - x 2)1/3 + b]. (4.41) 

We can also try another approach. If we substitute 
(4.34) into (4.15), we obtain 

[(S~ - S;)St]t - [(S~ - S;)SJx = O. (4.42) 

Let us now look for solutions of the following form: 

S=f"h(w), 

where w = x/t and J-L is some constant. After some 
straightforward calculation, we obtain 

[3(U,2 _ 1)2h,2 _ 6J-Lw(w2 -l)h'h + 112 (3w2 -1)h2]h" 

- 6(1l-1)w(w2 _1)h,3 + 5J-L(1l- 1)(3w2 - 1)h,2h 

- 12112 (Il - 1 )wh 'h2 + 31l3(J-L - 1 )h3 = O. 

If we take !J. = i, then (4.44) becomes 

[3 (w2 - 1}2h'2 - 4 [.lW (w2 
- l)k'lt + t (3w2 - lWJIt" 

(4.43) 

(4.44) 

+ 2w(w2 _ 1)h,3 - .1Q (3w2 _ 1)h,21t + 12 wh'h2 _ JL h3 = 0 
9 9 27' 

(4.45) 

It may be verified that 

h = a(l - W 2)1/3 (4.46) 

is a solution, which agrees with (4.39)0 

If we take [.l = 1, (4.44) becomes 

h"[3(w2 _1)2h,2 - 6w(w2 -1)h'h + (3U'2 - 1)h2] = O. (4.47) 

If h" = 0, then we obtain 

h=aw+b, 

or 

which leads to 

h =a(1- W2)1/2 [(1 +w)/(l- w) [fI/2-t:J. (4.51) 

(iii) The spherical Klein-Gordon equation: Let us 
now consider the following equation: 

U tt - urr - (2/r)u r + feu) = O. 

Then the functional to be varied will be 

J = fo t dt fo 00 drr2[~(- u~ +u;) + F(u)], 

where again 

F'(u) =f(u). 

Take the trial function in the form 

u =A(Y, t)cf>(S(r, t», 

(4.52) 

(4.53) 

(4. 54) 

(4.55) 

where cf> again satisfies the conditions (4.5), (4.6), and 
(4.7). Then corresponding to Eqs. (4.15) and (4.16), 
we have 

(4.56) 

and 

O'A(~- S;) =G'(A), 

where Q and G(A) are given again by (4.9) and (4. 13). 

Assume u = cf>(s(r, t» and substitute into (4.53); then 
the function cf> again is suggested to be derived from the 
same equation as (4.19). 

For the linear equation whenf(u) =u, we obtain thus 

u = (AoIrIT)P(r/t) sin[(t2 _ y2)1/2 + I/J]. (4.58) 

For the nonlinear case, we can also try to look for 
solutions of the form 

S=t"h(r/t), (4.59) 

and obtain from (4.56) and (4.57) a second order 
ordinary differential equation for h. 

5. THE KORTEWEG-OE VRIES EQUATION 

We now extend the application of the variational meth­
od to another important nonlinear dispersive wave equa­
tion, i. e. , the Korteweg-de Vries equation: 

(5. 1) 

Before we deal directly with this equation, let us con­
sider first the linear dispersive wave equation: 

Contrary to the previous cases, a functional J cannot be 
found for the equivalent variational formulation of the 
problem. Therefore, we shall state the equivalent 

S =at+ bx, (4.48) variational problem in the following form: 

and 

A2 = (O'/(cp4) )(a2 _ b2). (4.49) 

If h" * 0, then 

(4. 50) 

Thus 

(u} -l)h' = (w± l/V3}h, 
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(5.3) 

The form (5.3), though unremarkable in appearance, 
yet surprisingly serves the purposes very well. 

Let us now take the trial solution again like (4.4): 

u =A(x, t)cp(S(x, t)), 

where cf> again satiSfies the conditions (4.5)- (4.9). 
From (5.4), we obtain 

Din-Yu Hsieh 
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Ut ==Atrp +AStrp', 

u,,;x~ ==A~""rp + (3A""S" + 3A"S,,;x +AS"",)rp' 

+ 3 [A,,(S,,>2 +AS"S"",,]rp" +A(SYrp"', 

and 

Au == rpAA +Arp' AS. 

To find rp, let us again take 

u == rp (s (x, t». 
Substitute in (5.1), and we obtain 

(5.5) 

(5.6) 

(5.7) 

(5. B) 

(5.9) 

Assume stand s" to be constants; then we see the sug­
gested rp(S) is 

rp == ..f2 sineS + 1/J). 

Then we obtain immediately that 

(rp/2) =1, (rprp") =(rp'rp"') ==-1, 

(rprp"') =(rp'rp") ==0. 

(5.10) 

Now substituting (5.5), (5.6), and (5.7) into (5.3) and 
carrying out the approximate integration scheme, we 
obtain 

AJz J/ dt 1.: dx{AA[At+A"",,- 3A,,(S,,)2 - 3AS"S""J 

+ AS[A2St + 3AA""S" + 3AA"S"" +A
2
Sxxx - A2(S,,)3]}. 

(5. 11) 

Now St, S,,' and A are assumed to be slowly varying 
function of (x, t); thus, to the lowest order of approxi­
mation, the independent variation of AA as AS leads to 

A A: At - 3A,,(S~)2 - 3AS"S"" == 0, 

AS: St - (S,,)3 = O. 

A complete integral of (5.13) is 

S==a3t+ax+b, 

(5. 12) 

(5. 13) 

(5. 14) 

where a and b are arbitrary constants. They represent 
the travelling wave solutions or the Fourier components 
of the general solution. The singular solution from 
(5.14) is easily found to be 

s==M-x/(3t)1!3J3!2. (5.15) 

Substituting (5.15) into (5.12), we obtain 

(5.16) 

which is the same as (4.15). Thus the general solution 
is again 

A == (l/v7)P(x/I). (5.17) 

This solution is again consistent with the asymptotic 
expression for large t of the general solution of (5. 2). 
In particular, if we take P(Z) == (AoI..f2)zl /4, then we 
obtain 

Ao . [2( -x )312 J 
U = (xt)1 14 sm '3 (3t)1/3 + ~ , (5. 18) 

which represents the asymptotic OSCillatory solution 
from an initial Ii-function disturbance, 

Now we turn our attention to the nonlinear equation 
(5.1). From considerations of the phYSical circum-
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stances in connection with the Korteweg-de Vries equa­
tion such as water waves, the trial solution we seek will 
be in the form: 

u ==A(x, t)rp(S(x, t» +B, (5.19) 

where B is a given constant and rp again satisfies the 
conditions (4.5)-(4.9). Ut, u""'" and Au are also given 
by (5. 5), (5.6), and (5.7), while 

(5.20) 

Now we substitute (5. 5), (5.6), (5.7), and (5.20) into 
r t J+oo 

AJ;Jo dt _00 dx(u t +uu" + U,,",,) Au =0. (5.21) 

Thus we obtain approximately 

AJz 10 t dt f: dx{AA[A t +A"x" + (3A"S; +3AS"Sxx)(rprp") 

+BA" +AA,,(rp3)] + ASA[ a(ASt + 3Au S" + 3A"Sxx 

+AS"x,,+ABS,,) +AS:(rp'rp"') +AA,,(rp2rp') ]}. (5.22) 

For most cases, due to the antisymmetry of rp about its 
nodal point, i. e. , 

rp(S) == - rp(2So - S), (5.23) 

where 

we have 

(5.24) 

Since we also have (rprp") = - (rp,2), thus, to the lowest 
order of approximation, we obtain from (5.21) 

At +BA,,- 3 a (A"s; + AS"S"J == 0 (5,25) 

and 

a(St + BS,,) - ;3$; == 0, 

where 

The function rp(S) will again be suggested from the 
original equation. Let us take 

U==rp(s(x,t))+B, 

(5.26) 

(5.27) 

(5.2B) 

and assume that s" and stare constants; then we obtain 

rp'+arprp'+brp'" ==0, (5.29) 

where a and b are constant parameters. Thus rp is an 
elliptic function. Even though rp has to satisfy the con­
ditions (4. 5)- (4. 7), it still contains adjustable free 
parameters. However, once the parameters are chosen 
from whatever conSiderations, a and f3 can be readily 
determined, and we can proceed to solve (5. 25) and 
(5, 26). 

By following the similar procedure we used for the 
linear case, it is found that a complete integral of (5. 26) 
is 

(5.30) 

where C1 and C2 are arbitrary constants. They again 
represent the travelling wave solution. The singular 
solution from (5.30) is readily found to be 

Soot[- (x- Bt)/(3{3t/a)1/3]3/2• (5.31) 
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Substituting the last expression into (5.25), we obtain 

At +BAx + (a 2/j3)[Ax(x - Bt) +A/2Vt = o. (5.32) 

Let us introduce the new independent variables 

~=x-Bt and T=t. 

Then (5.32) becomes 

TAT + (0'2/ j3)(~A, +A/2) = O. 

Bya similar procedure for the solution of (5.16), we 
obtain the general solution 

k= (1/ V1}P( ~/T",2 / B), 

or 

where P is some arbitrary function. 

6. DISCUSSION 

The method presented above is simple in concept and 
straightforward in application; yet it yields a great deal 
of information. Since it is basically a direct variational 
method, the more we know previously about the solution 
of the problem, the better would be the result and simp-
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ler the analyses involved. On the other hand, one draw­
back of the method is the difficulty in estimating the 
errors involved. So far we have only applied the method 
to OScillatory solutions of the nonlinear waves. Whether 
this approach can be adapted to find nonoscillatory solu­
tions of the nonlinear wave problems is still a subject 
of continuing investigation. 
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Representations of the three-dimensional rotation group by the 
direct method 
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The irreducible representations of the three-dimensional rotation group are obtained directly from the 
irreducible representations of its infinitesimal generators (the spin matrices). parametrized in terms of 
the rotation angle and the direction of the rotation axis. Expressions are given for the rotation 
operator exp(i IjIn . S) in terms of two different bases of 2j + I elements for spin j. The results are 
related to the spectral decomposition of the rotation operator and expressions obtained for spin 
projection operators along any spatial direction for arbitrary spin. 

1. INTRODUCTION 

A fundamental result of the theory of Lie groups is 
that any continuous linear group can be generated from 
its infinitesimal generators by exponentiation. Likewise, 
every irreducible representation of the covering group 
is obtained in this way from the irreducible representa­
tions of the corresponding Lie algebra. This is not, 
however, the usual way of obtaining explicit expressions 
for the representation coefficients of those continuous 
groups of interest to physicists. In the case of 0(3), to 
which we restrict ourselves in what follows, the usual 
method consists of considering the transformation 
properties under rotations of homogeneous monomials 
constructed from the components of a basic spinor, the 
transformation properties of which are known 
explicitly. 1 

The direct method of calculating the exponential of the 
spin matrices, which are the irreducible representations 
of the generators of the Lie algebra of 0(3), is well 
known only for the two-dimensional (spin i) and the 
three-dimensional (spin 1) representations (c. f. Sec. 
2, below). For any dimensionality, a derivation of the 
rotation matrix for rotations about the y axis (the middle 
rotation in the usual parametrization in terms of Euler 
angles) by the direct method has been given by Lehrer­
Hamed. 2 The derivation, however, is somewhat cumber­
some, requiring the solution of a linear differential 
equation of order equal to the dimensionality of the 
representation. 

In this paper the representations of 0(3) are obtained 
by the direct method, the rotations being parametrized 
in terms of the rotation angle and the direction of the 
axis of rotation. That is, explicit expressions are given 
for exp(il/in' S), where n is a unit vector in the direction 
of the rotation axis and S=(51 ,52,53 ) are the angular 
momentum spin matrices for spin j, for rotations about 
the three Cartesian axes. In Sec. 3 the results of Ref. 
2 are simplified (being obtained by purely algebraic 
methods) and generalized to an arbitrary rotation axis. 
The special case of a rotation about the y axis is dis­
cussed further, and the usual symmetries of the corre­
sponding rotation matrix are shown to follow directly 
from the symmetries of 52' 

In Sec. 4 a more suitable basis for expressing the 
dependence on n. consisting of irreducible tensors con-
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structed from the spin matrices, is introduced. The 
orthogonality properties of these operators lead in an 
extremely direct way to the representation matrices, 
the dependence on the angle of rotation being expressed 
in terms of Gegenbauer polynomials. The resulting 
expressions resemble the Rayleigh expansion of a plane 
wave, and are formally equivalent in the limit j- 00. 

In Sec. 5 the results of the two preceeding ones are 
related to the spectral decomposition of the rotation 
operator. This leads to expressions for spin projection 
operators along an arbitrary spatial direction. 

2. PRELIMINARIES 

In this section we review the usual derivation of the 
two-and three-dimensional representations of 0(3) by 
the direct method, pointing out the limitation inherent 
in the procedure and the implications for the general 
case. 

The (2j + I)-dimenSional irreducible representation of 
0(3), parametrized in terms of the angle of rotation I/i 
and a unit vector n in the direction of the axis of rotation 
is given by the set of rotation matrices 

D(j )( I/i, n) = exp(il/in· S) (2.1) 

(the index j on 5 k will be understood). The matrix ele­
ments of 5 k are defined by 

(5 k)m' ,m = (jm' IJ k Ijm), - j ~ m ~j, 

where 

lJk,JIJ=iEklmJm 

and 

J 3 ljm) = m Ijm). 

Equation (1) remains purely formal until a way of 
determining explicitly its matrix elements is given. 
The usual definition of the exponential 

exp(il/in· S) = to k
1
! (il/in' S)k (2.2) 

is useful for this purpose only if the series can be 
summed in some way. There are two well-known cases 
in which this can be readily done, namely, the two­
dimensional (spin i) and the three-dimensional (spin 1) 
representations. 
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In the first case, Sk=tak where ak are the Pauli 
matrices, which satisfy 

(n· a)2 = n (2.3) 

where n is the 2 x 2 unit matrix. Powers of n' 8 higher 
than the first are thus reducible to II or n' 8 and (2) 
leads to the well-known result 

exp(itlj;n· a) = n costlj; + i(n· a) sintlj;. 

Similarly, the spin one matrices satisfy 

(n ·8)3 =n' 8 

(2.4) 

(2.5) 

giving, for the three-dimensional representation, 

exp(ilj;n· 8) = II + i(n· 8) sin,v + (n' 8)2 (coslj; - 1). (2.6) 

This procedure is not feasable for higher-dimensional 
representations. The generalization of Eqs. (3) and (5) 
for spin j is given by 

j 

n (n' 8- rnll)=O (2.7) 
m=-j 

where the 2j + 1 numbers rn, the eigenvalues of n . 8, 
vary in unit increments from - j to j. It follows that 
(n'S)2i'l is expressible as a linear combination 

2j 

(n' S)2i+l = L d k (n· S)k 
k =0 

(spinj), (2.8) 

where the d k are numerical coefficients. For integer j 
only odd values of k contribute to the sum, while for 
half-odd integer j even values of k contribute. Thus for 
j> 1 the sum contains two or more nonzero terms, and 
substitution from (8) into (2) leads to hopelessly com­
plicated expressions. 

However, Eq. (8) implies that one can write 

2j 

exp(i</m·S)=.6 cM) (n'S)k (2.9) 
k=O 

where the expansion coefficients C k( lj;) depend only on the 
angle of rotation. 

The last equation is a better starting point than (2) for 
the explicit determination of the representations, since 
it involves a finite sum of independent terms. 

3. DETERMINATION OF THE EXPANSION 
COEFFICIENTS 

To solve for the ck(lj;) we invoke an invariance argu­
ment: As the ck(lj;) are independent of n, we may simplify 
(2.9) by setting n= (0, 0,1) which diagonalizes both 
sides, leading to 

2j 

exp(irnlj;) = L mkc k(<J;), - j "" m "" j. (3.1) 
k=O 

This set of linear equations can be inverted for the ck(<J;)· 
We first simplify further by noting that unitarity of the 
representation, together with the Hermitian character 
of (n'S)\ implies that ck(lj;) is real for k even, imagi­
nary for k odd. Thus defining real coefficients ak(lj;) by 

1 
ak(lj;), keven, 

cM) = (3.2) 
iak(lj;), k odd, 
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one obtains, taking real and imaginary parts of (3. 1), 
separate sets of equations for k even and k odd. 

We consider the cases for j integer and j half-odd 
intege r separately. 

j integer: In this case rn = ° is an eigenvalue and 
aO(<J;) = 1. Equation (3. 1) gives 

i 
cosrn<J; - 1 = L m 2k a2k(<J;), 

k =1 

j half-odd integer: 

i-l/2 
cosrnlj;= :0 m 2k a2k(lj;), 

k=O 

(3.3a) 

(3.3b) 

(3.4a) 

(3.4b) 

Thus solution requires inversion of the j x j matrix 
M whose elements are defined by 

(3.5) 

where for j integer rn, k= 1, 2, .. . ,j and for j half-odd 
integerm=t ... ,j, andk=0,1, ... ,j-t. The matrix 
M can be inverted analytically (see Appendix A). De­
noting by w km the elements of the inverse of M, we have 

j integer, (3.6a) 

(_1)k>2mp(m)i-k-l/2«t)2, ... ,f) 
Wkm = n (2 _ 2) , 

s;tm S m 
j half-odd 
integer 

(3.6b) 

where p(m),,(a,b, ... z) is a sum over permutations of 
products of its arguments, J at a time, without repetition 
and omitting m. 3 

Inverting Eqs. (3.3) and (3.4) and returning to (2.9), 
we obtain for the representations: 

j integer: 
j j 

exp(i<J;n . S) = II + L' (cosm <J; - 1 )P'm + i L: rn sinrn <J; P;'. 
m =1 m =1 

(3.7) 

j half-odd integer: 

j j 

exp(i?pn • S) = L 
m=1/2 

cosrnlj; P;' + i :0 m-1 sinrnlj;p;", 
m =1 /2 

(3.8) 

where 

p;. = .0 wkm(n' S)2k (all j), (3.9a) 
k 

P- = L: W (n' S)211-1 (j integer), 
m k km (3. 9b) 

P- =.0 W (n'S)211-1 (j half-odd integer). 
m k km 

(3.9c) 
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The summation is from k = 1 to j for integer j, and from 
k = 0 to j - t for half-odd integer j. 

These equations generalize, to arbitrary spins, Eqs. 
(2.4) and (2.6) above. The rotations are parametrized 
in terms of the angle of rotation and the direction of the 
axis of rotation. The dependence on the first is quite 
simple; the dependence on the axis as defined by n, on 
the other hand, is not in a very convenient form. In the 
next section a more suitable basis for expressing this 
dependence will be introduced. 

A particular important case, however, in which the 
expressions for the matrix elements simplify is that of 
a rotation about the y axis, which appears as the middle 
rotation in the usual parametrization in terms of Euler 
angles. These are obtained by setting n = (0,1,0), that 
is n' S = 5 y • In the basis in which 5 e is diagonal, the 
nonvanishing elements of 5 y are 

(5)m+l,m = - ti[(j - m)(j + m + 1)jI/2, 

(S)m-l,m = ti[(j - m)(j + rn + 1)]1/2, 

from which it follows that 

(5 y)m'.m=0 

(5)m'.m = - (5)m.m" 

(5 )m'.m = (5 )-m .-m'· 

unless m' - m = 1, (3. lOa) 

(3. lOb) 

(3.10c) 

The last symmetry corresponds to invariance under 
"skew reflection, " i. e., reflection on the skew diagonal. 

It follows from these symmetries of 5 y that 5~k is 
symmetric, invariant under skew reflection, and has 
nonvanishing matrix elements only for m - m' even, 
while 5~""1 is antisymmetric, invariant under skew re­
flection, and has nonvanishing elements only for m - m' 
odd. 

Thus in Eqs. (3.7) and (3.8), in the case of rotations 
about the y axis, P~ will contribute to matrix elements 
with rn' - m" even, P;" to matrix elements with m' - m" 
odd, and the angular dependence of the corresponding 
elements will be linear combinations of cosml/! in the 
first case, of sinml/! in the second. The resulting ex­
pressions are quite practical for determining the rep­
resentation coefficients (P~ and P;" can be readily pro­
grammed for computer calculation). As mentioned by 
Wigner,4 the dependence on the angle of rotation ap­
pearing in (3. 7) and (3.8) lends itself more readily to 
visualizing the general behavior of the coefficients than 
the usual representation in terms of powers of costl/! 
and sintl/!. 

The symmetry properties of d (J)(I/!) = exp(ilf!S2) follow 
readily from those of 5~k and 5~k+l and the discussion of 
the last paragraph. In particular, one has 

d~~:m(l/J)=(_l)m-m' d;':,~,(I/!), 

d~, :m( I/J) = d~~~_m' (I/J). 

(3.11a) 

(3.11b) 

These relations are usually derived by considering 
succesi ve rotations through ± 71 and I/! ± 71 and making use 
of the group property. 6 

4. EXPANSION IN SPHERICAL BASIS 

The basis (n' S)\ 0 "" k "" 2j, in terms of which the 
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representations have been obtained is not the most con­
venient for exhibiting explicitly the dependence of the 
matrix elements on the direction of the rotation axis, 
which is speCified by 

n=(sinBcosrp, sinBsinrp, cosB). (4.1) 

The obvious choice of functions in which to express 
this dependence are the spherical harmonics Y1m(B, rp) 
'" Y1m(n), with Z running from 0 to 2j for the (2j + I)-di­
mensional representation. We complement these with 
operator spherical harmonics generated by "polariza­
tion" from the ordinary solid harmonics7 fj Im(r). For 
spin j they are defined byB 

21 ( (2j-l)! \1/2 1 

Y/m(S)=lT (2j+Z+1)!/ (S'grad) !Jlm(r). (4.2) 

These operators, which are irreducible tensors, appear 
in the formulation of interactions of spin systems, as 
well as in the theory of angular correlations. 9 

The matrix elements of these operators are given in 
terms of Wigner's 3-j symbols byB 

(
21 + 1 \1/2( j 

471 / m' 
j 

-m" 

(4.3) 

It follows from the orthogonality properties of the 3 - j 
symbols that 

trY1'm'(S) Y1m(S)= (471t1oll ,Om.m" (4.4) 

Forming the product, invariant under a simultaneous 
rotation of n and a corresponding Similarity trans­
formation of the 5 k' defined by 

1 

Y1(n)·Y1(S)= ~ Y1m(n)*Y1m(S), 
m =-1 

(4.5) 

we write, for spin j, instead of (2.9) 

2j 

exp(il/Jn . S) = 6 a l ( I/J) Y I(n) . Y I(S), 
/=0 

(4.6) 

To evaluate the expansion coefficients we first simplify 
by setting n= (0, 0,1). The product (4.5) then reduces to 
the single term 

[(21 + 1)/471jI/2Y
10

(5
3

) 

and Eq. (4.6) to 

The orthogonality relations then give at once 

( 
4 y/2 

aM) = 471 2Z: 1) tr(Y /0(53) exp(ilf!S3»' 

(4.7) 

(4.8) 

Since both Y /0(53) and exp(ilf!S3) are diagonal in the basis 
ijm), we have 

tr(Y /0(53) exp(ilf!S3» 

= 2:: (jm I Y /0(53) Ijrn) exp(iml/!) 
m 

= (21 + 1 y /2 6 (j 
471 / m \m 

j 
-m 

Z) . o (_l)J-m exp(zm?jJ), 
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giving 

(4. 10) 

where 

(4.11) 

The functions HJl(<J;/2) have been studied by Bander and 
Ytzykson 10 and by Talmanll in connection with the rep­
resentations of 0(4). They are related to the Gegenbauer 
polynomials C~;~ I byll 

H -l , J -. " I 1+1 
( 

(2' l)' 11/2 
JI(rp)-· (2j+Z+l)! (2zsmrp) C2J_I(cosrp), 

(4.12) 

and are given eXplicitly by 

H _.( (2j-l)! \1/2. I d ' sin(2j+l)rp 
JI(rp)-z (2j+Z+l)!) (smrp) d(cosrp)1 sinrp 

(4.13) 

The matrix elements of the representation are obtained 
using 

(jm" I Yin)· Y I(S) Ijm') 

= L Y Im(n)* (jm" 1 Y Im(S) jjm') 
m 

j 1 ) ( I)J-m' m" _ m' - YI,m'_m,,(n), -m" 

(4.14) 
giving 

2j 

(jm" I exp(i<J!n' S) lim') = L v'411(2Z + 1) 
1=0 

This expression for the representation matrix ele­
ments has been given by Talmanll by considering the 
representations of 0(3) subduced by representations of 
0(4), the latter being obtained as the direct product of 
two representations of SU(2). This (perhaps) circuitous 
procedure yields, as above, the representations of 
0(3) parametrized in terms of the rotation angle <J; and 
the rotation axis n. We remark that if the rotation 
matrix dO l( 8) for rotations about the y axis, and its 
properties, are considered known (as in Talman's ap­
proach), then Eq. (4.15) follows rather more simply by 
factoring the rotation operator exp(i<J;n' S) into a product 
of several rotations about the y and z axes. The details 
are given in Appendix B. 

The present derivation, of course, requires no 
previous knowledge of the rotation matrices d(j), being 
based directly on the representations of the angular 
momentum operators and the properties of the 3-j 
symbols. 

A different expression for the representations of 
0(3), parametrized in terms of <J; and n has been given 
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by Harry E. Moses12 in terms of Jacobi polynomials 
(see also Ref. 13). 

Equation (4.6) resembles the Rayleigh expansion for 
a plane wave in the direction of a vector k 

~ 

exp(ik· r) c= 411 L' iIi l(kr) Y I(k)' Y (;) 
~o I 

(4.16) 

where k and r are unit vectors in the directions of k and 
r, respectively. In fact, as j - 00 we have 14 

_ (- I)J-m (m) 
- 2j PI T ' (4. 17) 

and in this limit 

(4. 18) 

Hence in the limit j - 00 we have, in complete analogy 
with the Rayleigh expansion, 

exp(i<J;n' S) '" 4116 i / j /(j<J;) Y I(n) . Y I(S), 
I 

In particular, we have USing (4. 14) 

(jj I exp(i<J;n . S) Ijj) '" exp(i<J;n' j) 

(4.19) 

where j = j e., a relation with a clear interpretation. 

The limit i - 00 of the representations of 0(3) para­
metrized in terms of if; and n is useful in the study of 
the spherical Bessel functions. 15 This asymptotic 
relationship can be given an intuitive geometrical 
grounding (c. f. remarks by Biedenharn and van Dam, 
Ref. 5, pp.3-5). 

5. SPECTRAL DECOMPOSITION OF THE ROTATION 
OPERATOR 

Expansions (2.9) and (4.6) are closely related to the 
spectral decomposition of the rotation operator 
exp(ilpn· S) in the 2j + 1 space spanned by the vectors 
Ijm). Since the eigenvalues of n' S are the same as 
thoseofS3 , that is, thenumbersm, -j~m~j, the 
spectral decomposition of the rotation operator is 

J 
exp(iif;n· S) = L exp(imif;) P min) (5.1) 

m=-j 

where P min) is the projection operator on the eigen­
vector of n' S with eigenvalue m. Defining I jm n) by 

n'Sljmn)=mjjmn), (5.2) 

then, in Dirac notation, 

P min) = Ijm n) (njm I. (5.3) 

The spectral decomposition of (n· S)k for k = 0, 1, ... , 2j 

j 

(n'S)k= 6 mkPm(n) (5.4) 
m=-j 

yields, upon inverSion, formulas for the P min) in terms 
of the basis (n' S)k. The results of section 3 give, for 
integer j 
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1 i 
P m(n) = -2 ~ W km[(n' S) + m nl (n' S)2k-I, 

.... 1 
(5.5a) 

and for half-odd integer j 

1 i-1/2 
Pm(n) = "2 f)o w km[n+m'l(n'S)l (n·S)2k. (5.5b) 

In terms of the spherical basis, comparison of (5. 1) 
with Eqs. (4.6), (4.16), and (4.11) gives 

P (n)=41T~ (j j I) (_I)i-mY(n)'Y(S), (5.6) 
m 1=0 m -m 0 I I 

These projections operators can be of use in a variety 
of problems involving interacting spin systems. 

6. CONCLUDING REMARKS 

The expressions obtained for the representations of 
the rotation operator exp(h/m· J) have, perhaps, a cer­
tain intuitive appeal. They may be seen as the gen­
eralization to the multidimensional representations of 
O( 3) of Euler's formula 

exp(imrp) = cosmrp + i sinmrp, 

which gives the irreducible representations, for integer 
m, of the group of rotations in the plane; exp(irp) is, 
of course, the rotation operator in the complex plane. 

The ease with which the representations can be ob­
tained from the spin matrices leads one to expect that 
a similar procedure will work for 0(4) and, in general, 
for O(n). The spectral decomposition of the rotation 
operators would seem to provide an appropriate 
starting point. 
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APPENDIX A 

Inversion of the matrices M with elements M mk =m2k. 
We refer to Muir (Ref. 3, Chap. XI). 

j integer: The values taken by m and k are m, k 
= 1, 2, ... ,j. The matrix M can be factored as 

M=AB, 

where 

1 Xl xi x i - l 
1 

1 x 2 
X2 

2 xtl 

B= 

1 X X2 x i - l 
i i J 
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(AI) 

(A2) 

and A is diagonal with elements 

(A3) 

Xm is defined by 

(A4) 

The determinant of B is a Vandermonde determinant 
and is given by the difference product of the xm' 

detB= IT' (Xk-X I) (A5) 
k,l 

where the prime denotes k > I only in the product. 

The unsigned minor of the element Bmk is the deter­
minant of a matrix similar to B except that xm and the 
(k -l)th power is missing. It is given by (MUir, p. 333) 

iJ1mk= IT (xs - x m)pj':'1 (Xl' •.. ,X i)' (A6) 
s'm 

where Pj':'k(XI , ••• ,Xi) is a sum of products of the xm' 

j - k at a time, without repetition and omitting xm • 

Hence 

(B-I)"", = (A -1 )mm(B-1 )km 

_ (- l)k+mPj'k(X l ' ~ 

- XmITs.m(Xs - Xm) 

which is the expression given in the text. 

(A7) 

j half -odd ineger: In this case, since k = 0, 1, ... ,j - ·L 
M is already in Vandermonde form, i. e., in the form 
of (A2), the only difference being in the indexing of the 
elements, k running as above and m = t, ... j. The 
same procedure (except A = 11) gives 

APPENDIX B 

To obtain Eq. (4.15) from the matrices di ( e) for 
rotations about the y axis, we write 

exp( i</m • S) = exp( irpS 1/) exp( iBS y) exp(i1/JS .) exp( - i eS) 

(A8) 

Xexp(-irpS.). (BI) 

In the basis Ijm) 

(exp(irpS.))m' ,m = exp(imrp) om' ,m' 

and 

(exp(ieS)m' ,m =di ( 8)m' ,m 

USing 

d i
( - 8)m.m" = d i ( B)m" ,m' 

Eq. (Bl) gives 

(jm'l exp(il/Jn· S) Ijm") 

(B2) 

= exp[i(m ,_ m ")rp 1 t exp(iml/J) di ( 8)-;;:;;;n di ( 8)" . 
m~-j m .m 

(B3) 

Further, 
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=(_l)m"-m6 (2l + 1) x (j 
1 In' 

j 
-mil 

x (j 
111 

j 
-m 

Substitution in (B2) together with use of 

dl(e)M,Oexp(iMrp)=(- l)M CZ4: lY /
2 Y1M(e, rp) 

gives Eq, (4.15). 

(B4) 
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The symmetrical energy-momentum tensor derived by 
parametrization 

Stig Hjalmars 

Royal Institute of Technology, S-10044 Stockholm, Sweden 
(Received 17 December 1974) 

With reference to a paper by Goedecke in this journal attention is drawn to the fact that already in his 
original paper on the subject Rosenfeld proved the equality of the results of the two general procedures of 
symmetrizing energy-momentum tensors, i.e., the procedure of Belinfante (1939), utilizing the angular 
momentum tensor, and the procedure of Rosenfeld (1940), taking the Lorentz metric limit of the manifestly 
symmetrical energy-momentum tensor of Riemannian space. Since Rosenfeld's presentation of his procedure 
may give the misleading impression that it has something to do with curved spaces, general relativity, or 
gravitational theory, we show in the present paper how his scheme can be recast in a form, where one 
merely takes resort to an infinitesimal transformation of the ordinary Lorentz coordinates to arbitrary 
curvilinear coordinates, describing the same original Lorentz space of zero curvature. This transformation, 
of course, means a parametrization of the variational principle, and the analysis can thus be performed by 
means of a generalization of the theory of parameter-invariant variational principles. An expression for the 
symmetrized energy-momentum tensor is given, which is equivalent to that given by Rosenfeld, and in which 
the transformation functions are seen to vanish identically. The procedure is thus seen to be not so much a 
limiting process as a transformation to curvilinear coordinates, construction of a symmetrical energy-momentum 
tensor, and a transformation back again. 

In a recent paper on stress-energy tensors Goedecke1 

has mentioned that, apart from educated guesswork for 
special cases, there are the following two systematic 
schemes for symmetrizing the tensors in question: 

Lagrangian L(Q A, QA) is a function of certain field com­
ponents QA and their first order derivatives QA,k = aQA/ 
ax·, The variational principle for the field thus reads 

First, we have the formal procedure given by Belinfante2 

in 1939, utilizing the law of conservation of angular 
momentum. Second, we can calculate the Lorentz met­
ric limit of the symmetric, canonical stress-energy 
tensor, derived from the actual Lagrangian, generalized 
to Riemannian metric, 

Before applying these two schemes to various phYSical 
fields, showing in each case that the results are indeed 
equal, Goedecke remarks that to his knowledge the pre­
sumed equality of the results of the two procedures has 
never been proven in general. This remark makes it 
appropriate to recall the fact that such a proof was 
given at an early stage, namely by Rosenfeld3 in the 
paper of 1940, where the method of utilizing Riemannian 
metric for symmetrizing the energy-momentum tensor 
was presented for the first time. 

Now, from Rosenfeld's presentation the reader may 
very easily get the impression that the symmetrization 
of the stress-energy tensor by means of Riemannian 
metric has something to do with curved spaces, general 
relativity or gravitational theory. Since, however, this 
is not in the least the case, it may be of some interest 
to demonstrate that Rosenfeld's procedure can be readily 
cast in a form, where one merely takes resort to an 
infinitesimal transformation of the ordinary Lorentz 
coordinates to arbitrary curvilinear coordinates, de­
scribing the same Lorentz space of zero curvature. For 
such a recast, of which a brief account is given in the 
following, use is only made of the theory of parameter­
invariant variational principles, presented, e. g., by 
Rund,4 and generalized by Linder5 as to include also a 
simultaneous transformation of the field components. 

We start out with ordinary Lorentz coordinates x· 
= (x, y, z, t) with the pseudo-Cartesian metric 1JJ.1 = 7ft 
= o"t - 2ok4 0!4' Consider a field theory, where the 
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OAf L(QA, QA) f14x= ° (f14x = dx1 dx2dx3 dx4) , (1) 

where ° A denotes variation with respect to the field 
components QA' We obtain 

°AL = [:~A - (a~~,. }J OQA = 0, (2) 

giving the extremal equations 

(3) 

We now make the following infinitesimal transforma­
tion of the integration parameters Xk in the variational 
principle: 

and a simultaneous transformation of the field compo­
nents, being a special case of a generalization of the 
theory of Rund, 4 studied by Linder5

: 

QA =QA(Qr, x:,,), Qr=Qr(QA'U~.). 

With J = I x~", I and f14u = du1 du2 du3 du4 we obtain 

(4) 

(5) 

(6) 

where the field components now are Qr(u"') and Xk(U"'). 
Thus, by means of (4) and (5), the new Lagrangian II. is 
considered as a function of Qr, Qr "" Xk", and also, 
necessarily, of X~"'B' " 

The variation or with respect to Qr is seen to be 

OrA = [J a~ - e a~~'k u~) ."'] OQA = ° (7) 

with 

(8) 
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As is seen from (5) any assigned variation of QA can be 
obtained from a suitable variation of Qr 0 The param­
etrized variational principle gives thus 

aL ( aL "') J oQ - Ja-Q U,k =00 
A Ark ,a 

(9) 

writing (),k for () ,,,,U~k after using the first of the Piola 
identities 

(10) 

the Eqs. (9) are seen to reduce to (3), showing that the 
Qr-extremals of (6) are identical with the QA-extremals 
of (1), only, of course, expressed in the new indepen­
dent coordinates and new field components. 

Since the Lagrangian A is independent of :0, the:0-
extremals of (6) are "cyclic," having the form of con­
servation theorems, viz. 

(11) 

where 0xll. is the variation with respect to :0. Since the 
variational principle (6) is parameter-invariant, the 
:0-extremals (11) are not independent of the Qr­
extremals (9), but are satisfied in virtue of the latter 
and can thus be deduced from them. 

By choosing different forms of the transformation 
(4), (5) the extremals (11) can take different forms, 
e. g., different with respect to additive divergence-free 
quantities within the bracket [J. If, e. g., we choose 
Qr = QA and observe that 

oJ ", ax:r- = Ju ,k' 
.'" 

aU~1 s a 
oxk = - U,kU,I, 

,a 

we obtain by virtue of (10) 

o..A J-l=_(L~ +J~Q aU~/) J-1 
W <lxk <lQ A,S aXk 

,0:: A,l ,Ot! t~ 

= - (LOki - oQoL QA'k) = 0, 
Atl ,l 

1. e., the energy-momentum conservation law, ex­
pressed by means of the canonical, nonsymmetrized 
tensor. 

(12) 

(13) 

(14) 

(15) 

Another choice of the transformation, which leads to 
an equivalent of Rosenfeld's procedure, is to let the 
transformation (5) be the transformation of the field 
components under a general coordinate transformation 
(4), according to their transformation properties as 
tensors or spinors. If the original theory is Lorentz­
invariant, we know that under such a transformation 
the Lagrangian A takes the form of a scalar density un­
der Riemannian transformations, the xk", and Xkall, in­
troduced by the transformation (4), (5): occurr'ing only 
in the combinations given by 

(16) 
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and by g",Il,y, entering in the Christoffel symbols of the 
covariant derivatives. This is an evident fact in the case 
of the QA : s being tensor components, and by the way, 
in this case also valid for finite transformations. It is 
also seen to be true for the spinors, in any case for 
infinitesimal transformations, the only ones necessary 
for our purpose. In fact, it follows immediately, e. g., 
from the representations of the matrices of the Dirac 
equation in Riemannian metric, utilized by Goedecke. 

This structure of the transformed equations being 
guaranteed, the variation 0..A can be written 

011. 
0xll. =-0- 0xgas, (17) 

gafl 
where . 

and where, from (16), we have 

(19) 

We thus obtain 

_ ( 011. M) k 1 _ [( 011. 011.) m] 1 0..A~ -0-+-0- X,a7Jklox.S~-7Jml -0-+-0- x,,,, ox. 
gaB gsa. g ",S gSa ,S 

(20) 

The x-extremals are thus, after multiplication with ~/, 

[(~+~)XkaJ =0. (21) 
eg",s egs", ' ,fl 

Since [ ],s "" [J,/<Il' we obtain by means of the second 
Piola identity (10) 

T'I =0 
,I 

with the manifestly symmetrical energy- momentum 
tensor 

,",I 1 1 (011. 011.) 1 l' = T k = x k X -- + -- J-
,a. ,Il og", B egBa. ' 

which contains Rosenfeld's result. 

(22) 

(23) 

Evidently the T'I of (23) is the same, independently 
of the choice of the coordinate system u"'. In fact, Tkl 

can according to (23) be interpreted as the tensor 

1""B = (O(JL) + 0(JL))J_1, 
eg"'fl eglla 

(24) 

transformed to the original, pseudo-Cartesian Lorentz 
coordinate system, the result of such a transformation 
being the same irrespective of the coordinate system 
Uk, from which the transformation is made. The inde­
pendence of the expression (23) of Uk can also be proven 
by a direct, although rather lengthy calculation, as has 
been made in the tensor case for a finite transformation 
by Sandin. 6 

The equivalence of the result (24) with that of 
Belinfante2 is now proved in much the same way as 
made by Rosenfeld, 3 and the reader will find it easy to 
translate Rosenfeld's proof to the present scheme. 

The actual calculation of Tkl according to (23) in spe­
cial cases is of course conveniently performed by the 
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scheme, presented by Goedecke. 1 It may be pointed out, 
however, that it is not necessary to go to the limit of 
unity transformation, when the result is written in the 
form (23), since the transformation functions then vanish 
indentically in the result. The procedure is thus not so 
much a limiting process as a transformation to curvi­
linear coordinates, construction of a symmetrical 
energy-momentum tensor, and a transformation back 
again to the original coordinates. 
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Heisenberg subgroups of semisimple Lie groups 
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The restriction of a unitary representation of a semisimple Lie group to a Heisenberg subgroup Hn is shown 
to be quasi equivalent to the regular representation of H n' Spectral properties of elements of the Heisenberg 
subgroup are described. Conditions under which an element of a semisimple Lie algebra may be embedded 
in a Heisenberg algebra are found. 

INTRODUCTION 

Suppose an element x in the Lie algebra g of a Lie 
group G can be embedded in a three-dimensional 
Heisenberg subalgebra {x, y, z} of g with [x, y 1 = z, 
[x, zl = [y, zl= O. Thus x will, together with y, satisfy 
the CCH. It is known that such an embedding controls 
to a large extent the spectrum of x in the differential of 
any unitary representation of G. In this paper we 
examine the above situation when G is a simple Lie 
group. More generally, we first examine the restriction 
of a unitary irreducible representation 7T of G to an ar­
bitrary Heisenberg subgroup of G with Lie algebra 
{x i' Y J' z}, [x i' Y j 1 = 1) iJz. In particular, upon restricting 
d7T, the differential of 7T, to the generators Xi' Y J' we 
obtain a complete analysis of their spectral properties. 
Their spectral invariants are independent of the rep­
resentation 7T and the semi simple group G. For a class 
of simple Lie groups we obtain sufficient algebraic con­
ditions that an element of the Lie algebra be embedded in 
a Heisenberg algebra. We finally apply these results to 
Poincar~ subgroups of G. 

Let G be a Lie group with Lie algebra C;. Let 7T be a 
continuous irreducible unitary representation of G. If 
x E Cj, 7T(exp(tx)) is a continuous one parameter group of 
unitary operators, and by Stone's theorem has a skew­
adjoint infinitesimal generator d7T(X) such that 7T(exp(lx)) 
= exp(ld7T(X)), 'fI t E R. The d7T(X), x F. r;, have a common 
dense domain and x - d7T(X) defines a representation of 
C; by essentially skew-adjoint operators. 

Now let G be a simple Lie group. Suppose Hnc G is a 
2n + 1 parameter Heisenberg subgroup, that is H n is a 
nilpotent Lie group whose Lie algebra H has generators 
{Xl' ... , x n' Yl"'" Yn' z} with commutation relations 
[Xi' Y J' 1 = 1) iJ z, [Xi' zl = [y J' zl = O. We shall examine the 
restriction of 7T to H nand d7T to the generators xi' Y j" 
First, recall the dual object of Hn' The irreducible 
unitary representations U of Hn fall into two distinct 
classes, according to the scalar value of dU on the 
center (z). Those for which dlT(z) = 0 are one-dimen­
sional, being just lifts to Hn of characters of the vector 
group E 2 n of 2n-dimensional Euclidean space. On the 
.:>ther hand, for each A*-O there exists an infinite-di­
mensional irreducible unitary representation lTx for 
which d1T~(Z) = iX. The classification of these representa­
tions is given by the celebrated Stone-von Neuman 
theorem. 1 

The Hilbert space of these representations may be 
taken to be L 2 (E2 n) and (- i d7T ~(x i)' - i d7T ~(y i)) are 
realized as the usual operators of differentiation and 
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multiplication in coordinate directions. Thus 

The representations {7T x I A E: R - { O}} are mutually in­
equivalent. Thus R - { 0 } parameterizes the infinite­
dimensional representations and the Plancherel formula 
for H n' which gives the decomposition of the regular 
representation of H n, is obtained as described below. 

Fix an infinite-dimensional representation 1T X' If f is 
a C~ function on H n with compact support, define the 
operator 

7T~(J)=.( f(g)7T x(g)dg, dgHaar measure. 
n 

Then 7T x(J) is of trace class and X.~(J) = Tr(7Tx(J)) is 
a distribution on Hn called the global character of 7T~. We 
then have 

where e is the identity of Hn and d"A the Lebesque mea­
sure, which is the Plancherel formula for Hn' 2 The 
Plancherel measure c I A I ndA, where c is a normalization 
constant, is thus concentrated on the infinite-dimen­
sional representations of H n' 

We return now to the situation outlined above. Thus 
Hn s G, G a simple Lie group, and 7T is a continuous 
irreducible unitary representation of G. Denoting the 
direct sum of countably infinitely many copies of a 
representation 7T by 00· 7T, we have: 

Theorem 1: 7T I Hn is contained in 00 • R n, where Rn is 
the regular representation of H. If G is not a group of 
automorphisms of a bounded symmetric domain, 1T I Hn 

is unitarly equivalent to 00 • R n' 

Proof: The decomposition of 7T I H is determined by the 
spectrum of - id.(z). The relations

n 
[xi' Y Jl = 1) iJZ imply 

that adz is nilpotent. 3 Thus z generates a noncompact 
one-parameter subgroup [exp(tz)l, 'fI t E: R. Since 7T is 
irreducible, there is no nonzero vector IjJ in the Hilbert 
space of 7T such that 7T(g)1jJ = 1jJ, 'fI g E: G. The results of 
Moore4 now imply that there is no nonzero vector 
IjJ EH such that 7T(exp(tz))1jJ=1P, 'fI Icc.R. In particular, 
{O} is not an isolated eigenvalue of - id7T(Z). Moreover, 
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it is shown in Ref. 4 that the self-adjoint operator 
- id7T(Z) is unitarily equivalent to the multiplication 
operator acting on the space of square integrable func­
tions from an interval I to an infinite-dimensional 
Hilbert space, where I is either (0,00), (- 00,0), or 
(_00,00). Thus -id7T(Z) = 00· 1/ XdP)., where dPhas 
spectral multiplicity one and is absolutely continuous 
with respect to Lebesgue measure. 

Moreover, if G is not a group of automorphisms of a 
bounded symmetric domain, then 1= (- 00, 00).5 We thus 
have the direct integral decomposition 

7T I Hn = 00 .. ~ 7T). dP). 

and the theorem follows from the absolute continuity of 
dP with respect to the Plancherel measure I XI n dX. 

QED 

Upon further restricting d7T to one of the generators 
x I of the Lie algebra of H n' we obtain: 

Corollary 1: 

- id7T(x.) - 00. f~ XdE, 
• '00 .... 

where I: X dE). is the spectral resolution of the operator 
-id/dx on L2(R). Thus, in particular, -id7T(X) has 
spectral measure absolutely continuous with respect to 
Lebesgue measure, and infinite multiplicity. 

We next discuss when an element x co: C; can be em­
bedded in a Heisenberg algebra {x, y, z}cq[x, y 1 = z, 
[x, zl = [y, zl = 0. We shall assume C; is either complex, 
of type AI' l> 1, Dp l> 2, E 6 , E7 , E 8 , or a split real 
form of one of these algebras. Listed below are the 
classical linear groups whose Lie algebras have the 
indicated type: 

Type 

Apl>1 

D" l> 2 

Complex group 

SL(l + 1, C) 

SO(2l, C) 

Real group 

SL(l + l,R) 

SO(l, l) 

We can show the following theorem. 

Dynkin diagram 

0-0-0- ... -0 

0-0- ... -o-b-o 

Theorem 2: Let C; be as above. Then if x co: C; with adx 
nilpotent, x can be embedded in a three-dimensional 
Heisenberg algebra {x,y,z}c-q where [x,yl=z, 
[x, zl = [y, zl=o. 

This theorem has appeared elsewhere, 6 but for com­
pleteness we sketch a proof. Let us review the root 
theory of C; • 

Let II be a Cartan subalgebra of q. Then H is a maxi­
mal Abelian subalgebra of Cf and by assumption the 
characteristic roots of ad C;h are in the base field of g 
for all h Ell. We have 

Cf=II+Lga 
a 

where QI runs over the nonzero linear functionals (roots) 
on II such that there exists an e", *0 (root vector) in g", 
with adh(e",) = QI(h)ea 1I hEll. The spaces g", are one­
dimensional. A total order can be put on the set of 
roots, and we denote the positive roots with respect to 
this order by <1>+. 
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A positive root is called simple with respect to this 
order if it is not the sum of two other positive roots. 
Any root is of the form L k jQl j where QI j are simple roots 
and k j are integers. If QI = L kj' L I k j I is called the 
level of QI, set 

N= ~ ga: 
aE~' 

then N is a maximal nilpotent subalgebra of C;. Any ad­
nilpotent element of C; can be mapped into N by an 
automorphism of Cf. If e"" e a are root vectors in N, we 
have 

[e e l= {Na,a c a+ a' ex' a 0, 
if QI + i3 is a root, 
otherwise. 

Moreover, since the Dynkin diagram of Cf has no double 
bonds, for any roots QI, i3 "" <1>+, 2 QI + f3 is never a root, 
so lea' eex+al=o. 

Proof of Theorem 2: Suppose x r=:: C;, adx nilpotent. By 
the above remarks we may assume without loss of 
generality that x E N. Thus 

Suppose first there exists a c '" * 0, where QI is not the 
highest root of <1>+. Then there exists a positive root i3 
such that QI + i3 is a root, and for this i3 we have [x, eal 
*0. Now let i3 be the positive root of highest level such 
that [x,eahO. Then [x,e 6l=0 if level(li)> level(i3). We 
assert that {x, ea, [x, eal} is a three-dimensional 
Heisenberg algebra. 

For the remainder of the proof, all sums run over 
all positive roots QI such that QI + i3 is a root. Now 
[x,e8l=L d",+ae",.a' so[[x,ea],eal=Lda+a[e",+a,eal=o, 
since [ea+a,eal=O for all QI. Also 

[[x,eal,xl=[I: d",+a e",+a' xl 
=6 d",+a[ea+a,xl=o, 

since level (QI + (3) > level i3. Finally, if x = C ",e a' QI can 
be mapped onto a simple root by an element of the 
Weyl group, which induces an automorphism of x onto 
the root vector corresponding to a simple root. The 
above argument can now be applied. QED 

We conclude with a brief discussion of simple Lie 
groups containing the Poincart! group P. First, suppose 
G is one of the simple Lie groups whose Lie algebra was 
discussed above. Let Po denote the energy operator in p. 
0' Raifeartaigh 7 has shown that adPo is nilpotent. Hence 
we conclude from Theorem 2 and the Corollary to Theo­
rem 1 that the spectrum of - i d7T(Po) is (- 00,00) and the 
spectral measure is absolutely continuous with respect 
to the Lebesque measure. In fact, 8 shows that this can 
happen in any simple Lie group which is not the group 
of automorphisms of a bounded symmetric domain. On 
the other hand, for certain diserete series representa­
tions of a group of bounded symmetric domain, ad-
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nilpotent elements may have one-sided spectrum (0,00) 
or (- 00,0), and in these representations we may have 
only representations with strictly positive or strictly 
negative energy states occuring in 7f I p' In this connec­
tion, see Ref. 9. 
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The spatially cut-off Hamiltonians for the models (ifiiii<l», and (ifi ifi<l>' + <1>',11), with M > N are 
bounded below uniformly in a momentum cutoff, by using the semi-Euclidean formulation. 

1. INTRODUCTION 

Two interactions are considered: the generalized 
Yukawa (GY2) and the Yukawa (Y2). These are (?t1P<f!rfJ N 

+ rfJ2M)1+1 and (?tijj<f!rfJ )1+1 respectively. The corresponding 
spatially cut-off Hamiltonians are shown to be bounded 
below provided M> N. For Y2, this problem was first 
solved by Glimm in Ref. 1. GY2 was bounded below by 
Federbush in Ref. 2. The methods used in this paper 
constitute a considerable improvement over those in 
Ref. 2. In particular they can be extended to prove that 
the lower bound is linear in the volume. This will be 
given in another paper. Also Y2 and GY2 can be treated 
in a uniform manner. This being so, the proof is given 
for Y2, and details for GY2 are given only in the one 
place where the proofs diverge appreciably. 

The lower bound is obtained by estimating, uniformly 
in a momentum cutoff and the expectation state, 

Eo =-lim -T
1 

In(e- T
") , 

T~oo 

(1. 1) 

where H is given by (1. 3). For simplicity, Eo is first 
estimated for the Fock vacuum. The details for estab­
lishing a bound uniform in the expectation state are 
provided in an appendix. Eo is bounded below, uniform­
ly in the expectation and momentum cutoff, provided 

(e- T") ~C1C[, (1. 2) 

where C2 is independent of the state and the cutoff. 

In Sec. 2 (e- T ") is expanded by a partly renormalized 
type of perturbation expansion similar to those used by 
Glimm and Jaffe in Refs. 3, 4. The expansion is gen­
erated by applying two identities referred to as P 
(perturbation) and C (contraction). As in Ref. 4, the 
P identity is applied in unit intervals in the time axis so 
that the eventual bound for (e- T

") will have the form of 
a product of boundS over unit intervals making up [0, T] 
as required by (1. 2)~ The expansion achieves two objec­
tives: First the divergent quantities are exhibited and 
cancelled, and secondly the kernels of the remaining 
nondivergent quantities are rather well behaved. To in­
crease this good behavior, one further operation is 
performed after the expansion is complete: The uncon­
tracted fermion legs are given an effective momentum 
cutoff by moving them a short distance across neighbor­
ing exponents. This is so arranged that no further con­
tractions occur. 

In Sec. 3, by methods outlined in Ref. 5, all fermion 
operators are removed by an estimate that has been 
called "defermiation. " The total Fock space is regarded 
as being fibered over Nelson space, and operators are 
estimated by taking the norm over fermion Fock space 

at each point in Q space [Nelson space is L2(Q)]. The 
result is an expression which involves only commuting 
boson operators, and this can be estimated in a conven­
tional manner. The antisymmetry of fermion wavefunc­
tions enters into this "defermiation" in an essential 
way. Some of the operators are bounded pointwise in Q 

space because of the one particle per mode property. 
The boundedness of the exponential operators depends 
on the anticommutation relations. This estimate is 
postponed to Sec. 7. 

In Sec. 4, the convergence of the expansion and thence 
(1. 2) is proved with the help of an estimate on boson ex­
pectations, whose proof is postponed until Sees. 5 and 6. 
The proof of convergence involves estimating sums over 
fermion graphs. These estimates closely follow proce­
dures used by Dimock and Glimm in Ref. 6. 

Section 5 contains an estimate on boson expectations. 
The methods are very similar to those in Ref. 6. The 
only modifications made are necessary to handle the 
more singular kernels resulting from the expansion, as 
compared with the kernels assumed in Ref. 4. Section 6 
is devoted to the proof of some estimates on kernels 
which are used in Secs. 4 and 5. Finally, in Sec. 7, the 
estimate on exponential operators, referred to in Sec. 
3, is proved. This estimate substitutes for the Wick 
ordering bound used in P(rfJ)2. A Simple form of Glimm's 
dressing transformation, in which only the fermions are 
dressed, is used to bound from below the pair creation 
and annihilation part of the interaction (cf. Ref, 2). In a 
similar way, a corresponding bound for GY2 can be 
proved, with the aid of the rfJ2M term in the GY2 interac­
tion. Dressing only the fermions has the merit of giving 
a pointwise bound on Q space. To complete the proof, a 
bound on the scattering part of the interaction is re­
quired. At this point Y 2 and GY2 seem to be different. 
In particular it is here that M> N is needed, whereas 
Y2 can be considered as a special case of M = N. This is 
in fact the only Significant difference between the proofs 
for Y2 and GY2• Details have been given for both. The 
Hamiltonian H is given by 

H=HoB+HoF+?tf : ~K(X)<f!K(X): rfJ(x)g(x)dx 

- tomk f g2(x): rfJ2(x): dx - E K, 

where Ho Band HOF are the free boson and fermion 
Hamiltonians: 

HOB = f jl(k)a*(k)a(k) dk, 

HOF = f w(p)[b*(P)b(P) + b'*(P)b'(p)]dP. 

(1. 3) 

The subscript K represents a sharp momentum cutoff. 
g(x) is a nonnegative spatial cutoff satisfying 
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g E LP "liP: 1 "" P "" 00, 

3E>0:f Ik(k)12(1+ Ikl')dk<oo, 

f li(k) 1413 (1 + Ikl')dk<C(\ 

(1. 4) 

These assumptions are quite mild: g can be a charac­
teristic function, for example. The counterterms are 
given by perturbation theory: 

Let 

2 ( A 2l W
Z 

+ pZ - M Z 1 om x "'- - 2 - dp, 
7r Ipl"X W 2w 

v = A I : ~x(x)lj!x(x) : cp (x)g(x) dx - tom~ 

xl ~(x): cpZ(x) :dx- E K. 

The interaction is broken up in the following way: 

A I : ~K(x)h(x) : cp(x)g(x) dx 

(1.5a) 

(1. 5b) 

(1. 6) 

'" f
lPjl 

a [b*(PI)b'*(Pz) + b(- PI)b'(- pz)] Wp(PI, Pz, k) 

Ipzl"K 

X cp(k) dPI dpz dk + flPjl"X [b*(PI)b(- pz) + b'*(PI)b'(- P2) 

IPZI"K 

(1.7) 

where 

1 
cp(k) = J-LMk) [a*(k)+a(-k)], 

( ) A ~ ( ) (Wl W2 - PlP2 - l\£2) 1/2 
Wp Pp p2 ,k =-(47r)J/2g Pl+p2 +k \ W

l
W

2 

Xsgn(PI-P2 ), (1.8) 

W ( ) A ~( ) (W l W2 +PlP2 +!\f2)1/2 
S PpP2,k =-(47r)1/2g Pl+p2 +k \ W

1
W

2 
. 

The cutoffs in momentum that are used in the proof will 
all be selected from a sequence (Kn) where n is a posi­
tive integer. Cutoffs apply only to fermion momenta 
until Sec. 7, in which bosons are cut off: 

(1. 9) 

()i will be chosen large. The term "lower momentum 
cutoff" is used to indicate a momentum cutoff of the 
form 

J(Pt>Pz) '" characteristic function of the set {either 

Ipt \ '" L or Ih I? L} for some L. (1. 10) 

2. THE EXPANSION 

Firstly, (e-Tlf-; is rewritten in Nelson space N. In 
Sec. 7 it is shown that a quadratic boson monomial, 
c(cp), depending on K and an E> 0, can be chosen so that 

HOF + V +c(cp)"" - O(K'), HOB - c(cp)"" - 0(1). (2.1) 

By the Trotter product formula, 

(e-Tlf-; = lim «exp{- T/N{HoB - c(cp)]} 
N-~ 

(2.2) 
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Define HOF(s), V(s), and c(cp, s) by substituting in HOF, 
V, and c(cp) 

cp(k) - cp(k, s), b#(P) - b#(P, s), (2.3) 

where cp(k, s) is the partial Fourier transform of a sharp 
time Euclidean boson field on Nelson space. b# denotes 
b*, b, b'*, or b' and the time dependence in b#(P, s) is 
dummy, Le., b#(P,s)",b#(P). It will be used to define a 
time ordering. 

By the Feynman-Kac-Nelson formula, as given in 
Ref. 7, 

exp{- t[HOB-c(cp)]}",EoU(t)exp[+ Jot c(cp, T)dT]Eo 

(2.4) 

(where Eo projects onto the time zero slice of Nelson 
space, and U(t) is the unitary operator induced by 
translation in time by t], and the Markov property: 

(e-
T
") =~~ T(C~I exp{- T/N{HoF(jT/N) + V(jT/N) 

+c(cp,jT/N)] exp[ + fo T c(cp, T) dT]) )N' (2.5) 

T is a time ordering operator applying to the noncom­
muting fermion operators. The subscript N means that 
the expectation for the boson fields is taken in Nelson 
space with respect to the Nelson space vacuum. (2. 5) is 
rewritten in the following symbolic manner: 

(e- TH
) = T( exp{ - ,r(HOF(T) + VeT)] dT})N' (2.6) 

In order to obtain an estimate with the correct depen­
dence on T, (2.6) is rewritten as 

(e- T
") '" T(n exp{- f [HOF(T) + V(T)]dT}h, (2.7) 

[ [ 

where II denotes integration over the time interval 
[I, 1+ 1] and the product runs over integers I such tpr' 
[0, T]=U[[I,I+ll. 

Define 

A(T) =HOF(T) + VeT), An(T) =HoF(T) + V.(T), (2.8) 

where Vn(T) is given by replacing K by Kn in (1. 6). The 
two identities (P) and (C) which generate the expansion 
are now given. The Duhamel formula 

exp(- A) = exp(- An) - fol ds exp(- sA)(A - An) 

xexp[- (1- s)An] (2.9) 

can be applied to factors in finite time-ordered Trotter 
approximants and a strong limit taken to show that 

TEa exp[-l°ZA(T)dT]Eo z "I I 

= TEoz exp[- J~;z An(T)dT]Eol 

- TEo 1"Zds[A(s)-An(s)] z 01 

xexp[- IS An(T)dT- fOZA(T)dT]Eo (P) 
"t S I 

(it is hoped that T, the time-ordering operator will not 
be confused with the time T), where E 02 , E"j project 
onto time slices at 01 and 02 in Nelson space and 0'1 .,; O'z. 
This formula remains valid if there are other operators 
present at times in the interval [ai' 02]' 

By integrating the derivative of exp{- (1 - s)[A + W (pm 
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xb(P) exp(- sA), where b(P) is to be smeared by an L2 
function, it can be shown that 

b(P) exp(- A) = exp{- [A + w(P) )}b(P) 

+ Jo 
1 ds exp{- (1- s)[A + w(P)]} 

X[V,b(p))exp(-sA). (2.10) 

Since iterated applications of (P) will result in stepwise 
time dependent momentum cutoffs, (2.10) is extended by 
allowing such cutoffs. Let 

A~S) = HOF(S) + VK(s), (2.11a) 

where K =K(s) is a stepwise time dependent momentum 
cutoff and VK(s) is defined by replacing K by K(s) in the 
definition of V(s). Then it follows that for a2;" a;,. a1 

TEa b(p, a) exp[ - j a2 AK( r) dr]Ea 
2 a1 1 

= TEa exp[ - w(p)(a - at)]b(p, at) exp[ - j a2 AK(r) dr]Ea 2 a1 1 

+ TEa j ads exp[ - w(p)(a - s)][VK(s), b(p, S)] 
2 a1 

Xexp[- ja2
AK(r)dr]Ea . (2.11b) 

at t 

A monomial R =R(b#(Sl), b#(S2),"" b#(sn» can be in­
cluded so that 

TEa b(p,a)Rexp[- ja2
AK(r)dr]Ea 2 at 1 

= TEa2 exp[ - w(p)(a - a1llb(p, a1)R 

X exp[ - j a2 AK( r) dr)Ea 
a1 1 

+ TEa R ja ds exp[- w(p)a- s))[VK(s), b(p, S)] 
2 a1 

xexp[-ja2
AK(r)dr]Ea +T 6 Ea 

a1 1 Sj ~a 2 

XR( ..• , exp[- w(p)(a- s/)][b(P), b#(s/)], ..• ) 

Xexp[- r2AK(r)dr]Ea. 
a1 1 

(e) 

There is a similar formula for b', and the adjoints are 
used to move b*, b'* to the left. 

The expansion for (e-T~ is obtained as follows: An 
interval 1 is selected and (P) is applied to the corre­
sponding factor exp(- J IAdr) so as to interpolate be­
tween A and A o, i. e., choose n = 0 in (P). The inter­
polating term has a new "P" vertex. (e) is now used 
to move the corresponding b#'s over to the vacuum 
where they annihilate. In the course of this, new "e" 
vertices are formed; these are not further contracted. 
After renormalization, the description of which is 
postponed for the moment, (P) is applied again in the 
same interval to interpolate between A and A 1• (e) is 
then applied as before, followed by renormalization, 
and so on. If (P) has been applied in a given interval 
n times, then the (n + l)th application in 1 is used to 
interpolate between A and An. Eventually, the expansion 
will terminate for 1, because, if n is large enough, 
Kn;" K. Then a new interval is selected. 

It is possible for a P vertex to contract twice to a e 
vertex. The corresponding factor is represented by a 
subgraph. See Fig. 1. The lines represent fermion con­
tractions. s,,+l and s" are the times of the vertices which 
are to be integrated over. s,,+l is to be integrated over 
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[0, T). This will give a result that diverges as K - 00. 

Split the range of integration by 

Jo T dSv+1 = J I ds"+l + JICds"+t 

The complement is with respect to [0, T]. 1 is the in­
terval containing the P vertex. The integration over JC 
is not divergent. Observe from (e) that the exponent 
does not depend on sv+t. Furthermore, the counterterms 
associated with v occur in a term with the same ex­
ponent as that in the term containing the factor R. v, 

represented by Fig. 1. Hence both terms may be com­
bined to give a new one with a factor (2.12), given be­
low, assigned to v. For later use note that, when v is 
renormalized, the cutoff in the exponent is constant in 
the interval (s", 1 + 1); also R." vanishes unless sv+1 
E:: (s", 1 + 1), because otherwise the momentum cutoffs on 
v and v+ 1 are diSjoint: 

{J1R."dsv+1 +tDm~J g2(x): 1}(x,s,,) :dx+EJ. (2.12) 

If the P vertex was introduced during the nth application 
of (P) in 1, then 

Dm~=6mi-6mi , E"ooEK-EK . (2.13) 
0-1 0-1 

The expression in the curly brackets will be referred to 
as a "cancelled renormalization subgraph. " The e ver­
tex will be referred to as having been "integrated out. " 
Introduce the Euclidean momentum k = (kO, kt) and write 
(2.12) as 

where 

+ (t61n~/41T)~g(kl- k~) exp[i(k~ - kg)s,,], 

DE" = f 1+1 ds,,+t J 1 Wp (P1>P2, k) 12 
s" 

xexp{- [Wt +W2 + j.L(k)] (sv+1 - svl} 

XPn(P1>P2)}l-1(k)dP1dP2 +E", 

(2.14) 

(2.15) 

(2.16) 

where p(P1> P2) = characteristic function of the set: 
either iP1i ;,. Kn or iP2i;,. Kn. For a given term in the 
expansion, let 

p(1) = largest fermion cutoff in the exponent in 1. 

(2. 17a) 

Suppose, for this term, there are np(1) P vertices in 1; 
then by the way in which the expansion is defined and 
(1. 9) it follows that 

p(1) = n p (1)"'. (2. 17b) 

When the expansion is complete, one last operation, 
referred to as "smoothing the uncontracted legs," is 
performed. Each uncontracted fermion annihilation 
operator in 1 with momentum above P (1) is moved to the 

~ 
Sv~v 

FIG. 1. A divergent subgraph. 
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right, or backwards in time, halfway toward the next 
vertex, excluding those C vertices which have been in­
tegrated out because they are part of a cancelled re­
normalization subgraph [see (2.12)1. Similarly, uncon­
tracted creation operators with momentum above p(I) 
move to the left. Suppose such an operator associated 
with vertex v is moved halfway toward vertex v'; then 
the corresponding momentum acquires an effective 
momentum cut-off given by 

exp[- w(P) 1 sv- sv·I/2], (2.18) 

where 

w(P) =0 if Ipi ~p(l) (2,19) 
=w(p) if Ipi >p(l) 

and sv, sv', are the times of the vertices v and v' 0 No 
contractions can occur in the course of smoothing the 
uncontracted legs, because the momenta of the opera­
tors that are moved are too high to contract with the ex­
ponent, and they are not moved far enough to contract 
with any vertex. The expansion is written in the form 

(e-THj ~:B J dSg T<Kg n exp(- JIB(T, Sg) dT}) N, 
I.' I (2.20) 

where g is a label that uniquely specifies the possible 
vertices and their contractions. g comprises: 

(1) a function 1 -n(I) specifying the num-
ber of vertices in I. 

(2) for each 1, a function from 
{1, 2, 3, ... , n(I)} into {p, C}, This labels 
the vertices and specifies whether they are 
P or C vertices. 

(3) a graph F on Ll n(l) labelled vertices 
with two lines leaving each vertex. Each 
C vertex may have at most one open line, 
that is, a line which does not connect to 
another vertex. P vertices have no open 
lines. Open lines are labelled "low mo-
mentum" or "high momentum" to specify 
whether they have been moved in smooth-
ing the uncontracted legs. 

(2,21a) 

An open line pointing right represents an annihilation 
operator; an open line pointing left represents a crea­
tion operator. Lines which are not open represent con­
tractions resulting from using (C), 

To describe Kg, introduce the following notation: 

(2. 21b) 

[see (1. 8)1; J v(Pl,P2) is a cutoff on the fermion momen­
ta associated with the vertex v. In general J v will de­
pend on g and the times of the vertices. For P vertices 
J v contains a low momentum cutoff depending on g and 
v [see (p)l. Let 

Sg = (sv)v E (vertices)' 

where v runs over the vertices that have not been in­
tegrated out [see (2.12)1. Let 1 denote a line in F and 
let t/ be the time difference associated with this line. 
For I connecting vertices v and v' 

(2.22) 
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If 1 is an open line, then t/ is the quantity I Sv - sv' I given 
in (2.18). 

With each vertex v which is not part of a cancelled 
renormalization subgraph (note that v can be a vertex 
in a renormalization subgraph with P and C vertices 
in different intervals) associate the kernel 

(2. 23a) 

where, if both lines II and l2 leaving v are not open, 

Qv(Pvl, Pv2, k) = Vv(Pv1> Pv2, k) Jv(Pv1> Pv2) 

x exp[ - w(Pvl) t,/21 exp[ - W(Pv2) t l /2]. 
(2. 23b) 

If one line, say l1> is open, then 

Qv(PvbPv2, k) = Vv(Pv1> Pv2, k) J v(P vl, Pv2) 

x exp[ - W(Pvl) t,/2] exp[ - w(Pv2) ll/21. 

(2.23c) 

If v and v' belong to a cancelled renormalization sub­
graph, and v is the P vertex, then associate with (v, v') 
the kernel 

which is given by (2.15) and (2.26). Kg, the boson val­
ued kernel of Kg, is formed by contracting the kernels 
(2. 23a) according to the lines in the fermion graph F 
which K specifies. To contract two legs with momenta 
Pv1> and Pv'1> say, a factor D(Pv! +Pv'l) is inserted, and 
the arguments are integrated over. 

The quantity B(r, Sg) in (2.20) is defined as follows. 
For a given interval I, suppose that the P vertices are 
times SI·" s" with 1= So ~ sl ~ s2 " .•.. ~ sn ". s"+1 =1 + 1; 
then for TEl let 

B(r, Sg) =Aj(r) for Sj" r< si+1> where i = 1,2, ... , /l. 

(2.24) 

The range of integration in (2.20) is such that each C 
vertex in the interval 1 is to be integrated over 1. With 
the same definitions as in the paragraph above, the P 
vertices in 1 are to be integrated over the time ordered 
region 

(2.25) 

3. DEFERMIAT10N 

In (2.20), the operator Kg has the form of a kernel 
K which is a function on the uncontracted fermion mo-

g' #, 
menta and Q space, smeared against a product of b s 
at different times. Consider the special case wherein 
Kg is smeared by only two b#'s and only depends on 
fermion modes in a finite-dimensional subspace, S, of 
the one particle fermion space. Furthermore, suppose 
that the operator B(T, Sg) in (2.20) likewise depends only 
on modes in S. Then the fermion Fock space factors, 
and one need only consider the Fock space on S, which 
is a finite-dimensional Fock space, In this case, opera­
tors can be regarded as finite matrix-valued functions 
on Q space: 

T<Kgn exp(- JIB(r,sg)dr»N 
I 
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= T(Kgexp(- Jo T B(T, Sg)dT»N 

~ ( II T(Kg exp(- J/ B( T, Sg) dT) II F) N, (3,1) 

where 1\ II F denotes the norm over fermion Fock space 
at a single point in Q space. It follows from the defini­
tion of the time ordered exponential that as an inequality 
almost everywhere on Q space 

\I T [Kgexp (- iT B(T, Sg)dT )JF 
~ 1~~ /I T 0g j~1 exp [ - ~ B ( ~ , S g ) ])t . (3.2) 

To estimate the right-hand side, write 

Kg =6 6 (Kg)j! b~ b1 and II bf II = 1. 
# iJ 

The sum over # is over possible ways of assigning the 
b #, s to the open lines specified EY g. i and j refer to ,Ewo 
orthonormal bases for S, and (Kg)iJ is the matrix of Kg 
with respect to these bases, Then (3.2) implies 

IIT[Kg exp (-lT B(T,sg)dT )JII F 

I ~1~~ Zi# I(Kg)jJI 111I exp [ -~ B(~ ,Sg) Jt, 
Suppose that as an operator estimate 

B(T, Sg) ~ - d(<p, T, Sg), 

(3.3) 

(3.4) 

where d(<P, T, Sg) is a real-valued measurable function 
on Q space. Then from (3.3): 

II T{Kgexp(- foT B(T, Sg)dTJ) II F 

~ 0 I (Kg)l! I exp( loT d(<P, i, Sg)di]. (3.5) 
1./.# 

This holds for any choice of bases in S. Taking the 
infimum over bases implies 

II T(Kg exp( - foT B( T, Sg)di]) II F 

~ 6 Tr IKg I exp( + JOT d(<P, i, S,)di], 
# 

(3.6) 

where IRgl = (K;Kg)1/2, identifying the kernel Kg with 
the corresponding operator on L 2 (R), (3.1) and (3,6) 
imply 

T(Kg r; exp[ - II B( T, sg)di]) N 

~ '0 (Tr IKgl IT exp[ + II d(<P, T, Sg)dT]) N. (3,7) 
# r 

When Kg is smeared by more than two b#'s, it is a 
tensor product of two-fermion kernels as in (3.7). This 
is because any fermion graph is a collection of sub­
graphs which are either lines with two open ends or 
closed loops, The open lines correspond to two-fermion 
kernels, and the loops are functions on Q space, which 
only contribute numerical factors at a given point in Q 
space. Define the trace of a tensor product to be the 
product of the individual traces. The restriction to a 
finite number of modes is removed by a limiting argu­
ment. Therefore, the following lemma holds: 
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Lemma: Suppose d(<P, T, Sg) is a real-valued mea­
surable function on Q space and that, as operators, 

B(i, Sg) ~ - d(<P, T, Sg). 

Then 

T(Kg r;. exp[ - II B( T, s,) di] >n 
~ (Tr IKg I IT exp[j d(<p, T, Sg) dTD N(IT 2n ([). 

I I I 
(3.8) 

Recall from (2. 21a) that n(J) is the number of vertices 
in interval I. The factor 2"(1) overcounts sums over #. 

4. CONVERGENCE OF THE EXPANSION 

In Sec. 7, it is shown that, given E> 0, '3d(<P, T, Sg) as 
in Lemma (3. 8) 

B(i, Sg) ~ - d(<P, T, Sg), 

(IT exp[ + 2 I d(<P, i, Sg) di]) N ~ IT [O(l)]p(J) ' 
I I I 

(4.1a) 

(4.1b) 

[prJ) is defined by (2, 17a)]. (2.20), (4.1), Lemma (3.8), 
and the Cauchy-Schwartz inequality imply 

(e-T~ ~ '0 I ds,.«Tr IKg I )2) V2(l} [O(l)]["(I)+p(J)'l (4.2) 
g 

Let l be a line in a graph. Define 

d, = max{l, number of complete unit intervals that l 

crosses}. (4.3) 

Let {g: n(I)} denote the set of all g with a given neIl 
specified for each I. The following estimate is used to 
count fermion graphs: 

6 (IT d~5) ~ IT [0(1)]nU)(2n(I)]! 
(g:n(I)} , I 

(4.4) 

The product is over all lines in the fermion graph, F, 
specified by g [see (2. 21a)]. A factor, 2nU>, for each 
interval, I, overcounts the number of possible functions 
in (2. 21a), part (2). A factor O(l)n(I) for each I over­
counts the number of ways in which C vertices can have 
open lines. Therefore, the proof of (4.4) is reduced to 
showing that 

6 n d j 5 ~ IT ([0(1)]n(J)[2n(I)!), (4.5) 
G ,E.G I 

where the sum runs over all graphs with no open lines, 
which can be drawn on L:rn(I) vertices, where the ver­
tices are fixed in advance to have either one leg or two 
legs. This is proved by Dimock and Glimm, Lemma 
(2.6) in Ref. 6. (4.2), (4,4), and (2. 17b) imply, for 
E> 0, 

(e-T~ ~ 6 (IT [O(I)][nW+n(I)''''l[2n (I)] !) 
(,,(I)} I 

x sup {(I1 dr) J dsg«Tr IKgl)2>V2}. 
{g:n(ll} , 

(4.6) 

Define dv to be the sum of the contraction distances d 1 

over lines l that leave vertex IJ. Let Lv be the lower 
momentum cutoff in J v (Pt.P2) [see (2. 21b)]. In Sees. 5 
and 6 the following lemma is proved. 

Lemma: '31) > 0: ym ~ 0, 

I dSg«TrIKgl)2)V2 

~ IT ((0(1) log2n(I)]" {()[n (I) !F IT [1 +Lvl-~d;m). 
I VE.l (4,7) 
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The product over II E I means the product over all 
vertic es in the interval I. (4. 6) and (4. 7) imply, for 
E> 0 and for all m ~ 0, 

(e- TH > '" 0 (n[O(1)log2n (I)][n([)+n([)'''l[n(l)!]4) 
{.(I)) I 

X sup (n n (1 +L"t"d~m). (4.8) 
{g:n(Il) I "EI 

The m has been relabelled to include the dr in ·(4.6). 
Recall from the description of the expansion in Sec. 2 
that if II is a P vertex formed during the (n + 1)th appli­
cation of (P) in a given interval I, then L" =Kno If II is a 
C vertex, L" = O. By replacing T/ by T//3, if necessary, 
the factor (1 +L") in (4.8) can be replaced by (1 +L~), 
where L~ = L" if II is a P vertex, but if II is a C vertex, 
L~ is the lower momentum cutoff of a P vertex con­
tracted to II. If there are two such P vertices, then the 
largest lower momentum cutoff is chosen. The expan­
sion is such that every C vertex is contracted to a P 
vertex, and, of course, no P vertex can contract to 
more than 2 C vertices. 

For a fixed I and n(1), define g (n(l)) to be the set of 
all g which have n(1) vertices in L (4. 8) implies, for 
E> 0 and all m > 0, 

(e- TH > '" n[0 [O(1)IOg2n (1)1[n(l)+ncn'''1(n(1)!)4 
I n(1) 

X sup (n [1 + L~]-"d~m)J. (4. 9) 
gEgCn([) "EI 

In order to prove (1. 2) and thereby bound (1.1) for the 
Fock vacuum, it suffices to show that, for sufficiently 
large m and a, 

sup (n (1 +L~r"d~m)", 0(1)[n(l)! ]-5. (4.10) 
CEY·(n(I) VEl 

For, given m and a such that (4.10) holds, choose E 

small so that EQI '" 1. Then (4.9) and (4.10) imply (1. 2) 
for the Fock vacuum. 

For the proof of (4. 10) the following notation is in­
troduced. For a fixed interval I, n(I) , and g E g (n(l), 
define, for i =2, 3, 4,·0., C j to be the set of all C 
vertices in I which contract to a P vertex via a line l 
with ell =i. [dl is defined by (4.3).] Define C1 to be the 
union of the set of P vertices in I with the set of all C 
vertices in I which contract to a P vertex via a line l 
with d l = 1. The fact that a C vertex can contract to at 
most 2 P vertices implies that 

sup n (1 + L~t"d~m 
KE(jCn(Il) "'cJ 

'" sup n n (1 + L~r"d~m 
( 

ro )1/2 

cEgCn([) j=1 ",,=,Cj 

'" sup (l1 i-m I c j I n (1 + L~)_")1!2, 
CEgCn{[)) .=1 VECj 

(4.11) 

where I C j I = number of elements in C j • Define Ci to be 
the set of all P vertices that are either in C i or contract 
to C vertices in C j. The definition of L~ and the fact 
that at most two P vertices can contract to a given C 
vertex imply that 

( )
1/2 

n (1 +L~r" '" n (1 + L v )-" • 
vECi VE<\ 

(4.12) 

The definition of Ci implies that there exists an in­
terval, I', that contains at least ICi l/12 of the P 
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vertices in Ci • Since these P vertices are in the same 
interval, as a consequence of the way in which the ex­
pansion is generated, they must all have different 
cutoffs, L", selected from the set {K1>K2,K3,···}. Re­
call from (1. 9) that K j =j"; therefore, 

n .... (1+Lvt""'(IC i l/12!t"". (4)13) 
"ECl 

(4.11), (4.12), and (4.13) imply that 

sup n (1 + L~t"d=m 
CEg (n(Il) vEl 

sup n (i-mIC i I/4(IC i l/12!r"" /41, 
'" KEg(nU) i=1 

(4.14) 

where g E g(n(1)) implies that Li I Ci I ~ n(1); therefore, 
the right-hand side of (4.14) can be majorized by taking 
the supremum over I Ci I such that 

~ ICi I =n(l). (4.15) 
• 

This is done by first taking the log and using Lagrange 
multipliers, i. e., maximize 

J=- ~[m l~iIIOgi+¥C~~I)(IOg I~;I -1)J 
+A(n(I)-.0lc j l) (4.16) 

By Sterling's formula, the right-hand side of (4.15) is 
majorized by the supremum of e J

• On differentiating, 

(m/4) logi + (T/a/48) log( I C i 1/12) + A = 0 for i = 1, 2,3,···, 
ro 

.0 Ic·1 =n(1). 
i=1 • 

(4.17) 

When (4. 17) hold, 
ro 

J=!; ICi I (A+T/a/48) =n(I)(A+T/G/48). (4.18) 
.=1 

If m/ a ~ 2T//12, A can be eliminated from (4.18), by 
using (4. 17), to show that 

J'" - n(I)[(T/a/48) 10gn(1) - O(T/a)]. (4. 19) 

(4.19) and (4.14) imply (4.10). 

This completes the proof of boundedness below for 
the Hamiltonian except for the estimates (4.1), which 
are proved in Sec. 7, and Lemma (4.7), which is 
proved in Secs. 5 and 6. 

5. ESTIMATE ON BOSON EXPECTATIONS 

In this section the left-hand side of (4. 7) is estimated 
in terms of norms on kernels. The estimates on these 
norms, needed to complete the proof of Lemma (4.7), 
are given in Sec. 6. The method is based on techniques 
from Ref. 6. A more elegant, but less elementary, 
method relying on Lp estimates and hypercontractivity 
is also outlined. This is taken from Ref. 7. The author 
is grateful to Ira Herbst for drawing his attention to the 
Lp method. 

Let A denote a vertex at time s).. Let ki = (kL k~) be 
Euclidean momenta. Define 

H). (k1, k2) = J QA (P1,P2, kl)Q). (P1> P2, k~) dP1 dP2 

(5.1) 
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where Q~ was defined by (2.33). Consider the special 
case in which Kg is the kernel of a two-particle 
fermion operator, as in (3.7); then the fact that the 
trace norm of a product of operators is majorized by 
the product of the Hilbert-Schmidt norms of the in­
dividual operators implies that 

(TrIKgIJZ ~ n I HA(kt. k2)t/>(kt )t/>(-kz) dkt ik2• (5.2) 
A 

A runs over the vertices specified by g. (5. 2) continues 
to hold when Kg is a tensor product of two-particle 
fermion operator kernels. Equivalently, one can say 
that (5.2) holds for any g with a fermion graph F [see 
(2. 21a)] consisting of lines with open ends. In fact F 
may also include nondivergent closed fermion loops, 
because these are traces of products of operators of 
the form implied by the right-hand side of (5.2). There­
fore, a general Kg can be estimated by 

(Tr IKg I)z ~ n f HA (kt , kz)t/> (kt)t/> (- k 2) dkt dkz 
A 

xn (f Rj>(kj,k2): t/>(kt)t/>(- k 2) :dkt.dkz + 1iEY, 
j> 

(5.3) 

where A runs over all vertices which are not part of 
cancelled renormalization subgraphs and Il runs over 
P vertices which are part of cancelled renormalization 
subgraphs. Rj> and 1iEj> are given by (2.15) and (2.16). 
(5.3) can be rewritten as 

(Tr IiI' 1)2 ~ 6 n [j H~(kt, kz)t/>(kt)t/>(- k z) dk t dk2] 
s ~ 

j>t E s. j>2E sc 

x [j R"t (kt, k2) : t/>(kt)t/>(- k 2 ) : dkl dkz][ 1iE j>2]' 

(5.4) 

where S runs over subsets of the set, containing twice, 
P vertices which are part of cancelled renormalization 
subgraphs. The complement of S is with respect to this 
set. 

Define 

(5.5) 

This is the Fourier transform of the covariance opera­
tor of the free boson measure. The vacuum expectation, 
or alternatively the integral with respect to the free 
measure of the right-hand side of (5.4), can be per­
formed exactly so that 

«Tr IKgl)zh~6 6 I 
S G 

n HARj> 1iE" n C(kl)dkl , 
"2ES C t 2 lEG 
j>l ES 

A (5.6) 

where G is a graph on the vertices labelled by Ilt. 1l2, 
and A. Vertices labelled by A have two legs which are 
allowed to contract to each other. Vertices labelled by 
Ilt have two legs which are restricted to contract to 
legs on other vertices. Vertices labelled by )J.z have no 
legs. 1 runs over the lines in G and kl denotes the cor­
responding momenta. (More details are given in Ref. 
6.) Let X(t) be function in C~(R) such that X(t)=l, if 
It I ?- t; '" 0, if I t I ~ t. d l is defined as in (4.3). Define, 
for each l, 

XI (t) = 1, if d l = 1 

=X(t/dl ) Hd l >l. (5.7) 
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Regard XI as being a function of two variables, with t 
being dual to k o• Then, in the right-hand side of (5.6), 
C(kl ) can be replaced by (XI * C)(kl ) without changing its 
value, because vertices connected by lines with d l > 1 
are localized in separated intervals in time. (There is 
no momentum cutoff on kO components. ) With this re­
placement made, regard the right-hand side of (5.6) as 
a product of operators. For example, for a given vertex 
A, the corresponding operator would have the kernel 

(Xl
t 
* C)t /2 (k1)H).(k1, k 2)(X1 2 * C)1/2(k2). (5.8) 

(It does not matter which square root is chosen. ) De­
pending on how the lines II and lz leave A, this kernel is 
to be thought of as an operator either from L2(R2) to 
L2(RZ) or from L2(R4) to (1;. [If II and l2 are the same 
line because A is contracted to itself, then it is not 
treated this way. In this case A gives rise to a con­
stant. ] The right-hand side of (5.6) is now majorized 
by taking Hilbert-Schmidt norms of operators and ab­
solute values of constants. (This is a simple version of 
techniques used by Glimm and Jaffe in Ref. 4.) The 
Hilbert-Schmidt norms are simplified by the estimate, 
for n?- 0, 

I (XI * C)(k) I .; O(l)dj"C(k). (5.9) 

The proof of (5. 9) is postponed. The Hilbert-Schmidt 
norm corresponding to a vertex A, is thereby less than 
0(1)dj~dj;!lcl/2HACI/2112' which is majorized by O(l)dj~dj; 
xtr(C1I2H AC

I / 2) because Cl /2HACI/Z is a positive opera­
tor on L2(Rz). These remarks prove that, for n?- 0, 

«Tr IRKI )2h';6 n IIQAII~,zIIR"llle,211iE"21 
s ~1' ~2.). 

X6 n O(l)dj", (5.10) 
G lEG 

where III runs over Sand 112 over SC and, by definition, 

II QA 111.2 = J I QA(Pt.P2, k) 12C(k) dk dPt dP2, 
(5.11) 

II R"1111. 2 = f I R"1 (kj, k 2) 1
2
C(k1)C(k2) dkl dk2. 

Note that IIQAll e•2 =tr(Ct/2HACI/2) by (5.1). From Ref. 6, 
Lemma (2.6), 

2: n 0(1)dj5.;nO(1)n([)[2n(I)]!· (5.12) 
G lEG I ' 

therefore, (5.10) implies 

«Trligl)2h~2: n IIQAI1121IR" lie 211iE" I s JJ.1' 1l2' 1 J t' 2 

Xn 0(1 )"(I)[2n(I)]!. 
1 

(5.13) 

The proof of Lemma (4. 7) will now follow from esti­
mates on the norms in (5. 13). These are given in the 
next section. 

(5.9) is proved by 

II C-t(~1 * C) II ~.; II (m2 - AlxlC 111'; O(l)dt, 

where the last inequality follows from the exponential 
decay of {; away from the origin. 

The Lp method is now given. Suppose fi are two parti­
cle polynomials on Nelson space, whose time supports 
are localized in unit intervals denoted by I in the usual 
way. Suppose n(I)f;'s are localized in I in this manner: 
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(5.14) 

where E I denotes the proj ection onto the time slic e t ~ I 
in Nelson space. This is not to be confused with the 
projection onto the interval I. This notation is described 
in Ref. 7: 

(5.15) 

The bars denote the operator norm on L2(Q), i. e. , 
Nelson space. By hypercontractivity (see Chap. TIl, Ref. 
7), (5.15) is overestimated by 

~ II i~I fi t (5. 16) 

provided P sufficiently large. Applying the Holder in­
equality to (5.16) implies 

<Qfi)"'QiQIllfill"n([). (5.17) 

Since fi is a two-particle operator for each i, Nelson's 
best estimate applied to the operator exp(- tN) for 
SUfficiently large t shows that 

Nelson's best estimate is also described in Ref. 7, 
Chap. III. (5. 17) and (5. 18) imply that 

(5.18) 

Wf;) ",IT (O(l)n(I)n(I)! IT lifi 112); (5.19) 
• I \ lEI 

(5.19) applied to (5.4) implies (5.13). 

6. ESTIMATES ON KERNELS 

In this section the five estimates (6.1)- (6. 5) given 
below, are proved. For (6.1), suppose i\ is a complete­
ly contracted vertex, i. e., in the fermion graph F, 
neither of the lines II and l2 which leave i\ are open. 
Then, for n?> 0 and some 17 > 0 independent of n, 

IIQ II ~ 0(1)(1 +L )"'1d-nd-nr5/16t-5/16 (6.1) x C,2 X 11 12 11 12 ' 

where L).. is the low momentum cutoff associated with 
i\ (Lv'* 0 only for P vertices). tl is defined by (2.22). 
For (6. 2), suppose i\ is not completely contracted so 
that II is an open line in F. Then, for n?> 0, 

II QxII c, 2 ~ 0(1)(1 + L)..)"~ log2n (I) "'dj; tj: I16tj; 12. (6. 2) 

The factor (1 + L)..r~ is put in merely to make the nota­
tion uniform. In fact, since i\ has an open line, i\ is a 
C vertex and therefore Lx = O. For (6.3) and (6.4) sup­
pose III and 112 are P vertices in cancelled renormaliza­
tion subgraphs; then 

II R"1 11 c, 2 ~ 0(1)(1 + L "l~(I + 1 - S "1)"1132, 

1 5E l"'O(l)(I+L r~(I+l-s r 1/32 
"2 "2 "2' 

(6.3) 

(6.4) 

where s" and s "2 are the times of the P vertic es and I, 
as usual,

l 
is the integer that labels the unit interval con­

taining III (1l2)' For (6. 5) the notation I(Il) is used to in­
dicate the interval containing a vertex Jl and Il runs 
over all P vertices which are part of cancelled renor­
malization subgraphs: 

J ds IT tjalIT (I(Il)+I-s")-1/32,,,n O(l)n(l)n(I)!, 
ClEF " I (6.5) 
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where if 1 is open, (I I ~ is; if 1 connects two completely 
contracted vertices, (II = *; if 1 connects to a vertex 
which is not completely contracted, (II = *. The case 
in which 1 connects two vertices which are both not com­
pletely contracted cannot occur by the way the expansion 
is defined. 

Lemma (4.7) is proved by combining (6.1)-(6.5) with 
(5.13) and noting that the number of subsets S summed 
over in (5.13) is less than IT I 2n ([). 

Proof of (6. 1): from (2. 23b), (1. 8), and (5.11), for 
n?> 0, 

II Q)..II~, 2 ~ 0(1) J li(Pl + P2 +kl) 12J).. (P1> P2) exp(- Wl t l1) 

xexp(- W2tl )C(k)dPldP2dk (6.6) 
2 

'" O(l)J li(Pl +P2+ k1 )1 2J)..(P1>P2)Wi"10/16 w2"10116 

X 1/-1 (k1) dp dP dk 1 d-2nd-2nrl0 116rl0 116 (6. 7) 
r- 1 2 11 12 11 12 • 

J).. contains a lower cutoff at L)..; therefore, 

IIQ 11 2 "'O(l)J Ig~(Pl+P2+kl)12w-ll0/16W2-10/16 
).. c,2 ~ l"ll"'L).. 

(6.8) 

(6.9) 

(1. 4) is used to obtain the last inequality. 17 is some 
small number> O. 

Proof of (6. 2): from (2. 23c), (1. 8), (5.11), and the 
fact that p(I) '" n(I)'" [see (2. 17) for the definition of 
p(I)] 

II QxII ~ ~ 0(1) J IP11 ",nW'" li(Pl + P2 + k 1) 1
2
J),,(p1>Pz) 

x exp(- W2t'2)C(k) dPl dP2 dk 

+ 0(1) JIP I",n(l)'" li(Pl +P2 +kl) 12J).(Pl,Pz) 
1 __ 

Xexp(- Wltl1) exp(- W2t'2)C(k)dPI dp2dk (6.10) 

'" 0(1) J IPI I ",n(ll'" li(Pl + Pz + k 1) 12w2"1 Il (k 1)-1 dPI dP2 dk 1 

Xdj~nti! + 0(1) J"l I"n(l)'" li(PI +P2 +kl) 12wi1Wi"1 18 

x l/(kl)-ldP dp dkld-2nrlr1/8 (6.11) 
r- 1 2 12 12 11 • 

The proof of (6. 2) is completed by the elementary 
estimates: 

JIPll ",n([)'" li(pl + Pz +kl) 12W2"1 Il (klrl dPI dP2 dk 1 

'" 0(1) log2n(I)"', 

J li(p +P +kl)12w-lw-l/SJJ.(klrldp dP2 dki 
IP11",n(Il'" 1 2 2 1 1 

'" 0(1). 

Proof Of (6. 3): By (2.15) and the triangle inequality it 
is sufficient to prove (6.3) with R"l replaced in turn by 
the following three kernels: 

(6. 12) 

David Brydges 1656 



                                                                                                                                    

f dPI dP2 Wp (Pt>P2, kDWp (Pt>P2, k~)P(Pt>P2) 
IPII"K 
1P21.,K 

x( 1 'ko _-l-)exp[i(k~_k~)S,,) (6.13) 
wI + W2 - 7 I WI + W2 I 

f dPI dP2 (Wp(PI,P2' kllWp (PI,P2' k~)P(PI,P2) 
1Pl1 "'K 

1P21.,K 

x_
1
_ exp[i(k~ - k~)s" »))+ t o

4
m11 i*i(kf - kf) 

Wl+W2 1 11 

xexp[i(k~-k~)s"l)' (6 0 14) 

where P(Pt,P2} is a lower cutoff at L "1 [see (1. 10»). 
These corresponding inequalities are respectively im­
plied by (6.15)-(6.17) below. For E> 0,31» 0 such that 
for all K 

IPI I, IP21"K 

!S 0(1)(1 +L,,/"(f + 1- S "ll 132, 

f P(PbP2») wI +~2-ik~ - Wl\wJ 
PI +P2=f 
Ip l l, IP2 1"K 

WIW2 - PtP2 - M2 (P P )_1_ 
W W P I' 2 W +W 

IPII, IPzI "'K 

- [1+1>2=0 
Ipll, 1P21 "'K 

I 2 1 2 

!S 0(1)(1 +L" r" I ~ I '. 
I 

(6. 15) 

(6.16) 

(6. 17) 

For example, by (6.17) the absolute value of (6.14) is 
majorized by 

0(1)(1 +L"I'-" I d~ li(kl- ~) II ~ I E Ig(~ - kD I 

!S 0(1)(1 +L"l"f.1. E
/
2(kj)f.1. E/2(kD I d~ (6.18) 

x If.1.E12(kl- ~)g(kl- ~)IIf.1.E/2(~-k~)i(~-k~)I. (6.19) 

Therefore, the (C, 2) norm of (6.14) is majorized by 

0(1)(1 +L"lr"{j dk l dk2rf.1. e
/
2Iil *J.lE/2Iil(kl-k~)F 

xJ.l e/2(kl)C(kl)f.1. e /2(k~)C(k2)}l 12. (6.20) 

By doing the integrals over k~ and kg and changing the 
integration variables (6. 20) is less than 

0(1)(1 + L "l"{ I d1)[f.1. e /21g I * f.1.E /21i 1(1) F 

by (1. 4). This completes the proof that, given (6.17), 
(6.3) holds with R"l replaced by (6. 14). In a similar 
way (6.15) and (6.16) imply that (6.3) holds with R"I 
replaced by (6.12) and (6.13) respectively. Therefore, 
the proof of (6.3) reduces to proving (6.15)- (6.17). 
(6.15) and (6. 16) are elementary. (6.17) is implied by 
the following three elementary inequalities. For E> 0, 
31) > 0 such that 

f d I w(P)w(~-P)_P(~_p)_M2 _ w2(p)+p2_ /vI2 ) 
P w(P)w(~ - P) w2(P) 

Xp(P'~-P)w(P)+~(~_P) !S0(1)(1+LIL1)""I~le, (6.24) 

f dp I w(P) +~(~ - P) - 2;(P) Ip(PI' ~ -P) 

!S 0(1)(1 + L., t" I ~ Ie, 
1 

(6.25) 

f dp W~P) I Xl(P) - XO(P) I !S 0(1)(1 + L"I)"" I ~ I e, (6.26) 

where Xl (P) is the characteristic function of the set 
{IPI !SK, I~-PI !SK}n{either IPI ~L"I or I~-PI ~L"l} 
and Xo is given by putting ~ = O. This completes the 
proof of (6.3). 

Proof of (6.4): From (2.16), (2.13), and (1. 8) 

oE., =(~)2 r Ig(Pl+P2+k}12WIW2-PtP2-M2 
2 411 J1Pll"'K wIW2 

x (p ) _1(k)exP{-[wI+W2+f.1.(k»)(f+1-sj.l2}} 
P j,P2 f.1. wi +w2+J.l(k) 

XdPldP2dk (6.27) 

!S0(1)fd~lgWI2 r 
J PI +P2+hl 

x exP{-[wI+w2+[J.(k)](I+1-s.,z)}_1_ (628) 
Wl+W2+f.1.(k) f.1.(k){J· • 

(6.4) now follows from (1. 4) and 

1 exp{- [WI +wz + f.1.(k)](I + 1- s"z)} _P_ 
wI+w2+f.1.(k) f.1.(k) 

1>1 +P2+k=f 

(6.29) 

Proof of (6. 5): From (2.25) P vertices are time 
ordered, but C vertices are not. First assume that all 
vertices are time ordered and labelled in that order by 
1I= 1, 2, 3,·· .. By (2.25) each vertex is also restricted 
to lie in a certain interval. Suppose, for example, that 
a vertex 1I in [f- 1,1] is contracted by a line I to 1I" in 
[f,f +1). Let s~ ~ S~+I!S'" s~,!Sf !SS~'+I !S"'!S s~ .. be the 
times of the intervening vertices. Then, for o'~, O'~+I ... 
a~N_I positive numbers with o'~ + O'Y +I + ... + O'.N_I =O'r, 

xJ· Wl+e /2(k')f.1. -I+< /2 (k,)}1 /2 
ki -k~=" I 2 (6.21) [""r = (S~N- Sv)""r !S (sv+1 - Sy)""v(SY+2 - sY+I,-"Y+I 

!S 0(1)(1 +L"lr "IIJ.l E/ 2 Iil *J.l e/2IiII12 (6. 22) x· .. (f- Sy.)-U~·(s~'+1 - f)-"[' •• (s." - S yN_! }-av"_I. (6. 30) 

= 0(1)(1 + L"I)"" II [(f.1.' 12lg I )Vj2 112' (6.23) By use of estimates similar to (6. 30) it follows that 

In the last equality "v" denotes the inverse Fourier 
transform. By the Tichmarsh theorem (6.23) is 
majorized by 

O(l)(l+L" )""IIf.1.e/2Iilll~/3!S0(1)(1+L,,)on 
I I 
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I. ds n t""r n (f(f.1.) + 1 - S )-1/32 
time ordered If rEF r ., " 

[f i=n([)+1 dt (nU)+! )] 
!S n .n f3173231 j 0 6 tt - 1 

[ .=1 t 1=1 
(6.31) 
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(6.32) 

where the 01 are chosen as in (6.5). There are less than 
nine!) I ways of time ordering the region of integration 
on the right-hand side of (6.5); therefore, (6.5) follows 
from (6.32). 

7. ESTIMATES ON THE EXPONENT 

In this section it is proved that, given K and E> ° 
there exists a function c(¢) such that 

HOF + V+c(¢)"" - 0(K6
), 

HOB - 2c(¢) ~ - 0(1). 

(7.1a) 

(7.1b) 

A corresponding estimate is also proved for GY2' This 
proves the claim made in (2.1). By replacing K with 
K j and referring to (2.24), (2.8), and (2. 17a), the proof 
of (4.1) also follows. 

Define the quantities 

NTF '" J wT(p)[b*(P)b(P) + b'*(P)b'(P)]dp on a" 
d on a, (7.2a) 

NTB",J J.!.T(k)a*(k)a(k)dk on Ql 

",1 on Q. (7.2b) 

a is the Fock vacuum. 

r(p1,P2) '" characteristic function of the set 

{lp11""Lor Ip21~L}. 
L will be chosen later. 

(7.3) 

Vpr = jlPj I. IP21,;K [b*(P1)b'* (P2) + b(- P1)b' (- P2) ]r(P1, P2) 

x Wp(P1' h, k)¢(k) dP1 dP2 dk - t(limk - lim~ 

xJ g2(X): q/(x) :dx- (E K - E L ), (7.4) 

Vsr = J
IP1

1. IP21 ",K [b* (P1)b(- P2) + b'*(P1)b'(- P2) ]r(P lo P2) 

xWs(Pt,h,k)¢(k)dP1dP2dk, (7.5) 

rVpr= ( [b*(P1)b'*(P2)-b(-P1)b'(-P2)]~ 
JIP1i.IP2i"'K w1+ w2 

(7.6) 

where w(P) = w(P) - w T(p), T < 1. In order that w> 0, 
assume the fermion mass is larger than unity. This is 
not an essential restriction. Note that rVpr is an anti­
symmetric operator designed so that 

[rVp.,HOF - NTF ] + V pr+ t(1im~ - Smi) 

xJ g2(X):¢2(x):dx+(EK -E L )=0. (7.7) 

(7. la, b) are obtained by adding the inequalities (7.8) 
given below. 

Given TE (0,1), for sufficiently large L, there exists 
c1(¢) such that 

HOF - NTF + Vpr +C1(¢)"" - O(logK), 

tHOB - 2cl(4))'''' O. 

Given E> 0, for L sufficiently large and T close 
enough to 1 (T < 1), there exists C2 (¢) such that 

tNTF + Vsr+C2(¢)~ - O(K'), 
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(7.8a) 

(7.8b) 

(7.8c) 

tHOB - 2C2(4))'''' O. (7. 8d) 

Given L there exists C3(¢) such that 

~NTF+ VL +C3(1))::O - 0(1), 

tHOB - 2C3(¢) "" - 0(1), 

(7.8e) 

(7.8f) 

where VL is defined by replacing K by L in the defini­
tion of V in (1. 6). 

A proof for (7. 8e, f) may easily be constructed using 
the following remarks. (1) The mass counterterm in 
V L is formally positive. (2) Each kernel of V L can be 
written as the sum of products of Hermite functions 
plus remainder in such a way that the term correspond­
ing to the remainder can be estimated by an NTF esti­
mate as will be demonstrated for (7. 8c, d). The other 
term can be majorized by a suitable boson function by 

1.0 Wiikb # (h i )b#(h j )4>(hk) 1 .,; 61 WiJk 11ct>(hk) 1 , 
where hi are Hermite functions with unit L2 norm. 

(7. 8a, b) will now be proved by Glimm's dressing 
transformation (Ref. 1). 

Define 

b(P) =b(P) - [rVpn b(P)], b'(P) = b'(P) - [rVp"b'(P)] 

(7.9) 

and calculate, using (7.7), the operator fW(P)[b*(P)b(P) 
+b'*(P)b'(P)]dP. Then, since this operator is positive, 

0.,; HOF - NTF + Vpr + t(lirnk- limi) J g2(x) : ¢2(X): dx 

+ (EK - E L ) + J w(P) {[rvpro b*(p)][rVpn b(P)] 

+ [rvp., b'*(p)][rvpn b'(p)]}dp. (7.10) 

The result of normal ordering the fermion operators in 
the second order term in (7. 10) can be represented 
graphically as 

(7.11) 

The first term on the right-hand side of (7. 11) is the 
negative of a positive operator; therefore, (7.10) 
implies 

HOF - NTF + Vpr + t(limk - I'mli)jg2(x) : ct>2(X) : dx 

+ J dk1 dk2: ¢(k1)q(kl' k2)¢(- k2): (7.12) 

? - (EK-E L )- J dkq(k,k)/.l-1(k), 

where q denotes the kernel of the last term on the 
right-hand side of (7.11). The boson fields in this term 
have also been normal ordered in obtaining (7.12). The 
right-hand side of (7.12) is equal to [see (1. 5b)] 

(~)2 ( W1 W 2-P1P2- P,1
2 

r(ploP2) 
411 JIP11.IP21"'K W1W2 

XdPl dP2 dl? 

It can readily be checked that this behaves as - O(logK). 
For large L, C1(¢) can be chosen to be the last two 
terms on the left-hand side of (7.12), i. e., 
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x _1_~ g(~ _ k2)¢(- k2) : dkt dk2• 
Wt +W2) 

(7.8b) is a consequence of an NTB estimate (Ref. 8). 
Let q'(kb k 2) denote the kernel of (7.14) so that (7.14) 
equals 

I dkt dk2 : ¢(kt)q'(kt> k2)¢(- k2):. (7.15) 

Then (7. 8b) holds if the L2 norm of /J.-t(k t )q'(k t ,k2)/J.-t(k2) 

can be made arbitrarily small, uniformly in K, by 
choosing L large. The estimates for this are omitted. 
See (6.17). 

Next it is shown that, in (7. 8c, d), C2(¢) can be chosen 
to be 

c2(¢) = i ( r(pJ,P2)Ws(Pbh,kt ) ~T Ws(PbP2,k2) 
)IPtl. IP21 "K 2 

(7.16) 
X:¢(k t )¢(-k2) : dptdP2 dk . 

For, by an N TF estimate to V ST' regarding the ¢' s as 
numerical quantities, 

(7.17) 

The O(Ke) arises when the bosons are normal ordered 
to comply with (7.16). (7.17) implies 

V;,..:: 2[C2(¢) + o (K')]Nm 

and since operator inequalities are preserved in the 
taking of square roots, 

± Vsr':: v'2[C2(¢) + 0(K')]t /2Ni./} '" C2(¢) + O(K') + iNTF • 

(7.18) 

The expression under the square root is equal to (7.16) 
with the ¢'s not normal ordered. This is a positive 
operator so the square root is well-defined. (7. 18) is 
equivalent to (7. 8c). 

(7.8d) is proved by an NTB estimate. From (7.16), it 
suffices to show that the L2 norm of (7.19) can be made 
arbitrarily small, uniformly in K, by choosing L large: 

fJ. (kiti I IPi l• IP21 "'K Ws(Pb P2, k t )W-
r
(P2) Ws(Pt> P2, k2)r(pt, P2) 

XdPtdP2fJ.(k2tt. (7.19) 

Since this is the kernel of a positive operator on L 2(R), 
the L2 norm is less than its trace which is less than 

0(1) fd~lgWl2 ( WtW2+PtP2+M2 
)Pt+P2+h { Wt W2 

(7.20) 

xr(Pt, P2)W-T (P2) fJ. -2(k). 

The following estimate applied to (7.20) completes the 
proof of (7. 8d). For 0 < E '" 1 

(WtW2 + PtP 2 + 2\1[2)/ WtW2 '" O(l)w (Pt + h)2ew(Pt - P2)"e. (7.21) 

1659 J. Math. Phys., Vol. 16, No.8, August 1975 

Generalized Yukawa 

The estimates that substitute for (7. la, b) are: Given 
K and € > 0 there exists c(¢) such that 

HOF + V +C(¢) ~ I g(x) : ¢2M (x) : dx - O(Ke), 

HOB + I g(x): ¢2M(X):dx_ 2c(¢)~ - O(Ke), 

where 114. > Nand 

V=>-}: 1i!K(X)I/JK(X):: ¢N(X) :g(x)dx 

_ iom~.oJ g2(x) : ¢2N(X) : dx 

- iom'k.d ~(x): ¢2N-2(x): dx 

- ••• - iom'k. N-d ~(x): ¢2(X): dx 

- EK + I g(x): ¢2M(X) :dx. 

(7. 22a) 

(7. 22b) 

(7.23) 

EK is not the same as that in (1. 5b). The extra counter­
terms are added to cancel diagrams like 

(7.24) 

Glimm's dreSSing transformation is used to bound the 
pair creation and annihilation part of V by a function 
C t (¢) without using a lower momentum cutoff r(Pb P2). 
To bound the scattering part, a function c2 (¢) is found 
so that for T close enough to 1 

iNrF + Vs+C2(rt»~ 0, 

where 

(7.25) 

Vs = I [b* (Pt)b(- P2) + b'*(Pt)b'(- P2)] Ws(Pt> P2, k) 
IP I I. IP21.;K 

(7.26) 

: ¢N(k): denotes the kth Fourier component of: ¢N(X):. 

To obtain C2(¢), begin by estimating, for (\' > 1/2, 

Let 

Y(PbP2) = I Ws (Pt,P2,k): ¢N(k) :dk. 

Then 

= 0(1) 10 ~ dtt-t
+

a
/

2 exp(- tNTF ) I P!,"P2 
IPtl, Ipzl';K 

= 0(1) J '" dtt-ha /2 I 
o Pt~P2 

IPll. IP21 "'K 

x exp[ - (2wr - wpt/2]b* (pJ 

Therefore, the II IIF norm of (7.29) is bounded by 
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0(1) J
o 
'" dt ["1+01 1211 J Pl'''P2 Y (Pl> P2) 

Ipll, IP21 "'-K 

x exp[ - (2wI- w:i)t/2] b*(PI) (7.32) 

x exp[ (- t/2)]NTF ]b( - P2)Nj/21IFIINiP-0I/2 

Xexp[(- t/2)NTF lll 

Despite the fact that exp[ (- t/2)NTF J is sandwiched be­
tween the b#'s in (7.32), a glance at the proof given in 
Ref. 8 shows that an NT estimate can still be applied so 
that (7.32) is bounded by 

0(1) J '" dt r 1+ 01 /2 exp[ _ 0(1 it] ["I /2+01 /2 
o 

xlJ P
I
"'P2 Iy (Pi, P2) 12 exp[ - (2wI- w2Jt]wiT dPI dP)1 /2 

\ Ipll, IP2kK / 

(7. 33) 

(7.34) 

provided a - % - E < 1. It is also necessary that ET+ T> 1 
so that the boson fields in (7.34) can be normal ordered. 
Clearly the same estimate can be derived for a term 
with PI ~ P2; also antifermions can be included so that 

IINTF"'/2 VsNT7 /211 F ~ 0(1)[j 1 Y(PI, P2) 12 

X (wj'ETWiT + wi'Wz€T) dPI dP211 /2. 

(7.35) implies 

± Vs ~ 0(1)[j IY(P1>P2) 12(wj'ETWiT +w;:TwiET)dpldP211/2N~F 

(7036) 
and therefore 

- Vs~tNTF+O(l)[j ly(PI,P2)12 

(7. 37a) 

where 

a-1-E<1, ET+T>l. (7. 37b) 

Consequently, (7.25) holds with C2(¢) chosen to be the 
last term on the right-hand side of (7.37). Since the 
dressing transformation only works for T < 1, (70 37b) 
requires a> L 

To prove (7. 22b), one needs, for suitable 0, 

HOB + Jg(x)~ ¢2M(X): dx - 2cI (¢) - 2c2(¢) ~ - O(K'), 

(7.38) 
where c 1 (<b) is the term arising from the dressing 
transformation. illstead, it is now proved that 0 can be 
chosen so that 

(7.39) 

because the estimate with C2 replaced by c i in (7039) 
can be proved in a similar way to (7.39). C2(<b) has the 
form 
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By using the hypothesis M> N, a is picked so that 

o>!, 1/2(1-a)<M/N. (7.41) 

Let y = 1/2(1- a). Note that 1 < y < Ai/N. 

By hypercontractivity and the F. K. N. formula (Ref. 
7), it is sufficient to prove 

exp(- f [U(t) - O(I)T~(t)] dtlE:: LP (7.42) 
o 

for 1 ~ P < 00, where 

U(t) = Jg(x): <b2M (x, t):dx, 

T(t)=JY(k1>k2): <bN(kj,t): <b N(-k2,t):dkl dk2. (7.44) 

[<b (x, t), <b (k, t) refer to Euclidean fields. ] Define U L (t) 
and T L (t) by introducing a sharp momentum cutoff at L 
into each field in the spatial momentum. Let 

OUL(t) = U(t) - U L(t), 5T L(t) = T(t) - T L(t). (7.45) 

The following estimate is easy to show, for each L: 

r dt[U(t) - O(1)P(t)] >-- r dt[U L(t) - O(I)T I(t)l 
o 0 

Suppose the estimates 

J I dt[UL(t) - O(I)Tl(t)] 
o 

~ O(I)logMLII J l
dt[5UL(t)- 0(1)15TL(t)I Y1I1q 

o 
~ O(I)(qy)Mr" 

(7.46) 

(7. 47a) 

(7. 47b) 

hold for some 1) > 0 and all L; then Nelson's method (Ref. 
9) can be applied to prove (7.42). Therefore, it suffices 
to prove (7.47a,b). 

Proof of (7. 47a): ill (7.40), ET+T>I; therefore, 

f 1 1 1 1 
----eTT'+T----.-;c ~O(I). (7.48) 

PI+P2=! WI W2 w2 Wj 

This implies that, considered as operators on L 2(R), 

Y~O(I)g*g; 

therefore, 

(7.49) 

T L(t) ~ O(I)J i(x)(: ¢f(x, t):)2 dx. (7.50) 

(7. 50) implies 

[U L(t) - O(I)Tl(t)] >-- U L(t) - 0(1)[jg2(x)(: <bf(x, t):)2 dx)Yo 

(7.51) 

Since y~' 1 and by hypothesis (1. 4) gELP for all P 
(1 ,,; P ~ 00), the "Holder" inequality can be applied to 
(7.51) so that 

UL(t) - 0(1) Tl(t) ~ UL(t) - O(I)J g(x) I: ¢f(x, t): 12Y dx 
(7.52) 

= jg(x)[: <biM(x, t): - 0(1) I: <b~(x, t): 12Y jdx. (7.53) 

Therefore, (7. 47a) is proved if it is shown that 

: <b~M (x, t): - 0(1)[: <bf(x, t): : <b~(x, t): r ~ 0(1) 10gML. 

(7.54) 

This follows from Wick's theorem since y < M/N. 

Proof of (7. 47b)~ This is a consequence of hyper­
contractivity, e. g. , 
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'" J 1 dtll6U L(t)lI q + 0(1) J 1 dtll6T L(t)lI;y. 
(7.55) 

o 0 

Now apply Nelson's best estimate to each term separate­
lyon the right-hand side. (For Nelson's best estimate, 
see Ref. 10). 

APPENDIX: UNIFORMITY IN THE EXPECTATION 
STATE 

It is sufficient to find a uniform lower bound for 

-lim(l/T) In(s'e-THs) , 
T-~ 

(A1) 

where sand S' have the form of a product of a Wick 
monomial in Fermi fields with an L ~ function on Q space 
depending on time zero fields. Finite sums of quanti­
ties of this type are dense, and, by virtue of the T 
limit, (1. 1) evaluated for such a sum is bounded below 
by the infimum over cross product contributions. The 
L ~ functions can be majorized by their sup norms 
during "defermiation. " The resulting constant gives no 
contribution in the T limit. The fermion parts of sand 
s' can be introduced in the calculation by allowing the 
"P" vertices to contract with the "external" fields in s 
and s'. Suppose the latter have been labelled 
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1,2, ..• ,p, then the inclusion of a factor (n.r4 n(l))(p!) in 
(4.4) is sufficient to count the extra fermion graphs. A 
"P" vertex has two legs, each of which can be external 
or internal, hence the TIjin(]). In the set of external 
legs, the first has p choices of external fields with which 
to contract, the second has p - 1, etc.; hence the p!. 
The TI[4n

(l) can be absorbed into the O(l)nU) in (4.4). 
The T limit annihilates the P! ; hence a uniform bound 
holds for (1. 1), and the Hamiltonian is bounded below. 
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Strong cluster properties are proved at low activity and in various other situations for classical systems 
with infinite-range interactions. The decay of the correlations is exponential, resp. like an inverse power of 
the distance, if the potential decreases itself exponentially, resp. like an inverse power of the distance. The 
results allow us to extend to the case of exponentially decreasing potentials the equivalence theorem 
between strong cluster properties and analyticity with respect to the activity, previously proved for finite­
range interactions. 

I. INTRODUCTION 

There has been a recent interest in the rigorous study 
of the decay properties of correlations in claSSical 
statistical mechanics, 

The main results have been obtained, up to now, for 
finite-range interactions. An exponential decay has then 
been proved in various situations, either in the frame­
work of the transfer-matrix method, I or by making use 
of series expansions of the connected correlations pI 
with respect to the activity Z, 2-4 In this latter case, the 
results have been obtained at low activity and in a num­
ber of other situations where analyticity is known (or 
assumed), 

In ReI, 4 "strong cluster properties" have been proved 
in the form 

IpI(xl> •• "xN)I.,,; CNN1I, 0' Npl exp[- /J-L(X)], (1) 

where L(X) is the minimal length of all connected trees 
T joining xl> ' , "xN and possibly arbitrary other 
vertices, and where C and )J. are independent of N, of 
X= (Xl' ' , "xN ) and of the box A. (They depend on the 
activity z, the reciprocal temperature (3 and the poten­
tial <P), The factor NI I ... Np I arises if the pOints 
xl> • , • ,xN occupy only p different positions Yl> • , "Yp 
occurring respectively N I , 0 • "Np times, 

For infinite-range potentials, the connected correla­
tions are known to tend to zero when some pOints are 
separated from each other2 and to satisfy various in­
tegrability properties6

• 7, The decay has been proved in 
8 to be exponential for one-dimensional systems with ex­
ponentially decreasing potentials, through the use of a 
generalization of the transfer-matrix method. On the 
other hand, a decay of the same type as that of the 
potential (exponential, resp. like an inverse power of the 
the distance, according to the potential) has been proved 
at low activity for the 2-point function pT(XUX2) in9,l0 
through the use of a series expansion method. Finally, 
it has been proved in ReC 11 that the decay cannot in 
general be exponential if the potential does not decrease 
exponentially. 

In the present paper, strong cluster properties of the 
N -point functions are again proved in the form (1) for 
exponentially decreasing potentials. When the potential 
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decreases like r-s (s > v), analogous results are 
obtained: 

IpI(xu " "xN)1 <CNNII,o'Nplexp[-s'L,,(X)] (2) 

where L,,(X) is now the minimal length of all connected 
trees joining xl> • 0 "xN and possibly other arbitrary 
vertices, with respect to the new "distance" log(l 
+ a III ); a> 0 and s' > 0 are again independent of X, N, 
A (and may depend on z, i3, <p). 

The bound (2) also yields 

/pI(XU, •• ,XN)/<CN 6 n u",s.(/l/) (3) 
T<xI·· .. ·XN)!ET 

where the sum 2: runs over all connected trees joining 
Xl' ' •• ,xN (Without supplementary vertices), and where 
u s. (Ill) = (1 + a III t'" /2; (3) is a strong cluster prop­
e;i:y in the sense of ReI, 5 if 2:xEzvu"' .... ([ X I) < co (L e. 
if s' /2> v). (This last condition ensures the integrability 
of [pII,) 

In Sec, II, the results are first proved at low activity. 
They are derived in Sec, m by an extension of the con­
formal mapping method of Refs. 2-4 when the correla­
tions remain analytiC in a connected domain D of the 
complex z -space containing z = 0, and satisfy in D the 
additional boundedness condition 

Iz-NpI(x l " • • ,xN)1 <CNNIl,ooNpl (4) 

where C is independent of X, N, A and of z in D • 
The analyticity of pI and the bound (4) hold in partic­

ular in the follOwing situations, as already proved in 
Ref. 4 by USing, in cases (ii) and (iii), results on the 
zeroes of Z A (Zl> ' •• , ZN, z) (more generally, they seem 
to be linked with the analytiCity with respect to 
2l>" "ZN): 

(i) for positive potentials, in the region of convergence 
of the Mayer z-expansion; 

(ii) for lattice systems at arbitrary activity and high 
temperature; 

(iii) for lattice ferromagnets when Re H *" 0, f3 arbi­
trary, or at H = 0, as soon as the partition function 
Z A({3, H) *0 in some complex neighborhood of H = O. 

The results allow the extension to exponentially de-
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caying interactions of the equivalence theorem of Ref. 4 
between (i) strong cluster properties (at real values of 
z) and (ii) analyticity with respect to z and the bounds 
(4). 

For simplicity, only lattice gases are considered in 
Secs. IT and m. However, the results can be adapted 
without difficulty to continuous systems, with Slight 
modifications. This adaptation is briefly outlined in Sec. 
IV. 

II. STRONG CLUSTER PROPERTIES AT LOW 
ACTIVITY 

Let K(x - y) == exp[ - /3<1>(x - y)] -1. The Ursell function 
cp(x u • •• ,xN ), which is the connected part of the 
Boltzmann factor exp[ - /3U(X)] ( and is the value of Z·N 
p~ at z == 0), has the well-known explicit form 

cp(xu ••• ,xN )==,0 IT K(l), (5) 
rC IEre 

where the sum L: runs over all connected graphs r c 

joining the vertices x B ••• , xN • 

The following result which holds for continuous sys­
tems is proved in Refs. 9 and 10 for positive and hard­
core potentials, and in Appendix B for general stable 
potentials [the stability constant B which appears in 
(6) is replaced in Ref. 10 by A/2, where A is defined 
below Eq. (7)]: 

Theorem 1: 

I cp(xu •• ° ,xN ) I .:; (exp(2/3B»N-2,0 IT IK(l) I (6) 
TIET 

where B is the stability constant and where the sum 'iT 
runs over all (connected) trees joining Xu ••• ,xN • 

Remark: A somewhat different bound which is slightly 
better in some situations can also be derived for hard­
core potentials (see Appendix B): 

I cp(x H ••• ,xN ) I < (exp(f3B»N-2 J: IT K(n (7) 
TIET 

where 

K(X-y)==sup{1-exp[- j3<1>(x-y)], 

exp[/3A] (1 - exp(M(x - y»}, 

A= 6 <I>_(X - Y), <1>.= sup(O, - <1». 
yEZV 

The following series expansion of the connected cor­
relations is knownl2

: 

Z-N pT(X·f3 z)=6znC (X·f3) 
A " n ;!liD A, n , , 

where 

X=(X u " .,XN), Y=(Yu" o,Yn). 

A direct derivation of this formula is given in 
Appendix A. 

(8) 

When the potential <I> decreases like exp(- xr). resp. 
like r-s (s > v), it is useful to introduce the class of func­
tions u",(r) == exp(- axr), resp. u",(r)= (1 + ar)-s+JI+e, 
where 0 < a < 1 and € > 0 is a given arbitrarily small 
numbeL We note that -logu",(r) is always a distance, 
i.e. , 
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(ii) -logu,,(lx -y I )-logu,,(ly - z I)? -logu,,( Ix - z I). 

Below we shall generally denote by L ,,(X) the minimal 
length of all (connected) trees joining Xu • 0 • ,xN and 
possibly other arbitrary vertices, with respect to the 
distance -logu",(r). [L ,,(X) == axL(X), resp. L" (X) 
=s'L",(X), s' =s - V -€, where L(X), resp. L,,(X) is the 
minimal length given in the Introduction with respect to 
the usual distance r, resp. with respect to the distance 
log(1 + ar)J. 

The following bound is then derived from (6): 

Lemma I; 

Ic (X·f3)I~(exp(2i3B»N+n.2(N+n)H+n-2N I 
A,n , (N _ 1)! n! 1 • 

X [C,,(f3)]N+n-lexp[- ie/X)]. (9) 

where C ,,(f3)=L:xEzvIK ,,(x)l, and K,,(x) ==K(x)' u,,( Ix 1)-1. 

Proof: 

I C A,n(X;f3) I ~n~ ~Icp(xu •• "XN'YU" ',Yn)1 

.:;J,Cexp(2f3B»N+n.2max IT u,,(lll) 
n. Y,T lET 

X6 6 IT K,,(l). 
yn TCXl' ••• 'XN''il' .... yn) zET 

The term maxy,rITIETu,,(lll) is clearly bounded by 
exp[ - L ,,(X)]. On the other hand, 

6(6 IT K,,(l») ~ ~~ "~f,p! 6 (6 IT K,,(l»). 
yn T lET - . X2'''''XN T lET 

Y" ... ,Yn 

The bound (9) then follows from the fact that the num-
ber of trees joining N + n points is (N + n)H+n-2. 13 QED 

Theorem 2: Let R,,(f3)== exp(- 2{:3B -l)(C ,,({:3»-1. For 
Izl <R,,({:3), the following strong cluster property holds 
for A finite or infinite: 

( 
T) 1 )N-2 

X 11 _ 1 x R,,({:3) 

XN1 ! ••• Np ! exp[-L",(X)] (10) 

where 11 is an arbitrary real number such that 1 < 11 
R",(f3)/l z l. 

Proof: The bound (10) is readily derived from Lemma 
1 together with the inequalities 

(N + n)H+n-2 ~ (N + n - 2)! exp(N + n), 

61 tin (k + n)! ~ k! 1 (_11_)k. 
n "0 n ! 1 - T) I t I 11 - 1 

(11) 

(12) 

Remarks: R,,({:3) tends to the usual Kirkwood-Salzburg 
radius of convergence R({:3)==exp(- 2f3B -1) (LyEzvIK(x 
_y)I)-l, when a-O. 

Therefore, Theorem 2 exhibits a strong cluster prop­
erty for each point z in the region I z I <R(f3). 

A similar result with slightly different coefficients in 
front of exp[ - L ,,(X)] is derived in the same way from 
(7). 
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III. STRONG CLUSTER PROPERTIES IN MORE 
GENERAL SITUATIONS 

In a number of situations, it can be proved that the 
connected correlations pI(X;f3, z) remain analytic with 
respect to z not only at low activity but in larger 
domains in complex z -space where, moreover, they 
satisfy the bounds (4L Results of this type have been 
proved in Ref. 4 and recalled in the Introduction. The 
following theorem, which is an extension to infinite 
range potentials of Theorem 3 of Ref. 4, is then of 
interesio 

Theorem 3: Suppose that the connected correlations 
pI(X;f3,z) are analytic in a connected domainD in com­
plex z-space, containing z=o, and satisfy there the 
bound (4) 

I Z-N pI(x;f3,z)l", eN N I !'" Np! 

where e is independent of X, N, A, and of z in D . 
Then the following decay properties hold for 

1 t( z) 1 > (i ,,/ : 

I pI(X;z, (3)1 <E~NI! ... Np! exp(-L ",(X)lOgi t(z) 1)(13) 
6 ogt", 

where z - t(z) is a conformal mapping of D onto the in­
terior of the unit circle It(z)1 < 1, such that t(O)=O, t", 
is the largest value for which 1 t(z) 1 < t", implies 1 z 1 
<R",(f3), L ",(X) and R",({3) are those of formula (10) in 
Sec. II (0 < Q' < 1), 6 is an arbitrary real number such 
that Ii > 1, and Eo is independent of X, N, and A. 

Remarks: The bounds (13) are strong cluster proper­
ties in the sense of Refs. 4, 5 whenever they ensure the 
integrability of 1 pI (X;z, (3) I. (This is, in particular, al­
ways true for exponentially decreasing potentials. ) 

The proof below makes use of the conformal mapping 
method of Refs. 2-4. Alternatively, a method uSing 
results on subharmonic functions, which is introduced 
in Ref. 9, would also allow one to extend the strong 
cluster properties from the low activity region to the 
domain D. However, this last method does not seem, so 
far, to provide any information on the rates of fall-off. 

Proof: The following series expansion holds and is 
convergent for 1 t 1 < 1, in view of the analyticity of 
pI(X;f3,z) inD: 

(Z-N pI)(X;f3, t)= L; t nYn (X;f3). (14) 
n~O 

By using a Cauchy formula and the bound (4), resp. the 
bound (10), one gets 

I Yn (X; (3) I < eN NI !" . Np!, (15) 

resp. 

I Yn (X; (3) I < E~NI! ••• Np ! exp[ - L ",(X)] (t",~6n (16) 

where 

I e ( 1) )N-I( 1 )N 1 
EN = N 1) _ 1 R '" ((3) -'---1 --......,1)[~R-,"'-. 0-'/ R-", (""'-f3""-)] , 

1 < 1) < R '" (f3)/R'",. 0 

and R'",,6 is the largest value of 1 z 1 such that I t(z) 1 
< (ta)O • 

(17) 

Let no(X) = L ",(X) x Ilog(t,,)51-1
, In view of (15), resp, 
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of (16), the following bounds are obtained 

I L; t"'Y, (X'f3)I~ eN N , ••• N I 1 I t( ) I "0(X) (18) 
""'no(X) "' l' P'1-lt(z)1 z , 

resp. 

L; tOy" (X;{3) ~ E~Nl! ••• Np! (1 _ 1 (t(",»6
1 
) -11 t(Z Wo(X) (19) 

"<no(X) t, z 

from which (13) is readily derived with a suitable choice 
of Eo' 

The same methods also provide the following theorem: 

Theorem 3': Let t - (tl(t), z(t)) be an analytic mapping 
of the unit circle 1 t 1 < 1 with values in (t2, such that the 
correlations (i) are analytic w. r. t t and satisfy the 
bounds (4) for 1 t 1 < 1, (ii) satisfy strong cluster proper­
ties in a neighborhood of t= 0. 

Then strong decay properties, which are always 
strong cluster properties for exponentially decreaSing 
potentials, hold in the whole region 1 t 1 < 1. 

When z(O) = 0, (ii) can be proved; when i3(t) =130 , (ii) is 
ensured by the strong cluster property at (130' z(O)) (see 
the proof of Theorem 6 in Ref. 4), 

Equivalence theorem: Theorems 2, 3 allow the exten­
sion to exponentially decreasing potentials of the 
equivalence Theorem 6 of Ref. 4 between 

(i) analytiCity with respect to z of the correlations and 
the bounds (4) in a complex neighborhood of the real 
segment [O,zol, and 

(ii) the strong cluster properties at real points z of 
[O,zo]' 

For potentials which decrease like r""', the analogous 
result is not completely proved so far in view of the fact 
that the bounds (13) do not always ensure the integrability 
of \pII. 
IV, STRONG CLUSTER PROPERTIES FOR 
CONTINUOUS SYSTEMS 

In this section, we briefly mention the extensions of 
the previous results to the case of continuous gases. 

A. Ursell functions 

Theorem 1 applies directly to continuous systems 
with stable potentials such that e({3)= f 1 exp[ - ,t3<I>(x) 1 dx 
< 00; it has been proved in Ref. 10 for ~;rd-core 
potentials and is proved in Appendix B for general 
stable potentials. 

The bound (7) is proved in Appendix II for hard-core 
or positive potentials such that 

C({3)= 1 Ik(x)1 dx< ~ 
IRV 

where 

K(x) = sup{1 - exp[ - j31>(x)], exp[i3A](1- exp({3<I> (xl)} 

and 

1 

sup L; <l>Jx j ), for hard-core potentials 
(XjIIEIN' JEIN' with diameter 6 and 
'Xj-XJ ''''6 <I>_=sup(O, _<1» 

A= ° , for positive potentials. 

Duneau, Souiliard, and lagolnit1:er 1664 



                                                                                                                                    

B. Strong cluster properties at z :j: 0 

The results of Secs. II and III apply to smeared out 
connected correlations of the form 

pI(xu ... ,xN ) 

= a" ~ N+l{ dx','" dx'N Xx, (x',) ••• XXN (x'N ) pI (x', ••• x'N ) 

where Xu ••• ,xN EO ZV and where Xx is the characteristic 
function of the cubic cell of side a, centered at ax (a is 
an arbitrary positive number); in the same way we 
define 

x f dx'. ... dx' dy· ... dy X (x'. ) ••• y (.r. ) , N I "XI I ""N N 

x cp(X', Y), 

so that the method of Lemma 1 applies with 

[r>.(X) = inf Lr>.(X')' 
x': I xl-x" I "'a /2 

The results are then obtained without further 
restrictions. 

We finally note that more general smearing functions 
X can also be used. 

V. DISCUSSION 

As a conclusion, we would like to mention the fol­
lowing remarks: 

(1) For reasons which are discussed in Ref, 5, it is 
also useful to consider strong cluster properties for 
partially connected correlations, i. e., correlations 
which are connected only with respect to clusters of 
pOints. (These functions and their cluster properties 
are involved in the problems of analyticity with respect 
to f3 or other parameters of the interaction.) The results 
of the present paper are correspondingly extended in a 
coming work. '4 

(2) The results obtained for potentials which decrease 
like y-S are not completely satisfactory: They indicate 
a decrease like y-S' of the correlations, where s' = s - I' 

- E at low activity and s' - 0 near the boundary of the 
analyticity domain, outside the Kirkwood-Salzburg re­
gion. This type of decay does not always ensure the 
integrability of the connected correlations I pI I, which 
has been proved directly in Refs. 6 and 7 at least at low 
activity. 

For the 2-point function, a decrease like y-S has in­
deed been proved at low activity in Refs. 9 and 10. 
Work is in progress to obtain corresponding results for 
the N-point functions, at low activity and more general­
ly in the analytiCity domain. 

(3) In P(<IJ)2 field theories, strong decay properties of 
the connected Schwinger functions can also be obtained 
for small I A I and Re A> 0, '6 (with eN Nl! • ,. Np ! being 
replaced by a different constant AN)' 

Theorem 3' of Sec. III allows extension of these strong 
decay properties in the connected domain in complex A­
space, containing the above region, where the Schwinger 
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functions remain analytic and satisfy bounds of the form 

IS~ I < AN' 
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APPENDIX A 

The Mayer expansion of the connected correlations 
are proved in Ref. 6 by an algebraic method. In this 
appendix, we give an alternative method which is based 
on graph expansions and takes explicitly into account the 
connected character of pI (X). This method is an adapta­
tion of analogous method of Ref. 15. 

The nonconnected correlations are given by 

PA(X;Z, f3)= ZA'(z;{3)zN 6 z~ f dYexp[f3U(X, Y)] 
n~O n. An 

where the Boltzmann factor has the graph expansion 

exp[ - f3U(X, Y)]=6 (x,y)j(r). 
r 

Here the sum 6r runs over all graphs constructed on 
(X, Y) and 

j(r)= II (exp[- f3cP([Z[)]-l). 
rEf 

The consideration of the connected parts of the graphs 
leads to 

exp[- !3U(X,Y)J= 6 exp[- !3U(Y\Y')] 
pey 

where the sum i:(X) runs over all partitions of X into 
(X1- .. X k ) 

nonempty subsets and 6 (Y' ) runs over all partitions of 
(YI'''Ykl 

Pinto k subsets (with possibly empty ones), 

Then using the symmetry of exp[ - {3U(X, y)] with 
respect to Y, we get the following equality between for­
mal expressions: 

"~:! f n dYexp[- f3U(X, Y)] 
A 

=(.0~ r dYexp[-f3U(Y)]) 6(x) fr 
""0 n. t" (X , ••• Xk ) 1=' 

X (.0 z~ f dYcp(Xp Y»); 
n~on . 

A 

and, consequently, we obtain 

PA(X)= ~(X) fr ?I( ~ Z"! f dYcp(X1, Y»). 
(X,"'xk ) /=l "»on. An 

Since 

k 

PA(X)= ~(X) II pI (XJ ) , 
(X1,"·Xk}J=1 

we have the formal equation 

The proof is achieved if this last formal expansion has 
a nonvanishing radius of convergence; this follows for 
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instance from bounds on the integrals of the Ursell 
functions. 

APPENDIX B 

The methods presented below are adaptations of 
methods previously used to prove bounds (without decay 
properties) on the Ursell functions or their integrals: 
See Chap. IV. in Ref. 6 and also Ref. 11. 

They are extended to UrseU functions cp(Xo;Xu ••• ,Xp) 
which are connected only with respect to clusters 
Xo, ••• ,Xp in Ref. 14. 

Proof of Theorem 1 in Sec. II 

It is useful to introduce the Ursell functions 
CP(XO;XH ••• ,xN) which is connected with respect to a 
set Xo of No points X OH ••• ,xON and to the pOints 
Xu ••• ,xN (but not with respec~ to the points of Xo) and 
has the following explicit form: 

includes a further factor exp(2j3B). This factor is how­
ever easy to remove.] 

Proof of the bound (7) in Sec. II 

The bound (7) is proved similarly by using the fol­
lowing recurrence relations of the Mayer-Montroll 
type, which are also easily checked from the definition 
(Bl): 

=exp[ - j3U(Xol] .6 IT K(Xo,Xj)CP({XI};XCI) 
IC[l ••• N) jeI 

(B5) 

1I'</> 

where K(Xo,x) = exp[ - i3W(x ,Xc) - 1]. 

The following inequality, proved in Ref. 11, is to be 
used: 

(B6) 

(when all paints of Xo are different from each other). 
(B 1) (Note that rp = 0 otherwise. ) 

where the sum 1 runs over all graphs r on the pOints 
xu' •• 'XN'X01 ' ••• ,xONo ' which are such that the points 
Xl' •• xN and the cluster Xo are linked in a connected way. 

The following recurrence relations of the Kirkwood­
Salzburg type (see for instance Ref. 6) are easily 
checked from the above definition: 

rp(XO;x H ••• ,x,v)= exp[ - /3W(xo,Xo)] 

x .6 II K(xo-Xj)rp({XO,XI};XCI), 
IC[l ••••• N} lEI 

(B2) 

where XoE Xc, Xo=Xo\xa, W(xo,XO)=1yExo<l?(xo - y), Xl 
={Xj , i E J}, and CJ is the complement of J in {l' .. N}. 

It is always possible6 to choose a point XoE Xo such 
that 

(B3) 

Then, the following inequality is easily derived from 
(B2) by induction on the total number N + No of points: 

I rp(Xo;xu ••• , x N) \ 

"" (exp(2j3B)),v*,vo-l .6 II [K(Z) [, (B4) 
T<xo;xl' .... x,v) lET 

where the sum ~ runs over all graphs on the points 
xl>'. "xN,XOl>" .,xONa such that 

(i) there are no internal lines inside Xc, 

(ii) the graph P induced by contraction of Xo (i. e., by 
identifying all its vertices) is a connected tree. 

The bound (6) of Theorem 1 is the particular case of 
(B4) obtained when N o= 1. [The bound derived from (B4) 
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The existence of the configurational microcanonical conditional entropy in classical statistical mechanics is 
proved in the thermodynamic limit for a class of long-range multiparticle observables. This result generalizes 
a theorem of Lanford for finite range observables. 

Although a considerable amount of research has been 
directed in recent years toward proving the existence of 
the thermodynamic limit for the classical ensembles, 
the microcanonical ensemble for long-range interactions 
has presented certain difficulties. In this article we 
provide a proof of the existence of the configurational 
conditional entropy for a class of systems including 
long-range interactions falling off in v dimensions faster 
than l/r". 

Griffiths, using arguments of Fisher, 1,2 has outlined 
proofs of the existence of the microcanonical entropy 
for variously tempered two-body interactions. There the 
microcanonical energy is studied as a function of the 
entropy, and the entropy is recovered implicitly after 
the infinite volume limit has been taken. Similar results 
for two-body interactions were obtained by Minlos and 
Povzner. 3 

Lanford4 has pointed out that methods of Ruelle5 can 
be employed to obtain the entropy directly, and has used 
this approach to prove the existence of the configura­
tional conditional entropy for strictly finite-range ob­
servables. 

We use the Lanford approach to extend the existence 
theorem to observables with long-range behavior. 

1. LIMIT ALONG A SPECIAL SEQUENCE OF CUBES 

Let T" deSignate either the v-dimensional lattice Z" 
or v-dimensional real Euclidean space ffi" with counting 
or Lebesgue measure fJ., and denote the corresponding 
phase space by C;, C; =u:,] (T")". The extension of fJ. to 
(T")" and C; will also be written fJ.. If Q i E C; r, (T")"i, Q i 
= (q 11> ••• ,qi"j): i = 1, 2, write N(Q j) = n_J' q ij E Q p and 
d(Ql> Q2) =inf{d(({1' (2) I ql ceQ), where d: TVx T"- ffi is 
the Euclidean metric, Let S be the set of bounded, mea­
surable subsets of T", and C I' the set of bounded open 
convex subsets of ffi I, t E Z +' If J Eel and E > 0, then J' 
= {x EJ Illx - y II> E, Vy E ffil/J} is the E-contraction of J, 
and r' c= {xEffillilx- yll <E for some YEJ}. 

Definition 1. 1: The real linear space A~ of I-valued 
observables, IE Z + and \. c:: ffi, is the set of fJ.-mea­
surable functions f: C;- - ffil satisfying the following: 

(i)f(Q+q)=f(Q), QE C;, qETV
, and Q+q 

= {J) cc TV I P - q rc Q }; 

(ii) f(Q) = f(Q') if Q' is a permutation of Q; 
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(iii) there exist A > ° and Ro > ° such that, for all 
m EZ+ and Ql>'" ,QmE C;, d(Qi,Qj) ?r?Ro for all i*j 
implies 

For A E S, J E C t' n E Z +, and f E A~, the conditional 
phase space volume V, is 

V,(A, n, J) = (l/n!) fJ.{ Q E A" I (l/n)f(Q) EJ}. 

The vector-valued observable f is to be viewed as a 
set of t translation-invariant symmetric scalar-valued 
observables, with a decrease condition (tempering) for 
each at large distances. For example, tempering would 
require a pair potential interaction generating a Hamil­
tonian to fall off at least as fast as r-\ Since the ob­
servable f will be fixed, the subscript on V will be 
dropped. Also, throughout it will be necessary to as­
sume that \. > v. 

Proposition 1. 2: (a) If J E C t and Ac A', A, A' E S, 
then V(A',n,J)?V(A,n,J). 

(b) If {A I};1 c: J' d(A i, Aj)? r ?Ro for i *j, n =i; 7=1 nl' 
n l E Z +, and 1.J )1=1 c C t' then 

vCR Ai' t:t np ~ (:i)J i)? i~1 V(A i,n i,J1
nr
-\ 

Proof: The first part is obvious. If Q I E A~i, then for 
J = i; 7=1 (n;/n)J p (l/nN(Q i) EJ1nr-1. implies (l/n)f(Ql> 
... , Qm) EJ by 1. 1 (iii), since 

.!. t f(Q·) E £. (~) JAnr-1. =JAnr-l.. 
n i=1 • i=1 n i 

Hence 

c: {Q E (Q Ai)" I.!. f(Q)E t (ni) J i}. 
i-I n i =1 n 

Define the denSity p = n/fJ. (A), the specific volume v 
= l/p, and Zv=v1

/". For E=\. - v>o as in 1.1 (ii), K 

E(O,l), andmEZ+, let 8.=2("+"')/1., CfJ.=[1-(2"/8;)]-I, 
R =R (2 - 8)"1 R = 8mR and A =Am 2(m+l)"/RI. 

K 0 Ie' It,m J( 0' K,m Y Ie '!(,m· 

Denote the cube A.,m(v)={q=(ql"'" qv) E T"IO < qk< 2mZv 
- 8;R., k= 1, ... , v}. 
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The reasons for choosing A •• m(v) and R •• m in this 
manner will be apparent from Proposition 1. 3. In 
particular, cP K is chosen to make valid the last equality 
in the proof of that proposition. Note that as m - 00 

t. •. m goes to zero as 2-KEm
, and JCl. •• m - Jo The parameter 

K is specifl'~d, since later some control will be needed 
over the rate of convergence of t. •. m to zero. 

Proposition 1. 3: If J r:: C t' then 

V (A (v) 2(m+Ilv JCl. •• m.I);, {V(A (v) 2mv JCl. •. m)}2v 
K,m+l" Kim " • 

Proof: Since R •• m = (2m+llv - e:+lR.) - 2(2m lv - 8':R.), 2V 

disjoint translates of A •• m(v) with mutual separation 
equal to or greater than R •• m can be placed inside 
A •• m+l(v). Further, 

The proof is completed using 1. 2. 

Corollary 1. 4: 

and the limit as m - 00 is equal to the supremum over 
m EZ+. 

Definition 1. 5: For J E Ct and x ElR t , let 

1 
S.(v,J) = l~n;; 2mv log V(A •• m(v), 2mv ,JCl. •• m) 

and 

s.(v,x)= inf {S.(v,J)}. 
x~J~Ct 

Proposition 1. 6: (i) If J c J', J, J' Eel' then S.(v, J) 
~ S.( V, J') ~ 1 + logv. 

(ii)If{Ji}i~ICCt' JO=U~=IJiECt, andfort.>Osuf­
ficiently small, U~=IJ~=Jrf', thenS.(v, U~=IJi) 
= SUPI"i "k S.(v,J i )· 

(iii) If J E C t' then S.(v, J) = sup{S.(v, ,l) IJ E Ct, J- cJ}. 

(iv) S.(v,J)=suP"EJ S.(v,x). 

Proof: Routine, using 1. 2 and properties of Il. 

Corollary 1. 7: (i) x - s.( v, x) is upper semicontinuous 
and concave on lR I. 

(ii) v - s.(v, x) is nondecreasing and concave on lR., 
and continuous on (v", 00), where v,,= inf{v I s.(v, x) > - oo}. 

When the tempering condition in the definition of A ~ 
is replaced by a finite range condition (additivity: A = 0), 
then the interior of r. is nonempty if the components of 
f are linearly independent. More generally, a sort of 
asymptotic openness is required. 

Proposition 1. 8: Let O.(v) be the convex set 

o.(v)={xElRtls.(v,x»_oo}, 

and, for m E Z +, let Em(v) = ess range «1/2mv)f •• m)' 
wheref.,m is the restriction off to [A •• m(v)r·~. Write 
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= {x E lRt IOn Em(v) *- cjJ for infinitely many m, for 
each open 0 c lRI, X EO}. 

Then 

S1.(v)" = lim s. Em(v), 
m-~ 

Proof: If Xo ri S1.(v)-, then there exists J E C t such that 
xoEJ and S.(v,J)=_oo, hence JCl." mn Em(v)=cjJ and 
Xo E J".,m for m sufficiently large. Therefore, 
Xo ri lim s. m~~ Em(v), 

On the other hand, Xo i lim s. m _~ Em(v) implies 
JnEm(v)=cjJ for some J-=. Ct, xoEJ, and all sufficiently 
large m. Passing to the contraction J" •. m gives the 
desired result. 

Definition 1. 9: We say thatf is asymptotically open if 
there exists v>O and K=K such that (lim s'm_~Em(v»O 
*- ¢. We denote by Vo(K) the infimum over all such v for 
any K ~ K In the remainder we will always assume that 
K ~K. 

If f is asymptotically open and v> Vo(K), then S1.(v)O 
*-¢. Let r.= r .(f) be the set {(v, X)E lR.XlRtls.(v, x) > 
- "'}. 

Corollary 1. 10: (i) r~ is convex. 

(ii) If f is asymptotically open, then ~ is nonempty 
and dense in r •. 

(iii) (v,x)- s.(v,x) is continuous and concave on ~. 

Corollary 1.11: Iff is asymptotically open and 
O<V<Vo(K), then o.(v) = ¢. Hence vo(K)=inf" v". 

2. INDEPENDENCE OF THE PARAMETER 

We shall show in this section that the contraction 
parameter K can be removed, and that the result co­
incides with the conditional entropy defined without con­
tractions, at leJ.st for the limit taken along a special 
sequence of cubes. 

Lemma 2.1: Let f: lRt -lR u { - 00, oo} be upper semi­
continuous and concave, J I, J 2 -=. C t with J I n J 2 * ¢, 
f(J1 nJ2)nlR*-cjJ, and {di}i:1 a sequence of positive real 
numbers with d i - O. Then 

inf 
i 

sup 
xEJ";.di n J 2 

f(x) = sup f(x). 
"EJ I nJ 2 

Proof: Since J"di"")J, 

inf 
i 

sup f(x) ~ sup f(x). 
xEJidinJ2 "C:: J I nJ2 

-d· 
So assume (JI '!Jl)nJ2*¢ for all i, sUPxC::J1n J2f(x)< co, 

and suppose 

inf sup f(x» sup f(X)+~E, (>0. 
i "EJldinJ2 xC:: JIll J2 

Then, for each i, 

f(x» f(x)+ k 
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f(Y~) > sup f(x) - d2 
"E (,(jd i /J lIn J 2 

and {y j}:l a subsequence convergent to y E a(J1 n J2 ), If 
z j - y, by upper semicontinuity, 

f(X)+E 

and by concavity 

which yields a contradiction. 

Definition 2.2: For v> ° and K E (0, K), let C t (v, K) 

={JECt!({v}XJ)n r~4o¢ord({v}XJ,r,,»O}. For 
J E C t(v, K) and x E1R t, define 

5.,o(v, J) = ~i:x;, 2~v log V (A.,m(v), 2mv, J), 

and for K1 , K2 E (0, K), QI > 0, 

Theorem 2.3: If ° < v * Vo(K/), QI > 0, K1 , K2 E (0, K), 
and J E C t(v, K1) n C t(v, K2), then 

(i) 5.1'0(v,J)=5.
1
(v,J), 

(ii) 5. (v,J)=5. (v,J), 
1 2 

(iii) 5 (v,J)=5" (v,J). 
1C1'~ra "'1 

Proof: For each d> ° there exists a positive integer 
m(d) satisfying 

for m > m(d). Hence, if {d;};:'l is a sequence of positive 
numbers with d/ - 0, 

lim sup (1/2 mv
) log V (A.,,,,(v), 2mv, J) "" i~ 5,,(v, J"4i). -- . 

Now, by Proposition 1. 6(iv) and the concavity of 
x-s,,(v,x), 

5 ,,( V, J"d i ) = sup{ S ,,(v, x) Ix E J"4
i n n.(v)O}. 

Therefore, for ({v}XJ)n r~*q5, by 1. 7 and 2.1, 
inf i 5 .(v, J"4 i ) = 5.( v, J), and so 

lim sup (1/2 mv )logV(A.,,,,(v), 2mv,J) ~S.(v,J). 
m~~ 

In the case d( {v }XJ, r.) > 0, if {) satisfies ({ v }XJ"6) 
n r. = q5, then S.(v, J"") = - 00, so that 5.(v, J) = _ 00. 

Assuming K2 > Kl and noting A.
2
,,,,(v) C A.l''''(v), obtain 

S"" o(v, J) ~5 o(v, J). On the other hand, letting 0< v' < v ._,' #Cl' 

if v < V o(K1), or V o(K 1) < v' < v otherwise, compute 
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so that 2v disjoint translates of the cube with sides 
(0, 2mZv') can be placed inside LlI<2,,,,.1(V) for all suf­
ficiently large m, and hence 2v disjoint translates of 
A (v') with mutual separations equal to or greater than ','" 
R'l'm, Since 

J a.1,m+l C J a·2 • m+1 

for sufficiently large m, the refore 

V( A (v) 2(m+llv~'2,m+1)""[V(A (v') 2mv J a'l,m))2v 
1(2 tm+ 1 " "I,m ' , 

and so 

5. (v,J) "" sup 5. (v',J)=5. (V,J). 
2 v' < vII 

Thus (ii) follows from (i). 

Finally, for K2 > K1 , d> 0, and m sufficiently large, 

and 

aA... m ( ...d+6.1( m) 
V (A (v) 2mv J '1') "" V (A ) 2mv d 2' K

2
,m , , "2 ,m V , , 

so that 

5. (v,J) "" lim sup (1/2 mv) log V(A.2,m(V),2"'V,J
aaK

l'm) 
2 m"' QQ 

and 

If K2 < K 1> then, for m large, 

so that 

lin.!_~nf (1/2 mv) logV(A.
2

• m(v), 2mv , J",a.l'm) -?! 5"2 (v, J). 

On the other hand, 

5.
2 
(v, J) 

aa 
=5 a(v,J) ""lim sup (1/2mv)logV(A" m(v~2mv,J "I,m). 

~, m"cro 2' 

Corollary 2.4: For all v> 0, v *1'o(K1 ), K1 , K2 , K3 

E(O,K), andXE1R t, 

5" (v,x)=5 (v,x)=5. a(V,X). 
'1 "2 3' 

Corollary 2.5: nf):= r.(f) , C t< v) = C t(v, K), and va 
= Vo(K) are independent of K. 

3. LIMIT ALONG GENERAL SEQUENCES 

We wish to extend the results of the previous sections, 
derived for limits taken along the standard sequences of 
cubes {A",m}: =1' to limits along a more general se­
quence of domains. 

For A E S with boundary a A, let Va( r; A) 
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= iJ.{x E T"I d(x, a A) <S r}. A sequence {A j}j:l c S is said 
to tend to infinity in the sense of Fisher, A j - 00 (Fisher) 
if 6 V(Aj) - 00 and there exists an io E Z+ such that 

lim sup Va(aV(Aj)l/v; Aj)/V(A j ) = 0. 
01-0 ,;!IolQ 

Lemma 3.11: If A E S is filled with cubes of edge­
length d lying entirely within A, the volume remaining 
after maximal filling is less than Va(vl lv d; A). 

Suppose {A j} ;-1 c S, Aj - 00 (Fisher), and {nJ ;_1 c Z + 

satisfy limj~~ V(Aj)/n j = v E (0,00). Then we will say that 
{(Aj, n j)}:1 is a Fisher system tending to density l/v. In 
this case, let K, K', K" E (0, K) be such that K" > K' > K and 
K" - K' > K, for n E Z+; let m(n) = N «log2n)[v + K'(X - V)]-I), 
where N (x) is the greatest integer in x, and define nj 
=mj2mlnj)v+rj with ° <sr j< 2ml"j)v and 

mlnj)-l 

r j = L 
i=O 

For ° < v' < v, let ~ > 1 satisfy v' < ~vv' < v, and write 
Am(~Vv'), m E Z., for the cube in TV with edges (0, 2m~lv')' 
Finally, let 7 j be the number of cubes in a maximal 
filling of Aj with translates of cubes Amln')(~Vv'). 

I 

Lemma 3.2: For i sufficiently large, mj+z;~=~nl)-1 e ji 
disjoint translates of A ml"J1;vv ') may be placed inside 
A j • 

Proof: Observe 

7j 2ml"j)v 
lim...e....!---
i~~ n i 

Therefore, if limj_~}j V(Am1nj ) (~Vv'))/V(Aj)= 1, then 
limj_~ 7 ;lmj;o v/~vv', and so there exists ~ E lR, ~vv' / 
v < ~ < 1 such that 7 I > m j + (~ v/~vv' - l)m j for all large 
enough i. Hence m j + N(m j~ v/~vv' - m j) disjoint tran­
slates of Amln)~VV') may be placed inside Aj, and the 
lemma follows from obvious estimates. 

USing 3.1 for i ;0 io and 

H(a) = sup V a(a V(A j)1 lv, Aj)/V(Aj), 
i~io 

Choose W E lR, ~l, /l < W < 1, so that, for i large, 
V(Aj)l/v > wlJl~/v.v Then 1; l v' /V(A j)1 Iv < nil lv, and 

H(vllv2mlnj) ~lv,/V(Aj)l/v) <SH(vl/vn~/lv+" I~ov)]ol/v). 

But 

lim j_~ n~ I Iv+.' I~·vll·l Iv = 0. 

Theorem 3.3: Suppose {(Ai' n jH:1 is a Fisher system 
tending to density 1/11, v *vo. Let {dJ:l be a sequence 
of nonnegative real numbers, d j - 0, K E (0, K), and 
J E C /v). Then 
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Proof: From 1. 6 and 2.3, it is sufficient to show that 
there exists K" E (0, K) such that for all Vo < v' < v and 
J E Ct with .i-r- J, 

lim inf (l/n.) log V(A., n.,Jdj
) ;0 S.,,(v', J). 

i"«:> 1: 1- 1-

Suppose K, K', Kif E (0, K) as before, Lemma 3.2. By that 
lemma, for sufficiently large i, m j + Z; j=~nj)"l e Ii disjoint 
translates of AI<" ,m(n') (1;Vv') with mutual separation at 

m(n·' , "d A least 8." ' Ro may be placed InSl e j' Therefore, for 
any J E C t and i sufficiently large, 

m(n .}-l 
, -11 C 

x IT [V (A (l-Vv') 2Jv J j)] jJ 
/(" ,m(n.) b " , 

i=O • 

A / 
;em(nj) ~ 

where Ll- j= nj 8." R o' 

A short computation gives Ll- j < eLl-Ko o .' .m(n;' for e 
= 2" I~~v)rn-l and Ll- . "'Arn 2v+'(~.v'/RA2'(~·v'm("j' 

't' 1(" "'K' , /( ,3· 't'K 0 

for ° <Sj < m(n j ). Hence, for large enough i, A j < Ll-.,j> 

so thatJI1
',i c J l1 j, Similarly, it is seen that A • ./v') 

cA" I )(1;V 11') and A." ml .)(v')cA." mln.,(1;V 11 '). Writing 
Nl == i:r~ E Z. I A.,m(V');' c;6}'0' {O, 1, .. :, m'(ni ) - I}, we 
obtain 
Vj '" lV(A"",m(n.'(v'), 2m1n j'V ,JCti'''.'',mlnj))t

j 
, 

m(n()-l 

x IT 

Next J E' C t will be fixed to guarantee that each of the 
factors above will be nonzero. Choose Xo E lRt such that 
S.(11', xo) > - 00 and let J. l E C t be a rectangular solid with 

edges {(a. H , bolkH k-l containing xc' Then, for all j ? N2 , 

V(A.jv'), 2iv,J~',i ) > 0, where N2 =inf{j EZ. 1l/(AK.lp'), 
2 jv , J~{,j) > O}, and, for i large, 0 ~ N2 < m(n i ). Let 
J j c=: ( t be a rectangular solid with edges {( a j k' b j k)} ~ =1 
such that V (A.,Nl(V'), 2iV , Jjti.,j) > ° for ° ~ j < Nl> and 

V (A .«(1'), 2iv , Jti.,j ) > ° for Nl ~ j <N2 • Then define J to 
1<,) J t 

be a rectangle with sides {(a k, b k)}k=I' where 

(lk=( inf aJk)-Ll-.,o, bk=( inf bjk) + Ll-.,o' 
-1~i<N3 -1:!5.j(N3 

Since 
m(ni)-l 

lim :B 
i" oo j~O 

and 

for i large enough, 
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Using this and 2.3 (iii), 

lim inf 1...- log VeAl> n l , .tl) ?S.,~v',J) + lim inf (11 
I~~ n l I~~ 

for 

men )2m
(nIW { '1 -Il I "" I sup sup - log V(A (v') 2J" J •• J) ~ n , 2Jv •• N1" , 

I O"'J< N1 

But the first term in the supremum is finite by con­
struction of J and nondependence of N1 on i, and the 
second term is equal to 

sup{ 2;Zv flOg V (A" N1 (v'), 2
N1V

, JIl •• 
N1

) I ' 

1 'log V(A (v') 2[m(nl )~11v J" •. m(n l l-1) I}. 
2(m(nll-1W , •• m(nl)~1' , , 

-
Here again the first term is finite by choice of J, and 
the second term is bounded by 2 + log v', hence 
liml~~ 1(1/1 =0. 

Lemma 3.41: If {AI} :1 c S, eac~ AI is connect~d, and 
AI - 00 (Fisher), then infl V(AI)/V(A I ) > 0, where AI is 
any minimal cube containing AI' 

Theorem 3.5: Suppose {(Ai' n l )} 7=1 is a Fisher system 
tend.!ng to density l/v, each A/ is connected, K E (0, K), 
J E C t(v), and S.(v, J) >;: 00. Then there exists a de­
creasing sequence {d l } 1=1 of strictly positive real num­
bers converging to zero, such that 

S. o(v, J) ? lim sup 1...- log V(AI' n l , ,tl). 
• i·~ nj 

Proof: For i EZ+, let P(i)= 1 + inf{m EZ+ I A •• m(v) con­
tains a translate A~ of AJ, so that A,.p(I)-1(v) is the 
minimal standard cube containing AI' Writing d l 
=Acp.21>(i)v/B~P(ilR., if AI is any minimal cube con­
taining Ai' then 

2" ~ V(A •• p(1) (v»/V(A) ~ (2V + 1)2 

for i sufficiently large, so 

2: ? V(A~~~:~V» > (2 V ~ 1)2 i~f ~i~:~ > O. 

Now pass to a subsequence {A I )j:1 such that 

lim V(AI) - (3 
J~~ V(A •• I>(ij)(v» -
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and 

lim _I_log V(AI ,n l ,.tlj) = lim sup .1..logV(AI' n l , ,tl). 
j~~nl J j I~~ n l J 

Let A;' = {q E A •• p (/l(v)/ A; I d(q, A;) > B~(/)R.} and n7
j 

=2P(IJ )v_ nl • It can be shown, as in Ref. 1, that A7- 00 

(Fisher) and it is easy to see that limj~~ V(A;)/ 
V(A . (v»=I-{3. By computing lim n" /2 P(lj)v 

•• I>('j) j~~ I j 
= 1 - {3, therefore limj_~ V(A7 )/n7 = v. Since A; and 
AT may be translated inside A: p(1 ~(v) with mutu~l 

J p(j ) • J 
separation B. JR. ?Ro' for large enough j, 

The theorem follows from 3.3. 

Corollary 3.6: Suppose {(AI' n 1HI: 1 is a Fisher system 
tending to density l/v, v"* vo' with each AI connected, 
and f is an asymptotically open t-valued observable with 
A> v. Then, if J E [t(v), 

exists, and 

s( v, x) = inf_ S(v, J) 
:rEJECt 

is given by 

Therefore, s has the continuity and concavity properties 
of Corollaries 1. 7 and 1. 10. 

The existence of the limit follows from 3.3 and 3.5 by 
removal of the contractions from Jdl as in 2.3, and from 
an argument similar to 3.5. 

We note that when t = 1 and f is the potential energy U 
of a tempered interaction, s(v, E) is the usual micro­
canonical configurational entropy per particle for a 
system at density l/v and interaction energy per 
particle E. 
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Foundations of a quantum probability theory* 
M. D. Srinivas 

Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 
(Recei ved 17 January 1975) 

Statistical physical theories are frequently formulated in terms of probabilistic structures founded on a "logic 
of experimentally verifiable propositions." It is argued that to each experimentally verifiable proposition there 
corresponds an experimental procedure which, in general, alters the state of the system, and is completely 
characterized by a "measurement transformation" or "operation." An analysis of the relations among 
these experimental procedures leads us to a "logic of operations" which is quite different from the 
"lattice theoretic logics" that are often considered (albeit inadequate empirical justification), as models for 
the calculus of experimentally verifiable propositions of quantum theory. It is seen that the quantum 
probability theory based on the logic of operations provides the proper mathematical framework for 
discussing the statistics of successive observations in quantum theory. We also indicate how a theory of quantum 
stochastic processes can be formulated in a way similar to the Kolmogorov formulation of the classical theory. 

1. INTRODUCTION 

It has been widely recognized1 that the theory of 
probability as has been systematized by Kolmogorov 2 is 
not suitable for a discussion of situations that arise in 
quantum mechanics. It is also a common belief that 
probabilistic concepts appear in quantum mechanics in 
an entirely different way, as compared to classical 
statistical mechanics. In fact, there are many striking 
illustrations of the nonconformity of quantum theory with 
traditional probability theory c We may cite, for exam­
pIe, Feynman's discussion of the double slit experi­
ment/ recent investigations of the nonexistence of joint 
distributions for noncommuting observables, 3-0 de Bro­
glie's discussion of the "quantum interference of prob­
abilities, ,,10 etc 0 

The attempts to construct a generalized probability 
theory that would be appropriate for quantum mechanics, 
originated with the work of Birkhoff and von Neumannll 

on the logic of quantum mechanics 0 Their basic idea 
was that the formalism of a statistical physical theory 
is that of a probability theory founded on a calculus of 
events or what are called the experimentally verifiable 
propositions of the theory, The structure of this cal­
culus is to be deduced from empirical considerations. 
Birkhoff and von Neumann argued that the experimental­
ly verifiable propositions of quantum theory form a 
nondistributive lattice in contrast to t he Boolean alge­
braic structure of the classical (experimentally verifi­
able) propositions, This has inspired several investi­
gations on generalized probability theories founded on 
lattice structures. 4,12-16 

In recent years, an alternative approach to quantum 
theoretic probability, called the "operational approach, ,. 
has been investigated (mainly) by Davies, Davies and 
Lewis, and Edwards. 17-19 This is based on the obser­
vation that von Neumann's theory of successive mea­
surements 20 can be used to introduce statistical concepts 
into quantum theory. By suitably generalizing von 
Neumann's theory of measurement transformations 
(also called the "collapse expression"), Davies and 
Lewis were able to develop certain basic notions of a 
generalized probability theory 0 

In this paper we attempt to formulate the operational 
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approach to statistical physical theories as a probabi­
listic theory based on a "logic of operations." Our 
contention is that the empirical basis that has been 
provided for adopting the lattice structure for the ex­
perimentally verifiable propositions in quantum theory 
is totally inadequate, Also, it gives rise to a repre­
sentation of each experimentally verifiable proposition 
in terms of the set of all states that assign unit proba­
bility to the proposition-a representation which fails 
to characterize the corresponding experimental proce­
dure completely. We propose a representation of the 
experimentally verifiable propositions in terms of the 
"measurement transformations" or "operations" that 
completely characterize the corresponding experiment­
al procedures. The propos itional connectives can now 
be more directly correlated with empirical procedures, 
and the ensuing "logic of operations" is seen to have a 
structure quite different from various lattice structures 
considered hitherto, We also find that the resulting 
probability theory has a very rich structure and goes 
well beyond the ordinary statistical interpretation in 
discussing statistical correlations among several ran­
dom variables, 

2. STATISTICS OF SUCCESSIVE MEASUREMENTS 
IN QUANTUM THEORY 

One of the basic features of quantum theory is that the 
measurement of an observable causes a transformation 
of the state 0 A theory of such transformations due to 
measurement was initiated by von Neumann via his 
''projection postulate." We will briefly describe von 
Neumann's theory, for the case where it is ideally 
applicable-measurement of an observable with discrete 
spectrum. 

Let A be the self -adjoint operator representing an 
observable, with the spectral resolution 

(2,1) 

where Pi are projection operators onto the eigensub­
spaces of Ao The basic postulate of von Neumann can 
be stated as follows. 

If, after the measurement of the observable A, all 
the information that is extracted is that the result lies 
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in a Borel subset E of the real line, then the act of 
measurement transforms the state p, of the system 
before measurement, into the state p' (unnormalized) 
given by 

p'= ~ PIPPi • 
:\i EE 

In particular, if we ascertain that the eigenvalue Al is 
obtained then p' = PlpP I' Also if we make a "complete 
measurement" or what has been called a "measurement 
without sorting" where no information is extracted, then 

P'=~PiPPil 
I 

(2.3) 

which corresponds to a mixed state in general. 

If the spectrum of the observable is nondegenerate, 
the projection postulate can be obtained from the hy­
potheSis of repeatability-"If, on a measurement of the 
observable A in a state p, the result is found to lie in 
the Borel set E, then an immediate repetition of the 
measurement will lead to the same result," If the 
spectrum of the observable is degenerate, then, in 
order to obtain the unique measurement transformation 
(2.2) (usually called the collapse expression), an addi­
tional assumption of "least interference" or "minimum 
distrubance" is also necessary, ZO,21 

The projection postUlate of von Neumann is sufficient 
to give all the statistical correlations between succes­
sive measurements, as long as we restrict ourselves 
to observables with discrete spectrum only, For 
example, the joint probability PZ(Altl , AztZ) that a mea­
surement of A at time tll gives the value AI' and a 
measurement at a later time tz gives the value AZ' can 
be given by 

(2,4) 

where P(Altl ) is the probability for obtaining Al at tl and 
W(Aztzi Altl ) is the conditional probability for obtaining 
AZ at tz, given that Al has been obtained at t1> W(Aztzi 
Altl ) is calculated by performing the appropriate mea­
surement transformation (2,2) on the initial state at tl 
and calculating the probability of obtaining AZ when this 
state has evolved to the time Iz, If we consider Hamil­
tonian time evolutions given by the unitary operator 
U{tz, tl)' we have 

Pz{AltU AztZ) = Tr[Pz V(tz, fl)PlP(tl)Pl Vt(tz, tl)Pzl. (2,5) 

Equation (2, 5) can be generalized to the rth order joint 
probability distribution 

Pr{Altll • •• , Artr) = Tr[Pr V(tr' fr_I) ..• P z V(tz, tI)PlP(tl) 

i t 1 X PI V {tz, t l )P2' •• V (tr' tr-l)Pr • (2. 6) 

If we had considered the evolution in the Heisenberg 
picture, we would have 

Pr{AIt1 , ••• , Artr) = Tr[Pr(tr) ••• PI (t1 )p 

x PI (t l ) ••• Pr(tr)], (2,7) 

Equations (2.6), (2,7) contain all the relevant statis­
tical information for studying the correlations of suc­
cessive measurements. In this context we can recall 
the dictum of WignerZZ that one obtains a consistent 
formulation of quantum mechanics (free from the well­
known duality in the change of the state vector), if one 
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adopts the viewpoint that "quantum mechanics gives 
only probability connection between successive obser­
vations on a system," Wigner also emphasizes that: 
"This formulation frankly gives primacy to the act of 
observation; it considers it as the basic quantity be­
tween the values of which physics establishes regular­
ities, though, according to quantum mechanics only of 
a statistical, that is probabilistic nature." An analysis 
of the nature of these probabilistic connections is thus 
very basic to the understanding of quantum theory. 

de BroglielO studied particular cases of the joint 
probabilities (2.6), (2.7) and pointed out that they do 
not satisfy all the properties of jOint distributions in the 
classical theory of stochastic processes (see also Ref. 
6, 23, 24). In fact as the projection operators PiUi ) 

do not, in general, commute among themselves, we 
have 

(i) Pr{A l t1 , ••• , Artr) are not symmetric in generaL 

(ii) They satisfy marginal probability conditions only 
when summed over the variable corresponding to the 
final time fr' i. e., though we have 

we also have, for example, 

L PZ(A 1 t1 , A2fz) *" P(AztZ)' 
Xl 

(2,9) 

de Broglie pointed out that these nonclassical features 
reflected a certain "interference of probabilities" in 
quantum theory, which is due to the fact that the mea­
surement of one quantity can influence the values of the 
other. This led him to the conclusion that the "usual 
mathematical statistics is based on postulates which 
cease to be exact in wave mechanics in such a way that, 
to make thefurmalism of wave mechanics enter into the 
general picture of the calculus of probabilities, it is 
necessary to construct a mathematical statistical theory 
more comprehensive than that of which use is generally 
made-by abandoning certain too restricted postu­
lates. ,,10 For a realization of this program it is very 
necessary to overcome first the limitations on the theo­
ry imposed by von Neumann's projection postulate. 

We can list some of the arguments that show that the 
projection postulate of von Neumann, or equivalently 
the collapse expression (2,2), is at best, only of limited 
applicability, 17,18, 23 Firstly the collapse expression 
(2. 2) cannot be used for observables with a continuous 
spectrum, as there are no projectors Pi available for 
this case, von Neumann proposed (what he himself 
acknowledged to be) a "temporary" way to circumvent 
this difficulty by partitioning the spectrum of the ob­
servable into nonoverlapping intervals. This procedure 
is quite unsatisfactory as the partitioning is arbitrary 
and usually destroys the invariance properties of the 
original observable. Secondly, von Neumann's projec­
tion postulate is based on the repeatability hypothesis; 
existence of measurements which are not repeatable has 
been widely accepted, and these have been termed the 
"measurements of the second kind, ,,25 {For example, 
the system changes, due to the first measurement, in 
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such a way that it is not available for a repetition of the 
measurement. ) 

A suitable generalization of von Neumann's projection 
postulate, which is also free from the above limitations, 
was proposed by Davies and Lewis. 18 They generalized 
the notion of "operation" as formulated by Schwinger26 

and Haag and Kastler, 27 to obtain a general class of 
collapse expressions which he called "Instruments 0 " 

Each instrument completely characterizes the measure­
ment transformations associated with a unique observ­
able which is in general a positive operator valued 
measure. This constitutes also a generalization of the 
standard formulation of quantum mechanics which ad­
mits only projection valued measures for observableso 

An instrument is defined as a mapping 

I: B(R) x V- V, 

where B(R) is the set of all Borel sets of a value space 
R (usually the real line), and V is the set T s (H) of the 
self-adjoint trace class operators on a Hilbert space Ho 
The requirements on the mapping I for it to define an 
instrument are 

(0 I(E,vb 0 

whenever v E: V+ for all E E: B(R) and 

(ii) I(U E i' v) =6I(E., v), (2.10) 

for each countable family {EJ of pairwise disjoint sets 
EiE: B(R). 

(iii) I(E, 0!1V1 +0!2V2) =O!lI (E, v1) +O!/(E, v2), 

for each EE:B(R) and Vi> v 2 E: Vo 

(iv) TrI(R,v)=Trv, 

for each vE: V. 

(2012) 

Davies and Lewis1B proved that given two instruments 
11 and 12 on value spaces R1 and R2 (which satisfy certain 
requirements like, for example, that of a complete 
metric space), we can consider their composition as a 
unique instrument I defined on R 1 xR2 • Also, given an 
instrument I on a value space R, there corresponds a 
unique positive operator valued measure 

w: B(R)- B;(H) (20 13) 

where B;(H), is the set of all bounded positive operators 
on H, such that 

Tr[I(E, v)] = Trlvw(E)], (20 14) 

for all VEe V. Conversely, given any positive operator 
valued measure w, there exists at least one instrument 
I such that (2. 14) is satisfied 0 

This shows that if, by the representation of an ob­
servable, we also intend to characterize the corre­
sponding measurement transformation or the collapse 
expression uniquely, then a proper (and necessary) 
generalization of the standard formalism of quantum 
theory would be to identify the set of all observables 
with the set of all instruments. The notions of gener­
alized measurement transformations and the associated 
instruments will be fundamental to a discussion of the 
foundations of the probability theory appropriate to the 

1674 J. Math. Phys., Vol. 16, No.8, August 1975 

analysis of statistical connection between successive 
measurements in quantum theory 0 Davies and Lewis 
have called this the "operational approach to quantum 
probability 0 " 

3. LATTICE THEORETIC APPROACH TO QUANTUM 
PROBABILITY 

The general framework that has been used to analyze 
the logical structure of physical theories, ever since 
the pioneering work of Birkhoff and von Neumann, is 
one where the basic notions are those of "states," 
"observables," and the "experimentally verifiable pro­
positions" of physical systems. The experimentally 
verifiable propositions are of the form: "A measurement 
of a given observable, on the system, yields a result in 
a given Borel subset of the value space of the observ­
able." Thus the general features of a system which are 
independent of the particular state of the system are to 
be found among the relations between the different pro­
positions-the so-called "propositional calculus." 

The propositional calculus or the structure of the 
"experimentally verifiable propositions·· (or what are 
also called the "events") of the system is a basic con­
stituent, which might vary from one theory to another, 
depending on basic phenomenological considerations. 
The states of a system are usually defined as some kind 
of probability measures on the set of propositionso The 
observables are defined as some kind of measurable 
functions-random variables-from the Borel subsets 
of the value space (usually the real line) of the obser­
vable, into the set of propositions. It is thus clear that 
the basic notions of KOlmogorov's theory of probability, 
are also basic to the logical structure of any physical 
theory, and as Kolmogorov's axioms are rooted in 
empirical experience, any change in our basic concep­
tions of the universe will be reflected by a correspond­
ing modification of the basic probabilistic structure, 

A. The "logic" of propositions in classical theory 

It was Birkhoff and von Neumann who precisely stated 
that the experimental propositions concerning any sys­
tem in classical theory correspond to a Boolean alge­
bra of subsets of its phase space. Consequently, the 
logical structure of classical statistical mechanics 
coincides with that of Kolmogorov's probability theory, 
and we will describe it briefly, 14-16 

The set B of all propositions form a Boolean algebra, 
which can be characterized by the following properties. 

(PI) B is partially ordered by a reflexive, asymmet­
ric, transitive relation ,,;, i. eo, we have 

(a) A;;A for all A<=B, 

(b) Al ,,;A2 and A 2;; A1 implies A1 =A2 for all A 1, A2 
EB, 

(c) A1 ,,;A2 and A2 ";As implies A1 ,,;A 3 for all AHA2' 
AsEe B. 

The relation,,; corresponds to the notion of implica­
tion of experimental propositions, 

(P2) B contains a "null" element (') and a "unit" 
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element 0, such that 

(a) 0,,;A for all A EB, 

(b) A,,; 0 for all AEB. The null element 0 corre­
sponds to the absurd proposition which is always false, 
and the unit element 0 corresponds to the trivial pro­
position which is always true. 

(P3) B is a complemented distributive lattice, 1, e" 

(a) Given a finite set J of elements AIEB, B contains 
a unique infimal element C = AI~ Ai and also a unique 
supremal element D= A ~{rAj; L e" C ,,;A j for all AI 
E t and P ";A j for all AI E J implies P ";C; and Aj";D 
for all Aj EJ and Aj ,,; Q for all Aj EJ implies D,,; Q, 

We denote i={\A j by A/\A2 and IY.. ~j by Al V A 2• 
We may note that J\corresponds to conjunction and V 
corresponds to disjunction of propositions. (b) For any 
A1 , A 2 , A3 E B, we have the distributive laws 

Al V (A2J\ A 3) = (A1V A 2)J\(Al V A 3), 

A 1 J\(A2 V A 3) = (Al V A2)!\(A1VA 3). 

(3.1) 

(3.2) 

(c) For any element A E B, there exists an A' EB such 
that 

A!\A'=dJ , (3.3) 

and 

(3.4) 

A' represents negation of the proposition A. B will be 
called a Boolean (] algebra, if in addition to (PI), (P2) 
and (P3), we also have (it should be noted that we have 
not given an axiomatic characterization of Boolean al­
gebra. ) 

AI~:rAj and Aj¥~j exist and belong to B, for every 
countable subset J of B. 

We can deduce from (P1)-{P3) that the negation of 
each proposition is unique and satisfies the following 
properties: 

and 

(3.5) 

(3.6) 

(3.7) 

Two elements AlJ A2EB are said to be disjoint, a rela­
tion that is usually denoted as All A2 iff Al ,,; A 2• 1 is a 
symmetric irreflexive transitive relation for a comple­
mented distributive lattice. 

There are general results on the representations of 
abstract Boolean algebras14- 16 as a Boolean algebra of 
subsets of some phase space. [For Boolean (] algebras, 
such a representation is not possible in general. The 
implications of this on the foundations of (traditional) 
probability theory may be found in Refs. 28, 29.] In 
classical mechanics this will be the phase space of all 
pure states of the system, and each proposition will now 
be represented by the subset composed of all the states 
that assign unit probability to the proposition. The 
connectives ,,;, V, and J\ now correspond respectively 
to set theoretic inclUSion, union, and intersection, 
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For the sake of the abstract theory, it is sufficient to 
assume that the set of all experimental propositions of 
a classical system is given by a Boolean (] algebra B. 
The states of the system are probability measures on 
B, L e., a state j.L is a real valued function 

j.L :B_ [0,1] 

such that 

(Sl)j.L (eI) = 0; 

(S2)/-I(0)=1; 

(3.8) 

(3.9) 

(S3) If J is a countable set of mutually disjOint elements 
AIEB, then 

j.L(AX:rA/) = 6 l-l(Aj)' 
A/E:r 

(3.10) 

The "observables" of the system are the "random 
variables" 

X:B(R)- B, 

where B(R) are Borel subsets of the value space R, such 
that 

(Ol)X(Qi)=r/J; 

(02)X(R) = 0; 

(3.11) 

(3. 12) 

(03) If E j are mutually disjoint Borel subsets of R, then 
the X(E/) are mutually disjoint elements of B such that 

X(~Ej) = 1\ X(E j). (3.13) 
, I 

We just note that in the standard Kolmogorov model, the 
random variables are defined as measurable functions 
from the phase space into the value space. 

It is well known that the rich structure of traditional 
probability theory is based on the above formalism. 2 

Birkhoff and von Neumann's analysis thus relates the 
discussion of logical notions presupposed in classical 
statistical theory with the empirical foundations of 
classical probability theory. 

B. The "logic" of quantum propositions-the lattice 
approach 

In generalizing the structure of classical propositional 
calculus, to obtain a "logiC" of quantum experimental 
propositions, Birkhoff and von Neumann's main objec­
tive was to provide a phenomenological basis at a very 
fundamental level for the well-known Hilbert space for­
malism of quantum theory. The two main observations 
on which they based their analYSis were the Heisenberg 
uncertainty prinCiple and von Neumann's conclusion that 
two noncommuting observables cannot be measured 
simultaneously.11 It should, of course, be noted that 
the latter result is widely contested by many au­
thors/o,31 and it has also been argued that the projection 
postulate and the nonclassical nature of the joint prob­
abilities are among the main arguments in favor of such 
results on incompatibility. 

von Neumann's main conclusion was that the set of 
experimental propositions in quantum theory do not 
form a Boolean (] algebra, but an "abstract projective 
geometry," Without gOing into the technicalities of 
lattice theory, we just note that the properties (PI), 
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(P2), (P3a), and (P3c) are assumed to hold in quantum 
propositional calculus also, where as the property 
(P3b) of distributivity is given up. Instead of (P4) one 
now assumes, 

(P4 / ) If {Ai} is a sequence of mutually disjoint pro­
positions, then ViAi exists. 

[Recall that propositions Al and A2 were defined to be 
mutually disjoint (All A 2) whenever Al ~A~. For the 
quantum case Al !\A2 = 1> is only a necessary condition 
for Al and A2 to be disjoint, whereas in the classical 
case it is also a sufficient condition.] 

There has been an extensive study32 on the additional 
axioms one has to impose in order to finally realize 
specifically the (so-called) standard representation of 
quantum propositional calculus-the orthocomplemented 
nondistributive lattice L of all the closed subspaces of 
a Hilbert space H over the field of complex numbers. 
For our purposes, it suffices to consider L as repre­
senting the logic of quantum propositions. 

In L, the relation ~ is again realized by one of inclu­
sion. The orthocomplement A' of a given closed sub­
space AEL is given by 

A' = {!/JE HI (!/J, <,0) = 0 for all <,OEA}, 

where ( • ) denotes the inner product in H. The im­
proper subspace H and the null subspace r/J function as 
the unit and null elements, respectively. From the 
lattice structure of L. we can immediately conclude 
that Al!\A2 is represented by the subspace obtained by the 
set theoretic intersection of the subspaces Al and A 2; 
A lVA 2 is represented by the smallest subspace con­
taining both Al and A 2• Two subspaces AI, A2 are 'dis­
joint' (All A 2 ) whenever they are orthogonal. 

Two subspaces Al and A2 are said to be compatible 
(denoted by A I -A2 ), if there exist mutually disjoint 
subspaces DI • D2 , and D3 such that 

If AI, A 2 , and As are mutually compatible subspaces, 
then the distributive laws (3.1) and (3.2) are valid. 
Since there is a one-to-one correspondence between the 
set of all closed subspaces of a Hilbert space and the set 
of all projection operators, we might as well consider 
the projection operator PA onto the subspace A as re­
presenting the corresponding proposition. Al and A2 
are compatible iff PAl and P A2 commute. 

The states of a quantum system can now be repre­
sented by probability measures on L that satisfy (Sl)­
(S3). It is a celebrated result of Gleason33 that to each 
such measure Il on L (the lattice of closed subspaces of 
a Hilbert space H), there corresponds a unique density 
operator p" on H (10 e., a self -adjoint positive trace 
class operator with trace unity), such that 

/-l(A)=Tr(p"PA ), 

for all AFL. 

The random variables or observables are mappings 
from Borel sets on the value space into L, which sat­
isfy (01)-(03). Thus an observable X can be identified 

1676 J. Math. Phys., Vol. 16, No.8, August 1975 

with the projection valued measure 

Px:E- PX(E) 

and therefore corresponds to a unique self-adjoint 
operator. Also, each observable X generates a prob­
ability measure on the value space, for each state Il, 
given by 

(3.15) 

Thus, an identification of the propOSitional calculus of 
quantum theory with the orthocomplemented nondistri­
butive lattice L generates the complete orthodox formal­
ism of quantum theory including its statistical interpre­
tation as given by (3.15). The objective of obtaining a 
generalized probability theory is also fulfilled. How­
ever, it is well known that this probability theory lacks 
the rich structure of Kolmogorov's theory in that no'­
tions like joint distributions, conditional expectations, 
stochastic processes, etc., can be defined only under 
highly restricted circumstances. 

In fact, if Xl and x2 are two observables, one can, of 
course, form 

(3.16) 

for each state. But P:
I

,X2 does not define an additive 
measure on R2 in general. This phenomenon can be 
directly traced to the nonvalidity of the distributive law 
in L. For example, if E l nE 3 =E 2 liE4 =dJ, P~1.X2 will be 
a probability meaSure on R2 only if 

P:1• X2 (ElU E 3 , E 2U E 4 ) = P:l . x2(El , E 2 ) + P:l' X2 (ElJ E 4 ) 

+ P:
l

• X2 (E 3 , E2) + P:
l

• X2 (E 3 , E 4 ). (3.17) 

From (3.16) it is clear that the validity of (3.17) de­
pends on the validity of the distributive law among the 
subspaces x1(E j ) and x 2(E); the distributive law is a 
consequence of commutability of the corresponding 
projection operators. There are general results due to 
Varadarajan,4,14 Gudder,34 et aL, which enumerate the 
conditions under which joint distributions exisL 

Also, the time evolution of an observable can be 
considered as a stochastic process only when Xt~,Xt , 

etc., have Joint distributions. For Hamiltonian evo1.u­
tion this would be the case if the operators correspond­
ing to x t and dx/dt commute. 35 

C. Critique of the lattice theoretic approach 

We will now analyze some of the arguments given by 
von Neumann and others in favor of the nondistributive 
lattice structure for the quantum propositional calculus. 
First of all, we should point out that there are many 
divergent views on the interpretation of the calculus of 
the experimentally verifiable propositions and its re­
lation to the similar calculi of mathematical logic. One 
school of thought is best summarized by the following 
excerpt from Jauch's book15; The calculus of experi­
mentally verifiable propositions is "the formalization 
of a set of empirical relations, which are obtained by 
making measurements on a physical system. It ex­
presses an objectively given property of the physical 
world. -The calculus of formal logic, on the other 
hand, is obtained by making an analysis of the meaning 

M. D. Srinivas 1676 



                                                                                                                                    

of propositions 0 It is true under all circumstances and 
even tautologically SOo Thus ordinary logic is used 
even in quantum mechanics of systems with a proposi­
tional calculus mostly different from that of formal 
logic. The two need have nothing in commono" Thus 
the nondistributive lattice of experimentally verifiable 
propositions is viewed purely as an algebraic structure, 
which bears certain formal resemblance to logical 
structure, but does not function as a vehicle for logical 
reasoning. Another viewpoint,36,37 which can be traced 
back to the paper of Birkhoff and von Neumann, is that 
the canons of classical logiC are violated by quantum 
theory, and hence, there are empirical grounds for 
adopting a "deviant logic" as embodied in the nondistri­
butive lattice structure of the quantum propositional 
calculus 0 Recently, there have been many discus­
sions38- 41 on the syntactical and semantical notions 
associated with the above viewpoints, apart from the 
basic philosophical question as to whether logic is an 
empirical science 0 42 

As our intentions are to examine the probabilistic 
structure associated with quantum mechanics, we only 
need to start from the guiding principle that the formal 
structure of statistical physical theories is that of a prob­
ability theory founded on the calculus of experimental-
ly verifiable propositions of the theory 0 The experi­
mentally verifiable propositions have to be related to 
the experimental procedures that can be carried out on 
physical systems. The propositional calculus is a 
structure that reflects the relations among these ex­
perimental procedures. Thus the justification for 
choosing a particular set of axioms for the propositional 
calculus has to come from a heuristic discussion of the 
relations between experimental procedures-relations 
which are independent of the state of the system. Our 
main contention is that the axioms proposed by Birkhoff 
and von Neumann fail to satisfy this criteriono We 
should also note that there are several other critiques of 
the Birkhoff-von Neumann proposal, from various 
standpoints 0 38- 41 ,43 

Among the postulates, the postulate (PI), that the 
relation of implication in a propositional calculus de­
fines a partial ordering, is generally uncontestable. 
One has just to point out the experimental procedures of 
measuring the position of a particle to be in Borel sets 
E1 and E 2 ; whenever E1 C E 2 , the first proposition im­
plies the second, and this does generate a partial order­
ingo 

In this context, it should be emphasized that the par­
tial ordering ~, should not be identified with implication 
(-) in formal logic, which is a propositional connective; 
Leo, if A1 and A2 are propositions, so is the implica­
tion 4.1 - A 20 In order to understand this difference 
clearly, we have only to note that the algebraic struc­
ture that is usually called the calculus of experimentally 
verifiable propositions is actually what is called the 
Lindenbaum-Tarski algebra44 of a corresponding pro­
positional logic (the algebraic structure that is obtained 
from the propositional calculus after identifying equiva­
lent propositions). Also, it is well known45 that prob­
ability measures on a sentential calculus are equivalent 
to probability measures on the Lindenbaum-Tarski al-
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gebra of that calculuso We may also note that mathe­
maticians have also considered logical systems, whose 
Lindenbaum-Tarski algebras are not Boolean46-for 
example, the intuitionistic logics which correspond to 
pseudo-Boolean algebras and some systems of modal 
logic which correspond to more general lattice struc­
tures. 

We now come to the definition of the connectives A 
and V. In the lattice theoretic approach, it is not only 
assumed that these are defined for any two propositions, 
but are also related to the partial ordering ~, as lattice 
operations; thus they also are associative and commuta­
tive operations. The main problem lies in relating these 
connective to specific combinations of experimental 
procedures. Birkhoff and von Neumannll left this as a 
suggested question at the end of their paper: "What 
experimental meaning can one attach to the meet and 
join of two given experimental propositions?" Let us 
first discuss the connective A-the conjunction. Birk­
hoff and von Neumann recognized the basic difference 
between conjunction in a classical propositional system, 
"which just involves independent observers read off the 
measurements which either proposition involves and 
combining these results logically, " and conjunction in 
quantum theory; the latter can be treated in the same 
way as conjunction in formal logic only under excep­
tional circumstances-"only when all the measurements 
involved commute (are compatible)." In spite of this, 
the only justification provided for continuing with a 
commutative and associative conjunction is that these 
are the well-known formal properties of conjunction in 
classical logic or lattice theory. The reasons for doing 
away with the distributive law were: (i) A distributive 
complemented lattice would become a Boolean algebra, 
so that one returns to the formalism of classical theory, 
and (ii) distributivity is a property that relates different 
experimental propositions which may not obey classical 
relations whenever the corresponding measurements are 
not compatible. We should emphasize that the same 
arguments can be repeated in favor of giving up any 
property that involves different experimental proposi­
tions. 

The preceding analysis clearly shows that there is no 
justification for assuming lattice theoretic properties 
for the connectives A,V, of quantum propositional cal­
culus, unless combinations of experimental procedures 
are constructed, and they are verified to satisfy these 
properties 0 In fact, it can be argued that the postUlates 
of Birkhoff and von Neumann arise either from an anal­
ogy with formal logic or an analogy with the structure 
of the set of all closed subspaces of a Hilbert space, 
rather than as a result of a specific consideration of the 
nature of quantum mechanical measurement-the study 
of which owes a lot to the contributions of von Neumann. 

The problem of devising an experimental procedure 
for the proposition A AB (when the procedures for A 
and B are given) has also been discussed by various 
other authors. Jauch15 has suggested the following 
schematic procedure, and postulates that "the proposi­
tion AAB is true if the system passes the .. , filter" in 
Fig. 1. If we assume the projection postulate, it can 
be shown that the experimental procedures for proposi-
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flG. 1. Jauch's scheme for testing the proposition A/\ B. 

tions AAB and BAA are the same, i. e., transform all 
the systems in the same way. This is based on the 
well-known formula for the projection operator PAM' 

PA/\B = lim (PAPa)". (3.18) 

However, if we restrict to any finite chain in the filter 
proposed for AAB, the commutativity of the conjunction 
is no longer valid. Apart from the fact that it is de­
pendent on the projection postulate, our main objection 
to Jauch's proposal is that it is an idealization which is 
not what is usually achieved in correlation measure­
ments; the correlations among observables are directly 
related to the properties of the conjunction of corre­
sponding experimental propositions. 

Birkhoff47 has suggested that the experimental proce­
dure for the proposition A A B may be taken to be the 
sequence of experimental procedure for A and B taken in 
that order. This is a perfectly legitimate empirical 
definition (and in fact the one that we will adopt in the 
next section), and makes the conjunction noncommuta­
tive. However, for the propositional calculus Birkhoff 
advocates the lattice theoretic commutative conjunction 
arguing that the set of all states that have unit probabil­
ity for satisfying the experimental procedure {A, B} also 
have unit probability for satisfying the sequence {B,A}. 
Firstly, in general this is true only when we restrict to 
measurements that satisfy the projection postulate. It 
is more important to emphasize that the set of all states 
that assign unit probability to a proposition do not 
completely characterize the corresponding experimental 
procedure. The experimental procedure can be com­
pletely characterized only by designating how it trans­
forms different states of the system. Two experimental 
propositions can have the same set of (all) the states 
that assign unit probability to a proposition do not 
different experimental procedures if the associated 
measurement transformations are different. 

lWe should mention that if one restricts the set of 
allowed measurements only to those that are described 
by the projection postulate, Jauch's scheme gives a 
valid definition of conjunction. However, apart from 
the limitations of the projection postulate itself, we 
cannot even include a simple succession of two experi­
mental procedures, to be represented in the theory. 
This is directly related to the well-known fact that a 
composition of measurement transformations of the 
form (2.2) cannot, in general, be recast as a measure­
ment transformation of the form (2.2).] 

Instead of continuing with a repetition of our argu­
ments on specific proposals, we can summarize our 
viewpoint as follows. To each experimental proposition, 
there corresponds an experimental procedure which is 
designed to test the proposition. The experimental 
procedures (in quantum theory) in general alter the state 
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of the system, and are completely characterized by the 
corresponding "measurement transformation" or 
"operation." In fact, this is the basic reason why the 
experimentally verifiable propositions of classical 
theory are related as in formal logic, while those of 
quantum theory are not. 

In a statistical theory each state of the system pro­
vides an assignment of probabilities to the propositions. 
We can model this situation by saying that if we subject 
an ensemble of systems to a given experimental proce­
dure, only a part of the ensemble (depending on the 
probability) satisfies the test (triggers the apparatus). 
However, the ensemble that emerges after the test need 
not be a subensemble of the original ensemble, but a 
new "distorted" or "collapsed" ensemble, with the total 
number of copies diminished by a factor equal to the 
probability. In the classical theory, this distortion due 
to measurement is absent, and hence after carrying out 
an experimental procedure, a genuine subensemble of 
the original ensemble emerges. This allows us to 
identify the experimental procedures, and hence the cor­
responding propositions of classical statistical theory, 
with the set of all states that satisfy the proposition. 
This allows us to reformulate classical propositional 
calculus as a calculus of subsets of a phase space. The 
quantum propositions, as we have explained, do not 
admit such a representation; they are to be directly 
correlated with a complete description of the experi­
mental procedures, as is accomplished by the "mea­
surement transformations" or "operations." 

4. "LOGIC" OF QUANTUM MECHANICAL OPERATIONS 

We have argued that the experimentally verifiable 
propositions of a physical theory, correspond to the 
(measurement) operations on physical systems. The 
structure of the corresponding propositional calculus 
will now be analyzed on the basis of a heuristic discus­
sion of the relations between the experimental proce­
dures that these operations characterize. Our discus­
sion of the propositional calculus of quantum theory is 
based on the generally accepted notion of "operations" 
in the Hilbert space formalism of quantum theory, and 
will be mainly confined to the definition of propositional 
connectives and the corresponding experimental proce­
dures. The procedure is similar to what Finkelstein37 

characterizes as "taking a well-known theory and dis­
tilling its logic." Discussions of general axiomatic ap­
proaches to statistical physical theories, based on sim­
ilar notions, can be found in the works of Davies, Ed­
wards/9,48,49 Hellwig and Krauss ,50,51 LeWiS, Lud­
wig52- 54 Pool,55 et alo 56 

In the standard formulation of quantum theory, the 
states are represented by the density operators, which 
are positive trace class operators on a Hilberg space 
H normalized to unit trace. The set of self-adjoint 
t;ace class operators on H, which we denote by V (also 
denoted by Ts(H) in the literature), is a Banach space 
under the trace norm. The set of positive (self-adjoint) 
trace class operators V+ == T:(H) forms a closed cone in 
V. This generates a partial ordering 
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From our discussion of the measurement transforma­
tions in Sec. 1, it is clear that an operation is to be 
defined as a positive norm-nonincreasing linear oper­
ator on V, i.e., if 0 is the set of all operations on V, 
then [EO is a mapping 

[:V- V, 

such that 

(01)[ is linear, 

(02) If VE V+, then C (V)E V+ also, 

(03) Trc (v) -'S Trv for all VE V+. 

(4.1) 

Also, it is well known1B
,19 that the set v* of continuous 

linear functionals on V can be identified with the set 
Bs(H) of all bounded self-adjoint operators on H. Thus 
to each operation, we can associate an adjoint [* which 
is a positive norm-nonincreasing linear mapping 

C*: Bs(H)- Bs(H). 

The set of all operations 0 will now correspond to the 
set of experimental propositions of a physical system. 
We will now discuss the ensuing structure of the propo­
sitional calculus. 

A. Implication 

The relation of implication is again a partial ordering 
on 0, which can be interpreted as follows. "An experi­
mental proposition t 1 is said to imply another experi­
mental proposition C 2' whenever the experimental pro­
cedure for [1 is a subprocedure of the experimental 
procedure for C 2'" This may be formalized via the 
following definition: 

(4.2) 

for all v E V+. -'S can immediately be verified to be a re­
flexive, asymmetric, transitive relation, defining a 
partial order. 

B. Absurd and trivial propositions 

As in classical logic, 0 also contains a unique absurd 
proposition eo e is the operation such that 

e(V)=o forall VEV. (4.3) 

We also have 

e -'S [ , for all [ EO. (4.4) 

The quantum logic 0, however, does not admit a 
unique "trivial proposition" that is implied by all pro­
positions. Actually, 0 has a subset J; of maximal pro­
positions with the property 

(4.5) 

for all ~E Z • Of course, the set J; contains the identity 
operation 1, which leaves all the elements of V un­
changed. Also, given an operation [EO, there always 
exists a ~EZ such that e -'S[ -'S ~ (see the discussion in 
the Appendix). Such a ~ is not unique in general. We 
should also note that a general operation [ does not 
satisfy the relation [ -'S 1. In fact, the operations that 
satisfy the relation [ -'S1 correspond to experimental 
procedures which pass a subset of the set of all states 
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unchanged, and do not pass the rest of the states; in 
this respect, they are analogous to classical experi­
mental procedures. 

C. Disjoint propositions 

Since 0 is a set of mappings on a linear space, there 
is a natural operation of addition defined on it. But as 
o only contains the set of all positive norm-nonincreas­
ing maps, it is only a convex set under addition. A 
countable set of propositions {[ j} is said to be a dis­
joint set of propositions iffJ; tiE 0 . 

If the set Jt U[ 2} is a disjoint set of propositions, we 
also write C 1l( 2' We may note that 1 is a symmetriC 
relation, which is not transitive or irreflexive in 
general. In the classical logic, as well as in lattice 
structures, the notion of disjoint propositions was 
defined using the notion of "negation" or "orthocomple­
ment" as in Sec. 3. Since we do not have a unique unit 
element in our logic of propositions, we have to define 
a complement or negation of the proposition [, to be a 
proposition [, such that 

[ +['EL. 

This criterion, of course, does not lead to a unique 
negation for each proposition. For instance, all the 
elements of Z act as negations of e, which in turn 
serves as the negation for all of them. The notion of 
negation is not a very useful concept unless one re­
stricts oneself to the range of a single random variable 
(instrument) . 

D. Conjunction 

We have extensively argued in Sec. 3 that the pro­
positional connnectives have to be defined by a specific 
reference to the corresponding experimental proce­
dures. This actually constituted our main objection to 
the lattice theoretic definition of propositional connec­
tives. We define the proposition [1 A[ 2 as follows. 

"The experimental procedUre corresponding to the 
proposition C 1A[ 2 is the procedure in Which the system 
is subjected to the sequence of procedures [1'[ 2 in that 
order." Schematically this can be depicted as shown in 
Fig. 2. 

The operation C1 C2 is hence given by the composi­
tion of Cz and C1; i. e., 

for all VE V where 0 denotes composition of operations. 
It is immediate that C lAc 2 is a well-defined operation 
for any two given operations [1'[ 2' 

From the definition it is obvious that A is an associa­
tive operation, which is not commutative in generaL 

FIG. 2. Experimen­
tal procedure for 
the prOPOSition 
[Ac2' 
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> 
FIG. 3. Experimen­
tal procedure for 
the proposition 
Ne;;, when 

et±L2' 

This noncommutativity of conjunction constitutes a 
fundamental departure from the structure of classical 
propositional calculus, 0Ne should note that a non­
commutative conjunction has been advocated by Po 
Jordan s7 also, Based on this, he has formulated a 
theory of noncommutative or skew lattices as a struc­
ture appropriate to quantal propositional calculus, As 
our propositional calculus is not based on a lattice 
theoretic framework, we will not discuss Jordan's ap­
proach in this paper.} We can define two propositions 
to be compatible (denoted by -), whenever [1/\[ 2 

=e 2/\e l' 

The conjunction satisfies the properties 

(4 0 7) 

for all [c O. However, we do not have e /\e =e in 
generaL We can define a proposition to be repeatable 
(for lack of better terminology), if e/\e =[ is satisfied, 

E. Disjunction 

In classical logic or in Birkhoff and von Neumann 
lattice theoretic approach to propositions, disjunction 
is defined using the negation and conjunction, via De­
Morgan's laws (3,7), and turns out to be well defined 
for any pair of propositions; this, of course, is based 
on the belief that one can provide experimental proce­
dures that justify a lattice theoretic conjunction, 

Since we have no apriori justification for employing 
lattice theoretic constructs, we have to define disjunc­
tion separately and provide an empirical counterpart. 
We may note that the connective disjunction is mainly 
encountered in jOining two propositions which refer 
to obtaining values in disjoint subsets of the value 
space of an observable (as in the case of two geiger 
counters which are active for disjoint volumes). 
Therefore, we define disjunction as a connective which 
is defined only for disjoint propositions and refers in 
some sense to the "fusing" or physical adjoining of the 
corresponding experimental procedures {the terminol­
ogy should be changed when we talk of position mea­
surements}, Schematically we can represent this as in 
Fig, 3, Mathematically, the disjunction e 1Ve 2 of two 
operations is defined only when they are mutually dis­
joint {[ 11. [ 2}' and is given by 

(4.8) 

whenever [1J.C 2' V is a well defined operation in 0 and 
can be extended to any countable disjoint set of propo­
sitions. In an abstract characterization of the logic 0, 
the extension to countable sets will have to be ac­
complished via regularity assumptions, 

We see that the disjunction is commutative and 
associative whenever defined, Also 
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(4,9) 

However, note that [ 1.[ implies that 

eV[ =2[, 

A very important feature of these definitions is that A 
is distributive with respect to V whenever the latter is 
defined, In fact, if [21.[3' then ([1/\[2}1.{[1/\[3) and 
([ 2 /\(1) 1. ([ 3/\ el) for all e 1'" 0, and we have 

[1/\([ 2 V [3) = ([ 1/\[2)V~-1 /\ e 3), (4,10) 

([ ZV[3)/\Cl = ([ Z/\(1)V{C 3 /\[lL 

However, is not, in general, distributive with respect 
to A, Finally, if [, is a negation of [, then 

eVt'E:0. (4.11) 

But [Ve' is not the identity operation in generaL Thus 
two complementary propositions will only give us a 
maximal proposition, but not the identity proposition in 
general, unless the propositions are classicaL 

F. States 

Having given a brief sketch of the "logic ,. of the set 
o of experimental propositions of a quantum system, we 
can now define the states on the logic 0, These are 
functions 1l:0-l0,1], with 

(QS1) 1l(8)=0, 

(QS2) 11 W = 1 for all ~c:0, 

(QS3) {e i} is a countable disjoint set of propositions, 
then 

Il (V[ i) =:011 ([ i)' 
i i 

(4,14) 

Note that the properties {QS1} and (QS3) are the same 
as the assumptions (S1) and (S3) for the states in a 
claSSical theory except that the notion of disjointness is 
specific to the propositional calculus, However, (QS2) 
differs from (S2) in that we assign unit probability to all 
the maximal propositions ~C~L. in quantum theory 0 

Since the disjunction in (4.14) is the same as addition 
of operations, every state will define a linear continuous 
functional on 00 Since our characterization of () has not 
been axiomatic, we do not consider the precise deter­
mination of the set of all states on an abstract logic of 
operations, Instead, we only note that for the particular 
realization of the logic under consideration, all the 
quantum meChanical density operator states satisfy 
(QS1)-(QS3L These are states of the form 

Il(e) =Tr[(p), 

where pf~V+ and Trp=1, 

In this context, we may also note that we have 

f.l ([ I\~) = TrL~(c (P»} 

=Tr[(p) 

=1l(C), 

(4.15) 

for all [r= 0, and ~CL., This property will prove to be 
of importance in the discussion of joint distributions of 
random variables, 

We can follow the traditional terminology and call the 
ordered pair (0,11), where 0 is the quantum logic of 
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operations, and p, a state on 0, a "quantum probability 
space." The random variables in the present theory 
will coincide with the "instruments" defined by Davies 
and Lewis. 

G. Random variables-Instruments 

By following the general program outlined in Sec. 3, 
a random variable or an instrument can be defined"as 
a map from the set of all Borel subsets B{R) of a value 
space R (usually the real line, or a general completely 
separable metric space), into the "logic" 0, such that 

(Q01)X{Q\)=8, 

(Q02)X(R) EL, 
(4.17) 

(4.18) 

(Q03) if {E/} is a sequence of mutually disjoint Borel 
sets in B(R), then {X(E j )} is a disjoint sequence of pro­
positions and 

X(UE.)= VX(E.). (4.19) 
iIi " 

Let us first note that (Q01) and (Q03) imply that 

X(El ) ~X(E2)' (4.20) 

whenever El ~ E 2• This shows that if we had assumed 
X(R) =1, as in classical probability theory, instead of 
(Q02) , then all the operations associated with the in­
strument X would have been constrained to satisfy the 
classical relation X(E) ~I. Our requirement (Q02) on 
the instruments clearly reflects the basic feature of 
quantum instruments that even when the measurement 
is such that minimum information is extracted (that the 
result is somewhere in the value space of the instru­
ment), more than often the state of the system under­
goes an alteration. 

H. Quantum probability theory 

The quantum probability spaces (0, p,) and instru­
ments defined on them, constitute the basis for a gener­
alized probability theory appropriate to quantum sys­
tems. The basic features of such a theory has been set 
forth by Davies and LewiS in their pioneering worklB on 
the subject. 

First of all, each state of the system p, associates, 
with every instrument X, a probability measure on the 
value space of the instrument, given by 

g(E) = p. (X(E», (4.21) 

for each Borel subset E of the value space. (It is 
immediate to check that P': is a probability measure on 
R, the value space.) As we have already noted, this 
coincides with the statistical interpretation of quantum 
mechanics. 

IT Xl and X2 are any two instruments, the natural 
definition of the joint distribution of the ordered pair 
(Xl,X2 ) in the state p" would be 

(4.22) 

That P: 'X
2 

as defined above can be extended to a unique 
probabfl:ity measure on the Cartesian product Rl x R2 of 
the value spaces, is a direct consequence of Davies and 
Lewis' result on the composition of instruments noted 
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in Sec. 2. In fact, any ordered n-tuple of instruments 
gives rise to a unique joint probability measure on the 
Cartesian product of the value spaces. One of the 
properties crucial for the existence of these joint prob­
ability measures is, of course, the distributive law 
(4.10). 

These joint probability measures exhibit all the 
typical features of the "quantum interference of prob­
abilities, " 1. e., we have 

P':l.X/Rl' E 2) '* P':2(E2) 

P:' x (Eu E 2) '* p:(Eln E 2), 

in general, unless the instruments satisfy special con­
ditions. However, we still have the marginal probabil­
ity condition 

gl.X2(El , R 2) = P:l (El ), 

as can be directly verified using (4.16). 

Thus all the nonclassical features of quantum prob­
ability theory (as summarized in Sec. 2), arise as a 
natural consequence of the quantum logic of experiment­
al propositions. 

5. QUANTUM STOCHASTIC PROCESSES 

In classical probability theory, a stochastic process58 

is a family of classical random variables {Ct}t,T indexed 
by a set T. In a physical theory T could be taken to be 
the interval (0,00) or a subset thereof. Thus it is natu­
ral to define a quantum stochastic process as a family 
of instruments {Qt}t<T on a quantum probability space 
(0 , ~ ), as defined in Sec. 4. We will only conside r the 
case when all the instruments Qt have the real line R for 
their value space. 

In classical probability theory, there is a basic con­
struction (due to Kolmogorov) which reduces the study of 
the stochastic processes to a study of probability mea­
sures on the space of paths -1. e., on the space of 
suitable class of functions 

f:T-R. 

This is achieved by considering the so-called "measures 
on finite dimensional cylinder sets," which can be de­
rived from the joint distributions of the form 

P. tl. t2 ..... tr (El , E 2, •• " Er) 

=1-L(Ct (El)nCt (E2)n ... nC
t 

(E» (5.1) 
1 2 l' r 

These "finite-dimensional distributions" satisfy me 
well-known consistency conditions 

(C1)p,t t t (El ,E2,.",E)are invariant if {E.} and 
l' 2'···' r r " 

{ti} are permuted together in the same way. 

(C2) Iltlo .... tr_l.tr(ElI ••• 'Er-l'R)=P.tl ..... tr_l (El , ••• ,Er-l ). 

(5.2) 
(C3)fl t t t(El, ••• ,E ,E) 

1'"'' I Y-l' r r-1 r 

=I-Lt t (ElI ••• ,E -l\',E), 
1,00", r-l r r (5.3) 

whenever tn = tr• From (C1) and (C2) we can conclude 
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that the marginal distribution condition (5.2) is valid for 
the other time variables t

f 
(i < r) also. 

The basic result of Kolmogorov is that,58 given a 
family of finite -dimensional distributions )J. 1

1 
••••• t~ which 

satisfy the consistency conditions (C1)-(C3), there 
exists a classical probability space (B,)J.) and a sto­
chastic process {CtheT such that IJ. t ..... t will be its 
finite-dimensional distributions. 1 r 

We will now consider how a similar formulation can 
be attempted for quantum stochastic processes. Let 
{Qt}teT be a family of instruments on a quantum prob­
ability space (O,IJ.). The finite-dimensional distribu­
tions of this quantum stochastic process will be given 
by 

IJ. t1 ... '. t~ (E11 ••• ,Er) = IJ. (Q t1 (E1) A· .• A Qt/Er)). (5.4) 

If the state IJ. is characterized by the density operator 
p, then 

We can rewrite (5.5) also in terms of the so-called 
"expectations" Qi, which are nothing but adjoints of 
instruments, being mappings from B(R) into the corre­
sponding adjoint operations. We get the well-known 
result 

)J.t ••. t (E1, ... ,Er)=Tr[{(Qi(E1)o ... oQf(Er))1}p]. 
l"r 1 r (5.6) 

It was stated in Sec. 4, that (5,5) or (5,6) define a 
joint probability measure on R'. The equation (5.6) 
may be used to analyze these joint distributions in 
terms of the positive operator valued measures ,59 

which associate each Borel subset E1 x· .. x ET, or RT, 
with the bounded positive operator {Qi (E1)o ... oQi (Ey)}1. 

1 T 

Before analyzing the properties of these distribu­
tions, we should note that if "I" is interpreted as a 
physical time, then the finite-dimensional distributions 
(5.4) can be given an operational meaning iff t1 ""t2 
"" ... "" I. One could argue that the same will be true 
of the fi~ite-dimensional distributions (5.1) of a clas­
sical stochastic process in a physical context. How­
ever, the basic difference is that the finite-dimensional 
distributions (5.1), considered as functions paramet­
rized by Ii' have the property of symmetry as given 
by (C1) whereas the quantum finite-dimensional dis­
tributions (5.4) are not symmetric in general, because 
the conjunction A is not commutative, Similarly, we 
can see that (C3) is not a general property of the 
finite-dimensional distributions (504). In fact, the 
validity of (C3) depends on whether the instruments Qt 
satisfy a "repeatability property" of the form 

(5.7) 

Still we can show that (C2) is valid for finite distri­
butions (5.4) also, We have only to note that Qt (R)('L, 
and use (4,16) to obtain T 

(Q) IJ. t I I (E1,·., ,ET
_1,R) = IJ. I.· ... t _1(E1~"" ET _ 1L 

l"fOO r-1, r ' t' 

(5,8) 
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Since (1) is no longer valid, we cannot deduce from 
(5.8) the marginal probability condition for other time 
variables tp i < r. Thus we conclude that the only 
conSistency condition on the finite-dimensional distri­
butions of a quantum stochastic process is given by (Q), 

We can pose the Kolmogorov problem for the quantum 
stochastic proce ss as follows: "Given a set of finite­
dimensional distributions )J. 11 .... ,IT which satisfy the 
consistancy condition (Q), d6es there exist a quantum 
probability space (O,)J.) and a stochastic process such 
that J.1 /

1
" •• • t

T 
will be its finite-dimensional distribu­

tions?" 

One result that may be considred as being related to 
this problem is the result of Benioff59 that "operator 
valued measures on finite Cartesian product spaces RT, 
which obey a consistency condition similar to (Q), can 
be extended uniquely to the space of all infinite real 
sequences." We may also note that in the theory of 
classical stochastic processes, if we just restrict to the 
consistancy condition (C2) [or (Q)] alone, as is some­
times done in the study of functions of Markov chains 
using "stochastic modules," then we obtain a represen­
tation of the process in terms of probability spaces 
similar to quantum probability spaces, This remark­
able feature, which has been pointed out by Kingman,ao 
may be of considerable significance in the study of 
quantum stochastic processes. 

A rigorous analysis of a closely related class of 
quantum stochastic processes has been carried out by 
Davies61

-
63 in a series of papers, which also initiated 

the general operational approach. He has obtained 
several analytical results, including a characterization 
of these processes in terms of infinitesimal generators. 
However, as his analysis is not based on a quantum 
probability space, the characterization of quantum 
stochastic processes from their finite-dimensional 
distributions and the corresponding consistency condi­
tions is not immediate. We should also emphasize that 
a formulation in terms of quantum probability spaces 
facilitates further considerations of conditional expecta­
tions, Markovicity, etc" which are basic to a probabil­
ity theory, 

Quantum Markov processes 

A rigorous formulation of the condition of Markovicity 
would involve a discussion of conditional expectations 
on quantum probability spaces. We will restrict our­
selves here only to a few remarks on some differences 
between quantum and classical MarkOV processes. For 
this, we will only consider finite-dimensional measures 
on RT, of a quantum stochastic process, which are ob­
tainable via finite -dimensional distribution functions of 
the form Pr(A1tl> ••• , Arty), The consistency condition 
(Q) will be 

~ P
T

(A111, •• , ,AT -lt
T 

-I> ATty) = Pr -1 (A1 t1' ••• ,AT -liT -1); 

"T 
(5,9) 

where the sum will be replaced by an integral for the 
continuous case. We can define the conditional proba-
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bilities in the usual way, by 

W (A fix .t '''A t)= Pr(:\l t1,. •• ,Artr) ,(5.10) 
r rr r-1 r-1 11 Pr_1(A111, ••• ,Ar_1Ir_l 

As in the classical theory, we can say that a process 
is Markovian if 

Wr(Artr \ Ar _llr -1> ••• ,A1tl) = W(Arfr I Ar _It, -I}' 

for all {AftJ with fj < fj+1 for all r_ 

This is, of course, equivalent to 

P/Alt" ••• A/r} = P(A1tl) W(A2t21 A1l1}' •• 

x W(Artr I Ar _It, -1)' 

(5.11) 

(5.12) 

To obtain an example of a quantum Markov process, 
let us consider an instrument which obeys the collapse 
expreesion (2.2) of von Neumann and corresponds to a 
self-adjoint operator A, with a discrete spectrum as 
given by (2.1). H we assume that the system undergoes 
Hamiltonian evolution, then we can obtain a quantum 
stochastic process given by the family of instruments 
{Qt}t.Tdefined by 

Qt(E)p = '6 Pj(t)pPj(t), (5.13) 
XjEE 

with 

(5.14) 

We can immediately see that the finite-dimensional 
measures (5_ 5) of this process correspond to the joint 
distribution function (2.7); i. e. , 

Pr(A1t1' ••• , A/r) = TrlPr(tr)· •• PI (t1 )p 

x PI (f1 ) ••• Pr(tr)l. (5.15) 

If, in addition, the spectrum of A is nondegenerate, 
then {p j} will be a orthonormal set of projection oper­
ators onto one-dimensional subspace; now using (5.14), 
we can rewrite (5.15) as 

Pr (Al tU ••• ,Arty) = P(Altl) W(A2t2\ A1(1)' •• 

x W(X.tr \ Ar_1tr_l), 

where 

W(A/r \ A,...l t t -1) = TrlPr(tr)Pr -1 (tr_1 )1. 

(5.16) 

(5. 17) 

Equations (5_ 16) and (5.17) show that we have a quantum 
Markov process. However, we also have 

'6 W(A 3t 3 i A2t2) W(A2t2\ Altl) * W(A3t3\ Altl)' (5.18) 
X2 

in generaL In fact it is a general characteristic of 
quantum Markov processes that the Smoluchowski, 
Chapman, Kolmogorov (SCK) equation is not valid in 
generaL In the study of classical Markov processes, 
the SCK equation is usually derived using the consis­
tancy conditions (1), (2), together with the condition for 
Markovicity (5.11) or (5.12). The failure of SCK equa­
tion for quantum Markov processes is again a direct 
consequence of the "quantum interference of probabil­
ities" and can be illustrated by several such examples. 

We may also note that if the instrument Qt corre­
sponds to a self-adjoint operator A as in (2.1) but with 
a degenerate spectrum, then we can no longer derive 
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(5.16) from (5.15), and actually we obtain a quantum 
stochastic process which is non-Markovian in general. 
In this context we can recall an observation of Goldber­
ger and Watson,l that in the measurement of observables 
with a spectral degeneracy, the previous information 
(memory) perSists even after a new measurement is 
made. The preceding discussion also makes it clear 
that Markovicity is a special property of certain instru­
ments and the dynamics of the system, and is not a 
general feature of all quantum stochastic processes. 

ACKNOWLEDGMENTS 

The author is deeply indebted to Professor E. Wolf 
for initiating him to the probabilistic aspects of quantum 
theory. He is grateful to him and Professor G.G. Emch 
for a critical reading of the manuscript and several 
stimulating discussions. 

APPENDIX: "OPERATIONS" AND "EFFECTS" OR 
"SIMPLE OBSERVABLES" 

Apart from the lattice theoretic approach, there are 
other axiomatic studies in which each experimental pro­
cedure is associated with a positive operator FEB';(H) 
such that 0 < F < 1. Such operators have been called 
"effects" or "simple observables." The set of all ef­
fects may be denoted by Q. It can be shown19 that, to 
each operation [F 0, there corresponds a unique effect 
Fc EQ such that 

TrlC (v)1 = Tr(F [v), (A1) 

for all VEV+. However, given any effect FEQ, there 
exists several operations in 0, which are all related to 
F in the manner of Eq. (A1). For example, we may 
define operations [1 and C 2' by 

where p is an arbitrary density operator, and 

C,(v)=F1 /'vP/', 

so that we have 

(A2) 

(A3) 

(A4) 

for all VE V+. Therefore, a representation of the ex­
perimentally verifiable propositions by elements of Q 
will not provide a complete characterization of the cor­
responding experimental procedures. This can be 
demonstrated more clearly, by showing that the logical 
relations among the experimental procedures cannot all 
be inferred just by a study of the set Q of all effects 
alone. 

Two operations [1'[ 2E 0 are said to be isotonic19 if 

Tr[[ 1 (v)1 = Tr[[ ,(v)1, (A5) 

for all VE V+. The set of all operations isotonic to a 
given operation [ is an equivalence class (termed "iso­
tony class"), which may be denoted by [[]. From (A1) 
and (A5), it is clear that to each element of Q there cor­
responds a unique isotony class and conversely. In this 
context we should also note the following property of the 
logic 0 of quantum mechanical operations. The condi-
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tion 

(A6) 

for all the density operator states /J., will only allow us 
to conclude that el and e 2 belong to the same isotony 
d&.ss, This is significantly different from the lattice 
theoretic logics (and some of the algebraic approaches 
to axiomatic quantum theory), where probabilistically 
indiscernable propositions are assumed to be identicaL 

In fact, it has been emphasized by Edwards48 that the 
properties of operations (and hence of the corresponding 
experimental procedures) can be classified into two 
categories, namely those which are shared by all the 
members of an isotony class (isotoniC properties) and 
those which are noto The transmission probability or 
the factor by which the size of an ensemble is diminished 
when it is subjected to the experimental procedure is a 
property of the first category, whereas the purely 
quantum mechanical "distortion" or the "collapse" of the 
ensemble is a property which varies with the different 
members of an isotony class, We can show that, in 
each isotony class le], there exists a unique operation 
eo given by 

e o(v) ={Tr[e (v)]/Tr(v)}v, (A7) 

for all vE V+, which satisfies the condition of distortion­
free measurement, 

(AS) 

Such operations have been called "reflections" by Ed­
wards,48.49 who has also given a detailed analysis of 
different classes of operationso 

We now examine the structure of the logic 0 of quan­
tum mechanical operations in relation to the structure 
of the set Q of all effects-or equivalently the set of all 
isotony classes of operations, The relation of implica­
tion is not an isotonic relation. If C 1"; C 2. we evidently 
have Fe 1 ,,;FC2 ' where FCi is defined in (A1). However, 
the converse 

The absurd proposition forms an isotony class by it­
self. The set of all maximal operations form an isotony 
class containing the identity operation, L e, , 

[e] ={e}, 

lI]=2:, 

(A9) 

(A10) 

The set of all negations of an operation C is the isotony 
dass lI-{ 0] where eo is given by (A7). For each 
C'cdI-Co], we have 

(A 11) 

Also every element of -the isotony class lC] is a negation 
of every element of the isotony class [I -C 0] and vice 
versa, 

The relation of disjointness is isotonic, as 

>: 1>: iff Fo +Fo ,,;10 
Cl C2 "1 "2 

(A12) 

Also, if C llc 2 and C 3Elc 1] and C 4E[{ 2] then C 31C 4 and 

C 3VC4E[elVC 2 ]. (A13) 

However, the conjunction C 1 AC 2 of two operations is a 
connective that is crucially dependent on the "distor-
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tion" produced by the experimental procedure e 1, and 
hence cannot be characterized in terms of isotonic prop­
erties alone, 
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The problem of definition of elementary systems in general relativity is analyzed and some current 
theories are compared. A definition of dynamically free local elementary systems in general relativity 
is proposed, taking into account the influence of the gravitational field arising from the intrinsic 
dependence of the symmetry groups on the field. 

1. INTRODUCTION 

By an elementary system we shall understand the col­
lection of structureless objects which are obtained from 
the classification of the unitary irreducible representa­
tions of some symmetry group in a physical theory. 1 In 
the case of the special theory of relativity the elemen­
tary systems defined by the group of isometries of 
Minkowski space-time (the Poincare group) gives a very 
close approximation to what is presently known as ele­
mentary particles. When we deal with general relati­
vity we have a collection of space-times instead of the 
single Minkowski space-time of special relativity. This 
change in the geometrical structure compels us to ask 
if the structure of elementary systems in general rela­
tivity should be different from that in special relativity, 
what are the changes in structure, and finally what are 
the physical implications of the new structure. 

The definition of elementary systems in general rela­
tivity depends on a characterization of a certain sym­
metry group to be defined in the general theory of 
relativity" 

Unlike the case of special relativity, in general rela­
tivity we do not have a previously given space-time. 
However, given a certain space-time of general relati­
vity we should also be able to define elementary sys­
tems in this space-time. Therefore we have two prob­
lems. On the one hand, the definition of elementary sys­
tems in general relativity without the previous choice 
of a certain space-time and, on the other hand, the de­
finition of elementary systems in a given space-time of 
general relativity. These two problems must be com­
patible. One way to ensure this compatibility is to choose 
a group of symmetries such that it holds true in both 
problems. This solution imposes strong restrictions on 
the choice of the group of symmetries. A more general 
solution is to consider a group of symmetries defined 
in general relativity and project it on each space-time. 
In this case the compatibility condition is that the pro­
jected group should coincide with the appropriate group 
of symmetries defined in the space-time. 

2. KINEMATICAL COUPLING 

We proceed to review briefly and comment on some 
currently proposed theories of elementary systems in 
general relativity, labeled according to the adopted 
groups of symmetry. 

A The Poincare theory 

This theory is based on the assumption that the 

gravitational force is too weak to produce any signifi­
cant change in the structure of the elementary systems 
as defined in special relativity. Therefore the ele­
mentary systems are defined by the representations of 
the Poincare group. This group can be defined in gen­
eral relativity in different ways. It can be considered as 
the fiber group of the tangent bundle plus translations. 
It may also be considered as the holonomy group of 
orthogonal tetrads plus translations. 

The fact that translations have to be added separately 
on the Poincare group in general relativity seems to be 
pathological. 2 While there may be some mathematical 
means of introducing the Poincare group in general 
relativity, this should not be done too artificially. The 
Poincare group in special relativity has a clear mean­
ing as the group of isometries of the space-time. 

On the physical side it can be said that the weakness 
of the gravitational force should not be taken too seri­
ously when we are considering a group theoretic defini­
tion where no dynamical considerations take place. One 
example of a theory of this type is the one proposed by 
Ne'eman and Rosen3 which assumes a Poincare type 
definition for the elementary systems and uses a local 
embedding technique to define internal symmetries. 
Another example is the recently proposed J-g theory of 
Salam which assumes a Poincare type definition of spin 
two mesons but curiously enough assumes dynamical 
interaction when a strong gravitational field is present. 4 

B. The BMS theory 

The second proposed structure of elementary sys­
tems is based on a group which is closely associated 
with the group of isometries of the space-times of gen­
eral relativity2; since the Poincare group is the group 
of isometries of Minkowski space-time it is natural to 
search for a group structure with similar properties in 
general relativity 0 Unfortunately, exact isometries are 
not always present in the space-times of general 
relativity. However, in the cases of asymptotically flat 
space-times an approximate isometry group can be de­
fined. This group is the BMS group of asymptotic 
isometries and it differs from the Poincare group by 
the fact that translations are replaced by supertransla­
tions in the semidirect product with the Lorentz 
group. 5,6 

Since the elementary systems associated with the 
BMS group are asymptotically defined they can be as­
sumed to be dynamically free from gravitation. How-
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ever, the fact that the BMS group differs from the 
poincare group is one indication that the elementary 
systems defined by this group are not entirely free from 
the gravitational field. This can be seen from the follow­
ing thought experiment. Supposing that the gravitational 
field could be switched off (i. e., not simply" made 
zero' by taking its sources to a far away distance), then 
the group of isometries in this new situation would be 
the Poincare group which would lead to the gravitational 
free elementary systems of special relativity. In actual 
fact the switching off cannot be done and the elementary 
systems feel the effects of the gravitational field even if 
they are very far away from the sources of this field. 
Therefore the elementary systems defined by the BMS 
group are indirectly coupled to the gravitational field. 
This is not a dynamical coupling. It is due only to the 
dependence of the considered group of symmetries 
(BMS) on the gravitational field and is independent of 
the strength of that field. 

The above conclusion lead us to the concept of kine­
matical coupling. Any physical structure defined by 
a group of symmetries is said to be kinematically 
coupled to the field upon which the group depends. Thus 
both the BMS and the Poincare structures of elementary 
systems in general relativity are dynamically free from 
the gravitational field. However, in the BMS case they 
are kinematically coupled to that field. 

One difficulty of the BMS theory lies on the asymp­
totic character of the elementary systems, leaving un­
solved the problem of definition of elementary systems 
near a gravitational source. Further difficulties are 
the limitation to asymptotically flat space-times and 
the infinite number of Casimir operators of the BMS 
group. 6 

C. The de Sitter theory 

The most extenSively studied model of elementary 
systems in general relativity is based on the de Sitter 
group. The cosmological implications of the de Sitter 
space-time, the easy comparison with the flat space­
time case and the ten parameters of the de Sitter group 
are the main attributes of this model. Some representa­
tions of the de Sitter group were calculated using the 
local isometric embedding of de Sitter space-time. 7.8 

The resulting elementary systems are obviously kine­
matically coupled to the graVitational field which 
characterizes the geometry of the de Sitter space-time. 
Further properties of these elementary systems were 
studied in analogy with the elementary systems of the 
Minkowski space-time. 9 

A negative aspect of this theory, when it is viewed 
from the standpoint of the theory of general relativity, 
is its restriction to a single and specifically chosen 
space-time. Thus it would be desirable to have an ex­
tension of this model of elementary systems to the 
whole of general relativity. 

3. ISOMETRIC LOCAL ELEMENTARY SYSTEMS 

The extension of the de Sitter model of elementary 
systems to all space-times of general relativity can be 
made provided the following observations are made. 

Since the de Sitter model of elementary systems is 
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defined on a previously chosen space-time, its exten­
sion to general relativity requires in the first place that 
Einstein's equations hold throughout the process of 
definition as defining the set of space-times to be used. 

Secondly, we notice that the de Sitter model is based 
on an exact isometry. This seems to be too restrictive 
since not all space-times of general relativity admit a 
Killing vector field. Nevertheless there are some good 
physical justifications for the use of isometries. In a 
physical theory based on a metric geometry, the physi­
cal measurements are performed during intervals of 
time when the measuring rods are expected to remain 
invariant, an indication that a timelike Killing vector 
field should exist. Physical theories without isometries 
or even without a metric can be defined but the notions 
of observable and the measurment conditions should be 
revised (Newtonian theory is based on an affine geome­
try but with a metric on the space sections). 

The elementary systems so far known to agree with 
phYSics are defined by a group of isometries. Thus, at 
least in a first attempt on a theory of elementary sys­
tems in general relativity it seems reasonable that they 
should be defined by some group structure associated to 
isometries as in the last two theories analysed in the 
previous section. Observe that we are not restricting 
the definition of elementary systems to space-times 
with isometries but only stating that they are more 
likely to agree with present day phYSics when restricted 
to space-times with isometries. 

The third remark to be made is that the elementary 
systems of the de Sitter model are locally defined, in 
the sense that they hold for a neighborhood of an arbi­
trary point of the space-time. 

With these observations we conclude that to obtain an 
extension of the de Sitter model to general relativity we 
need a group structure with the following properties: 

(a) It is a subgroup of the manifold mapping group of 
general relativity, defined independently of the pre­
vious choice of a specific space-time. 

(b) The restriction of this group to a certain space­
time of general relativity is local and must result in 
the full group of isometries of the space-time if the 
space-time admit isometries and is completely in­
nocuous otherwise (that is, if the space-time does 
not admit isometries the restriction of the group to 
this space-time results only on the identity 
transformation) . 

(c) In the flat limit the group should reduce to the Poin­
care group. 

4. THE GROUPS L(p,r,s) 

We shall show that for each of the minimal isometric 
embedding classes of the space-times of general rela­
tivity the homogeneous fiber group of the embedding 
bundle satisfies the required conditions for the exten­
sion of the de Sitter theory of elementary systems. 

If R4 denotes any space-time of general relativity, 
the minimal isometric embedding bundle E(R4) is the 
Whitney sum of the tangent bundle and a minimal nor­
mal bundle whose dimension is given by the Gauss-
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Codazzi equations of R4. The typical fiber M(p, Y, s) is 
a pseudo- Euclidean space with dimension p ? 4 and 
metric signature Y + s. R4 is the base space and each 
fiber is locally defined on R4. The minimal condition 
not only specifies the smallest embedding space but also 
gives the uniqueness of the embedding, provided the 
space-time metric is not changed. 

The use of embedding formalism is regarded here as 
in the de Sitter case, not a result of phYSical imposi­
tion, but as a convenient mathematical tool, useful to 
deal with group representations. 

It is important to notice that an embedding bundle is 
not a property of a single space-time but a property of 
a class of space-times, so that M(P, Y, s) is the same 
for all space-time of that class. In general relativity 
there are 22 distinct minimal isometric embedding 
bundles. 

On each fiber M(p, Y, s) we may use Cartesian co­
ordinates denoted by XI' (all Greek indices run from 1 
to p) and Gaussian coordinates based on the space-time 
hypersurface, denoted by x<X. The Gaussian coordinates 
may be separated into coordinates on the space-time, 
denoted by Xl (lower case, boldface Latin indices run 
from 1 to 4) and coordinates orthogonal to the space­
time, denoted by x A (capital boldface Latin indices run 
from 5 to p)o In the Gaussian system the space-time 
hypersurface embedded in M(p, Y, s) is defined by the 
equations x A = 00 The Cartesian components of the 
metric tensor of M(p, Y, s) are denoted by 7)"v and its 
Gaussian components are gd' 

If f(x<X) is a function defined on M(p, Y, s), its space­
time proj ection is 

f(x<X) i R4 = limf(x<X) 0 

xA~O 

The embedding is obtained when the functions XI' 
=X"(x<X) and its Jacobian matrix with elements X" <X 
are giveno Let 

X'" =X IL + U", U" = E".)(", U(" ,V) = 0 (4. 1) 

be an infinitesimal transformation of the homogeneous 
fiber group L(p, Y, s) of M(p, Y, s). In Gaussian co­
ordinates we have 

X'<x =x<X + ~<X, (4.2) 

where ~<X = x<X I' UIi
, x<X" being the components of the in­

verse of the Jacobian matrix x'" v.Xv. S = 0<X B. The last of 
Eq. (4.1) corresponds to 

Semicolon denotes covariant derivative and round 
brackets on indices denote complete symmetrization. In 
order to obtain Killing's equations in R4 by projection 
of (4.3) on the space-time we require the additional 
conditions10 

(4.4) 

We may write 

~A=XA"U" =xAliEliVXv=XVSEAAXv, 

where we used the fact that X Av.X" <X = OA<x and 
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Since XV,xv =i(7)",){" XV) ,s, we have 

~A= i(XVXv),SEAA. 

Thus (4.4) is equivalent to 

i(XVXv),BE AA 
iR4 = O. (4.4 /) 

With these conditions we get vector fields in M(p, Y, s), 
projected on R4, which are defined by the set of 
equations 

t(l;l>i -0 t(i;A)i -0 t(A;B)i -0 s R4 - ,s R4 - , S R4 - • (4.5) 

The first equations give the descriptors of the homo­
geneous part of the group of isometries of the space­
time. To understand the meaning of the second set of 
equations we may consider the Lie algebra of L(P, Y, 5). 
The operators of this algebra L "V, in the Cartesian 
frame, satisfy the commutation relations 

[L"vLpal = (T/"pLva + T/vaLliP - T/liaLvp - T/vpLlia). (4.6) 

The Gaussian components of these operators are 

L<xs=X" <xX"sL"v 

and 

[L<xsLyol =X" <xXv sXp,.Xao[L"vLpal. 

That is, 

[LIjLkll = (glkLll + gllL Ik - guL'k - J['kLU), 

[LIlLkAl = LIfIkL'A + J[IALIk - guLI'C - J[lkLIA), 

[LIIL AB ] = (guL'B + g,sL IA - gIBL'A - g,ALIB), 

[LuL,s 1 = (gIlL AB + gABLIl - J[ISLAI- J[AILIB), 

[LIALs cl= (gIBLAc + gACLIS - glcLAB - gABLIC), 

[LABLcol = (gACLSD + J[SDLAC - J[ADLB C - gBCL AD)' 

Now define the "translation" operator 

1T1 = aALIA 

where the a A are some conveniently chosen space­
time functions so that they vanish in the flat limit. In 
terms of 1T I the above commutators are 

[LIjLul = (glkLll - gnLlt - guL It - J[lkLll), 

[LIl 1Ttl = (glt1T 1- J[,k1T I) + a A
( g'ALlt - gIAL,t), 

aAaS[LIlL AB 1 = a A( glA1T ,- g,A1T I) + O!B(g,s 1T1 - J[IB1T I) = 0, 

[1T 11T I] = (gA,BaAaS LII - giS a B
1T ,- gAIO!A1TI ), 

[1TILscl = aA(gIBLAc + gAOLIB - glCLAB - gABLIC), 

[LABLCDJ = (gAoLBD + gBDLAO- gADLSC - gsCLAD). 

Projecting these commutators on R4 and taking the flat 
limit, we obtain the group contractionll 

[L Il 1Tt liR4,flat = (glk1T,- J[lk1T l) I R4' 

[1TI1T,liR4,flat = 0, 

[1T ILs cJ i R4,flat = 0, 

where we used gIl. I R4 = O. We notice that in the flat limit 
1Tt behaves like a translation operator of the Poincare 
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group. Consequently, the 1ft are the translation operators 
in R4. They are given by the second equation (4. 5), 
which together with the first equation give the Killing 
vectors of R4. In general we will be dealing with the 
L II .. in the group representations so that we do not need 
to specify the functions a A

• 

The third equation (4.5) correspond to a degree of 
freedom in the choice of the complete set of Gaussian 
coordinates. This freedom of coordinates is eliminated 
when we define once for all the orthogonal coordinates 
x A to coincide with some of the Cartesian coordinates. 

Finally, if Killing's equations in R4 have no solution 
apart from the trivial one, we have 

e /R4 = xi" U"'/R4 '" 0, 

which together with (4,4) gives 

t," / R4 = €IJlBX'" sX", / R4 = 0, 

so that in this case the projection of L(p, r, s) on R4 
gives only the identity transformation. Therefore, for a 
given class of space-times the class group L(P, r, s) 
satisfy the conditions for generalization of the de Sitter 
model. In particular, it applies to the flat space-time 
case giving the Lorentz group L(4, 3, 1) (in this special 
case translations have to be added separately). Another 
example is the de Sitter group L(5, 4, 1). In this case 
(as in any constant curvature space-time), it is impor­
tant to notice that the conditions (4.4) are trivially 
satisfied so that L(5, 4,1) is identical to L(5, 4,1) I de Sitter' 

This is not the general case where distinct space-time 
embedded in M(p, r, s) have distinct solutions for (4.4) 
and consequently distinct groups L(p, r, s) I R4 • 

Thus, assuming that the isometric local elementary 
systems in general relativity are defined by the unitary 
representations of the various groups L(p, r, s), the 
elementary systems on the space-time R4 are defined 
by the unitary representations of the group L(p,r,s)I R4 

defined by (4.4) and (4. 5). Since for L(p, r, s) we do not 
have a previously given space-time, we refer to the 
elementary systems defined by this group as "abstract 
objects" in the sense that they can only attain space­
time meaning when restricted to a space-time. 

5.ISOSPINORS 

An elementary system is described by fields which 
are defined in the space of the unitary irreducible rep­
resentations of the adopted groups of symmetries. 
Taking this group as being L(p, r, s), these fields can 
be obtained from the spinor representation of the 
Clifford algebra defined on M(p, r, s), If P = 2v or p = 2v 

+ 1, these spinors have 2v components (half the number 
of components can be considered in certain cases). 
These spinors transform according to a representation 
of the group of automorphisms of the Clifford algebra. 
Denoting the generators of this algebra bye"" then the 
subset of the algebra generated by 

(5.1) 

is isomorphic to the Lie algebra of L(p, r, s). Choosing 
one of the many possible Weyl representations of the 
Clifford algebra12 and denoting by M",v the matrices 

1689 J. Math. Phys., Vol. 16, No.8, August 1975 

representing L",v, the infinitesimal transformations of 
the spinor group S are given by 

(5.2) 

With the conditions (4.4) the group L(P, r, s) I R4 

gives the isometries of the space-time R4. Under the 
same conditions the matrices (5.2) generate a spinor 
representation of this group of isometries, denoted by 
S IR4 and called the isospinor group of R4. The spinors 
which transform according to S I 14 are called 
isospinors. 10 

Since S is a representation of L(p, r, s), the ele­
mentary systems obtained by the unitary representa­
tions of S are described by the spinor fields of the rep­
resentation space. Similarly, the representations of 
S iR4 , which can be obtained from the representations of 
S, give the space-time elementary systems which are 
described by the isospinors of the representation space. 

6. FIELD EQUATIONS 
Since the spinors constructed in the last sections are 

defined on the fibers of the embedding bundles they are 
only locally defined. Furthermore, they must satisfy 
some field equations, which are defined on these fibers 
but subjected to phYSical considerations, defined on the 
space-time, We have a situation in which a set of field 
variables is defined in the spaces M(P, r, s) but only 
those which are "space-time defined" are to be con­
sidered as having physical meaning. Let ~('" ) (xlJl

) be any 
field variable defined on the Gaussian system, where 
(a) stands for any collection of indices. In particular, 
~(OI.) may be the components of the spinors constructed 
on M(p, r, s). 

A function defined in M(p, r, s) is said to be space­
time defined if it depends only on the space-time co­
ordinates. If the function j is defined in Gaussian co­
ordinates, then clearly j(x l

) is space-time defined. On 
the other hand, if j is defined in the Cartesian system, 
j(X"') is space-time defined only if the coordinates X" 
correspond to a point of the space-time, In general, 
the proj ection j(xlJl

) IR4 of a function j defined on 
M(p, r, s) on the space-time is space-time defined. 

The sought field equations are defined on M(p, r, s) 
but must yield space-time defined field equations. 

Given a set of space-time defined field variables 
there are two cases to consider depending whether the 
Lagrangian function is or is not space-time defined. 

In the first case we obtain field equations which are 
space-time defined, independently of the choice of a 
particular space-time. In the second case we get field 
equations which are not necessarily space-time de­
fined but that can be projected on the space-times 
afterwards. 

Consider the space-time defined Lagrangian 

L =L(</!(al(x l ), ~(OI.)(XI)) (6.1) 

and the action integral A = J Lc1'x, where c1'x is the p­
dimenSional volume element defined in the Gaussian 
systems. We can write c1' x = at X a4x where at x is the 
part of the volume element corresponding to the sub­
space orthogonal to the space-time. Let liA be a varia-
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tion of A such that ol/J(a)(xl) vanishes on two three­
dimensional neighbouring surfaces I:l and I:2 in the 
space-time: 

OA - f( aL ,(") aL (o<»)ct - a </J (0<) aijJ + al/J(a),1 aijJ ,I x. 

Defining 

aL 
71t -
(",)-~, 

'I' ,I 

Using the Gauss theorem in the second term of the in­
tegral and assuming oA = 0, 

f ( aL I) (0<).3/) f (1 L2 I (<» ) t al/J(") - 71 (") ,I oijJ II X + Ll 71 (") oijJ dI: i d x = 0. 

Since oijJ(O<) vanishes on I:l> I:2 the last integral is zero. 
The first integral gives the space-time defined field 
equations 

oL I 
o</J{a) - 71 (a) ,I = 0. (6.2) 

In the case p = 6 these equations coincide with some of 
the equations obtained by FronsdaL 13 

Consider now a situation where the Lagrangian is not 
space-time defined. This may occur for example when 
the field variables are subjected to operations which 
destroy the space-time character. The result is 
the same as before, but the field equations have to be 
projected on the space-time 

Consider the following example. The Lagrangian 

L = - HJeClleH(x",I/J,s - X,i/!,CII) + ~mi/!] 

(6.3) 

(6.4) 

where e'" = XCII ~ e", e" are the matrices of a Weyl rep­
resentation of the Clifford algebra defined on kI(p, Y, s), 
and <J are the spinors of a spin or representation of the 
same algebra. m is a scalar function defined in the 
space-time, such that it reduces to a constant in the 

flat limit. ~ = </J\1. where J!. is the Hermitian matrix pro­
portional to the product of all anti-Hermitian generators 
of the algebra. 14 The operator 

iJ a 
Jd=x",w -xs ax'" , 

which appears on the above Lagrangian, when applied 
to a space-time defined field variable does not neces­
sarily give a space-time defined variable. For 
example, J /oBi/!(x l ) = ° but JU.i/!(XI) =x A(a<l:/aXI). Conse­
quently, the Lagrangian (6.4) is not space-time de­
fined. Considering i/! as a space-time defined spinor 
function, Eq. (6.3) gives 

J(Jile1eJ - m) :R4 = 0, 

(e1e1J11 +m)i/!iR4=0. 
(6.5) 

The spinor field which satisfies these equations trans­
form according to 5 'R4 and therefore is an isospinor 
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field. Equations (6.5) generalize the equations proposed 
by Dirac for the de Sitter space-time. 15 

In the flat limit the isospinor field ijJ coincide with 
Dirac's spinors and Eqs. (6.5) give the equations for 
spin 1/2 particles. This fact suggests that the ele­
mentary systems defined by L(p, Y, s) which satisfy 
Eqs. (6.5) in R4 may be labelled spin 1/2 elementary 
systems. However, this is only a suggestion since in 
general relativity the meaning of the word spin may 
differ from the usual concept in special relativity as it 
is clear from the analysis of de Sitter space-time, 9 

7. UNITARY REPRESENTATIONS OF L(p,(,s) 

To obtain the elementary systems in the scheme pro­
posed in the previous sections we need to calculate the 
unitary irreducible representations of each group 
L(p, Y, s), or equivalently, the representations of the 
corresponding spinor groups 5, and classify them, 
Once a specific space-time R4 is chosen and the condi­
tions (4.4) applied on the representations of L(p, Y, s), 
we obtain the representations of L(p, Y, s) i R4 , or of 
5 iR4 and the elementary systems of R4. 

Since these representations involve lengthy calcula­
tions for each of the 22 groups L(p, r, s), only the out­
line of the method of representation is given here. 
Specific calculations for some interesting cases will be 
given elsewhere. 

We may start by writing down all commutators of the 
Lie algebra of L(p, Y, s) given by (4.6), where the L"v 
are given by (5.1). 

Next we consider the reduction of L(P, Y, s) to its 
maximal compact subgroups O(n) and their decomposi­
tions into 0(3) factors denoted 0i(3). For each of these 
0i(3) factor groups we determine the well-known 
unitary representations 

(m i 2V1 z (i) mi)=m i , 

(limi ;ll~i) li nli+l)=[(li+ nl i+ 1)(li- nl .)]1/2, 

(limi jVI~i) linl i_l)=[(lj- Tn i+ 1)(Zj-m j )]1/2, 

where 

li = 0, t, 1, .. , , 

nl i = li' Ii - 1, .. 0, -li + 1, -li' 

i = 1, 2, .• 0, k where k is the number of 0(3) subgroups 
in O(n). ;\1~i l, 1'vl~i), M'zl> are the operators of the Lie 
algebra of 0i(3) written in the usual Cartan basis, 

Once the above matrix elements are determined we 
can proceed with the determination of the matrix ele­
ments of the remaining Lie algebra operators L"v, cal­
culating the matrix elements of the commutators 

[L"v, M~i)], [L"v, AJ~i>], [L"v, 2V1~i)], 

in terms of n arbitrary matrix functions of Ii' Some 
recurrence relations between these functions arise 
from the matrix elements of the commutators between 
the L,,/s not appearing in Jl~i>, kI~i), and ,"vI~i). 

The final step consists of the determination of the 
Casimir operators and their eigenvalues, As the groups 
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L(p, r, s) are all semisimple the number of Casimir 
operators is equal to the rank v of the group. 

The resulting structure of elementary systems is 
labelled by ll' ml and the eigenvalues of the Casimir 
operators. These quantum numbers in general have not 
the same meaning of the flat space-time case and for 
different L(p, r, s) there is a different variety of 
quantum numbers. 

8. PARTICLES AND INTERNAL SYMMETRIES 

In order to verify if the elementary systems defined 
by L(p, r, s), or any other proposed group, have any­
thing to do with the physics of elementary particles it 
becomes necessary, in the first place, to compare the 
resulting set of quantum numbers with the observational 
data. We may either choose to calculate all the repre­
sentations of the 22 groups, a rather laborious task, or 
choose a certain space-time R4 according to its physi­
cal reality and find the corresponding class group 
L(p, r, s). ThUS, for example, if we decide that the de 
Sitter space-time is a physically interesting model the 
group to be considered is L(5, 4,1). In this particular 
example the calculations of the group representations 
are simpler than in the other cases. The spinor fields 
constructed on M(5, 4,1) are automatically isometric 
covariant and the field equations are also automatically 
space-time defined. Consequently, the elementary sys­
tems constructed with L(5, 4, 1) may be claimed to have 
physical meaning. In the general situation this simplity 
does not occur. While the elementary systems con­
structed with L(P, r, s) are regarded as abstract objects, 
it may be claimed that the physical space of the elemen­
tary particles is the chosen space-time. Thus in order 
to obtain the elementary particles from the elementary 
systems we would need to project these on the space­
time. Only then could we deal with the problem of in­
terpretation of the quantum numbers. 
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From the point of view of fitting the theory with some 
current theories of elementary particles some of the 
space-times of general relativity may prove to be more 
interesting than others. Thus, for example, if we want 
to comply with the SU(3) model, the de Sitter group is 
not as interesting as L(8, 6, 2) which contain the Lie 
algebra 0(6) - SU(4):J SU(3). L(8, 6, 2) is the smallest 
group in an even-dimensional embedding space which 
contains 0(6). Since eight is the largest number of di­
mensions needed to embed space-times with a surface 
orthogonal Killing vector field, 16 the study of the rep­
resentations of L(8, 6, 2) seems to be interesting as re­
gards the search for a SU(3) subgroup. 
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Realizations of the central extension of the inhomogeneous 
symplectic algebra as time dependent invariance algebras of 
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We interpret the one-element central extension of the Lie algebra of the group of real inhomogeneous 
linear canonical transformations of phase space as a time dependent invariance algebra in the 
SchrOdinger picture. By limiting to a two-dimensional space quantum system, we exhibit all the 
nonconjugate Hamiltonians contained in the symplectic algebra which, in the Heisenberg picture, 
plays the role of dynamical algebra and contains several known degeneracy and spectrum generating 
algebras. 

INTRODUCTION 

In quantum mechanics the Schrodinger picture is 
usually a description in which the states evolve in the 
Hilbert space as time goes on while the operators rep­
resenting the observables stay fixed. The dynamics of a 
quantum system is then governed by a time evolution 
operator and the states satisfy the Schroclinger equation 
i(d/dt)1J!, =H1J!" where H is the Hamiltonian operator of 
the system. 

However, it is also possible to introduce explicit 
time dependent operators S(t) in the Schrodinger picture. 
Under the action of such operators the transformed 
states $, '" S(t)1J!, satisfy the Schrodinger equation with 
the new Hamiltonian Ii = S(t)HS"t(t) + i[aS(t)/at]S"t(t). 
Hence, starting with a good time independent Hamilto­
nian H, in general we obtain an explicit time dependent 
one Ii. (Conversely such transformations can be used to 
make time independent an expliCit time dependent 
Hamiltonian. ) But it is also possible to select the trans­
formations which keep invariant the Hamiltonian, 1. e. , 
such that H=H; then we are led to consider the time 
dependent operators satisfying 

[H, S(t)] = i a~;t) . (1) 

Numerous interesting properties have been deduced 
from the study of this relation. 10. In this paper we shall 
need the following ones: 

-For a given Hamiltonian the set of all the operators 
satisfying (1) is a Lie algebra 5, (not necessarily a 
finite-dimensional one). 

-An operator S(t) satisfying (1) corresponds in the 
Heisenberg picture to a time independent operator S 
given by 

8 = exp(iHt)S(t) exp(- iHt) = 8(0). (2) 

Consequently the operators 8 generate a Lie algebra 
So isomorphic to 5 t, i. e., from a mathematical point 
of view, 5 t is the same algebra as 50 but depending on 
t as a real parameter. 

-Conversely to every algebra of time independent 

operators which do not commute with a given Hamilto­
nian (in the Heisenberg picture) there corresponds an 
explicit time dependent invariance algebra in the 
Schr&Unger picture. 

Then the above properties permit us to give an 
answer to the two following questions: 

(a) ConSider a Hamiltonian possessing some time de­
pendent invariance algebra A , the generators of which 
being written as .functions of some fundamental observa­
bles {w}. Is it possible then to embody this invariance 
algebra into a largest one, the added generators being 
expressed in terms of the same fundamental observables 
{WI? 

(b) A quantum mechanical system being given charac­
terized partly by some noncommuting observables gen­
erating a Lie algebra A, what could be the Hamiltonians 
of the system if they are going to act onA by their ad­
joint representation, namely ad(H). A CA, hence admit­
ing A as a time dependent invariance algebra? 

Technically a solution is obtained by considering the 
derivation algebra 0 (A) of what we call the "germ" A 
and by constructing the semidirect sumA DO(A), 1. e. , 
the split extension of 0 (A) by A, this construction has 
been described in Ref. 1 (a). Indeed let [(n) be the 
enveloping algebra of the Lie algebra n generated by 
the fundamental observables {w}. Then problem (a) 
amounts to extracting from A DO (A) the largest sub­
algebra Z isomorphic to an algebra in [(n), and all the 
one-dimensional subalgebras of Z are solutions of the 
problem (b). 

Now we are interested in applying the above general 
considerations to a quantum system of N (interacting) 
particles of different masses m(lJ.) (IJ. = 1,2, ... ,N), 
without spin. Every particle is characterized by the 
components of its position vector q(lJ.) and of the canoni­
cally conjugate momentum p(lJ.) which generate the 
Heisenberg algebra H3(1J.), [qJ(IJ.),Pk(IJ.)] =i5Jk (j, k 
= 1,2,3). The q's and p's are the fundamental observa­
bles and generate the Lie algebra n=EB~=IH3(1J.). 
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TABLE I. Miscellaneous realizations of the 5p(S,IR) algebra • 

.....,ILPJPa 
IJk - M 

In Ref. 1 (a) problem (a) has been treated in the case 
of a free system of particles possessing either the 
derived extended Galilei algebra q' or the center of 
mass Heisenberg algebra H3 alone as a germ. We re­
call that C;' "'H3 05 0(3), i. e., besides the Heisenberg 
algebra generated by 

N N N 

M = 6 m(J.1.), P J = L) PJ(J.1.), K J = 6 m(J.1.)QJ(J.1.) (3) 
~I _I ~1 

with 

(4) 

the derived extended Galilei algebra contains the 50(3) 
algebra generated by the total angular momentum J of 
the system 

(5) 

We have then shown that C;' can be enlarged up to the .. '""--' 
so-called extended SchrOdinger algebra 5 ch 
= g' 0 5l (2, JR), which is known as the Lie algebra of the 
one-parameter central extension of the group of trans­
formations of the Newtonian space-time which keep 
invariant the Schrodinger equation. 

By removing the rotational invariance, i. e., by re­
stricting the germ to the Heisenberg algebra, one ob­
tains a larger derivation algebra so that the Heisenberg 
algebra can be embedded into the central extension of 
the inhomogeneous symplectic algebra denoted A s in 
Ref. 1(a):As=TSP(6,JR)"'H30SP(6,E). 

In Ref. 1 (b) we have also treated problem (b) starting 
with the germ C;'; in this case the problem is algebrai­
cally simple since we have to consider the one-dimen­
sional subalgebras of Sl(2, JR) only. There are three 
classes of Hamiltonians representative elements, which 
are respectively the Hamiltonians of an isolated system 
of interacting particles and of a system subject to ex­
ternal isotropic harmonic or "antiharmonic" fields. 

In this paper we want to treat problem (b) by con­
sidering the Heisenberg algebra as a germ and con­
sequently looking for Hamiltonians contained in SP(6, JR). 
But quickly the Lie algebra technics appear too cumber­
some if we deal with a three-dimensional space. Then 
in the largest part of the paper we restrict ourselves 
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to the study of two-dimensional space systems without 
an appreciable loss of information. 

The paper is organized as follows 

- First we present the quantum mechanical part 
which is divided into six sections 

L Miscellaneous realizations of the 5P(6, JR) algebra. 
IL Selected classes of Hamiltonians. 
III. The Heisenberg algebra in the SchrOdinger 

picture. 
IV. Possible chains of invariance algebras con­

tained in the symplectic algebra. 
V. The Symplectic algebra in the Schrodinger 

picture. 
VL The mutual interaction problem. 

-Then the Lie algebra technical part is treated in 
four Appendices 

A. Symmetric decompositions of the 5P (2n, JR) 
algebra. 

B. The isomorphy between SP(4, JR) and 50(3,2). 
Related basis and Casimir operators. 

C. Daughters, grandchildren and one-dimensional 
nonconjugate subalgebras of SP(4, JR) '" 50(3,2). 

D. Automorphisms induced by the general element 
of SP(4, JR). 

I. MISCELLANEOUS REALIZATIONS OF THE 
5 p(6. ~) ALGEBRA 

In Ref. 1 (a) we have given a realization of the 
SP(6, JR) algebra related to the absolute motion of the 
system. In this realization, denoted SP(6, lR)A, all the 
generators are expressed as sums of individual parti­
cle generators (acting in their respective Hilbert 
spaces), i. e., we are dealing with a reducible repre­
sentation of Sp(6, JR). Up to the mutual interaction term 
the possible total Hamiltonians can be written in terms 
of the 5P(6, JR)A generators. But there exists another 
realization of Sp(6, E) related to the motion of the 
center of mass, denoted SP(6, JR)CM the generators of 
which are expressed in terms of K, P, M. The actions of 
Sp(6, JR)A and Sp(6, JR)CM on the Heisenberg algebra are 
identical; then 
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It is then easy to see that by substracting from each 
generator of Sp(6, fi)A the corresponding generator of 
SP(6, fi)CM a third representation of SP(6, fi) is obtained 
which does not act onH3• We denote by SP(6, fi)R this 
realization which is related to the internal or relative 
motion of the constituent particles of the system. Its 
generators can be written in terms of the relative 
canonical coordinates: 

The coexistence of these three realizations of the 
SP(6, IR) algebra just reflects the well-known decom­
position of the absolute motion of a system into the 
relative motion and the motion of the center of mass 

(6) 

Table I gives the expressions of the SP(6, IR) generators 
in the three above described realizations, in the particu­
lar basis defined in Appendix A [Eq. (AB)]. 

These three realizations do not commute but are such 
that for every subalgebraA s: Sp(6, fi) we have 

More precisely the actions of Ad(AA) onACM andAR are 
"identical, " which can be expressed by the relation 

Ad(X), f"' f· Ad(X), 

f being the canonical linear mapping f: A CM - A R defined 
by 

Let us remark that the Garthenhaus-Schwartz trans­
formation2 induced by the unitary (for finite A) operator 
U~ = exp(- i(A/2) k~'1 Rff) relates all the generators T~ 
of Sp(6, fi)A to the corresponding ones in SP(6, IR)CM' 
but keeps invariant the R~~ generators and is singular 
when applied to the s:-;s; we have 

U~R~C!A1 = R~~, 
u~st~U;:1=stk+(e~-1)SJ: - +00. 

A ".GD 

Some other general comments deal with the Casimir 
operators of invariance algebras. Owing to the semi­
direct sum structure of every subalgebra H30A A 
S:HsO SP(6, fi)A the invariants are on the one hand the 
center M of the Heisenberg algebra and on the other 
hand the Casimir operators of the corresponding A CM 
algebra, which by construction of A CM also belong to the 
enveloping algebra of HsoAA' 

Obviously the Casimir operators do not depend upon 
time and are identical in both Heisenberg and Schro-

1694 J. Math. Phys., Vol. 16, No. B, August 1975 

dinger pictures, which confirms the unicity of Stand 
So, i. e., the role of t as a parameter in the nonrela­
tivistic quantum mechaniCS. Moreover, the relations 
(7) are sufficient to assert that the explicit time depen­
dences in the Schrodinger picture are the same for cor­
responding generators in the three realiZations because 
of the identical action of H belonging to SP(6, fi)A on the 
generators of SP(6, filA' SP(6, fi)CM' and SP(6, fi)RO 

Finally we want to emphasize on the existence of rela­
tions in the enveloping algebra of the Sp(6, fi) algebra 
in some particular cases. For instance, if we consider 
either the center of mass motion of any system or the 
absolute motion of one particle or the relative motion of 
a two- body system there exist numerous relations in 
the enveloping algebra; in particular, we have 

{rJk' r kJ}. = {s Jk' iJk }. + iOJk + n. 
So, in the above three cases the second order Casimir 
operator given by Eq. (B4) reduces to a number G2 = J.j. 
This is an example of a general property of quantum 
(and classical) mechanical realizations as demonstrated 
in Ref. 3: "No semisimple Lie algebra of rank n can be 
realized with less than n degrees of freedom and if just 
n degrees of freedom are used then the invariants are 
multiples of the identity." We recall that SP(6, fi) is of 
rank 3. 

II. THE SELECTED CLASSES OF HAMILTONIANS 

Here we want to study the Hamiltonians as inducing 
outer automorphisms of the Heisenberg algebra, i. e. , 
acting as outer derivation on it. Then they are com­
patible with the partial characterization of the system 
by the canonical quantities of its center of mass. 

From this definition all the desired Hamiltonians are 
contained in the general element of SP(6, fi)A which can 
be written 

But if there are two Hamiltonians H1 and H2 conjugated 
by an inner automorphism of Sp(6, filA' i. e., if there 
exists an element Y belonging to SP(6, JR) such that 
exp(iY)H1 exp(- iY) =H2, then exp(iY) transforms the 
eigenstates of H1 into the eigenstates of H2• Therefore, 
it is interesting to classify the Hamiltonians into con­
jugacy classes which amounts to looking for the one­
dimensional subalgebras of Sp(6, JR) up to a conjugation 
[or what comes to the same to looking for the orbits of 
the group SP(6, fi) on the projective space of SP(6, lR)]. 

Now for mathematical convenience and to be more 
concise we restrict ourselves to the study of two­
dimensional space systems. We therefore consider 
H2 OSP(4,:R) as the total invariance algebra, and we in­
troduce a "physical" basis of the Sp(4, fi) algebra given 
by the following ten generators expressed in terms of 
the generators RJk' S"I' TJk defined in the Appendix A 
[Eq. (A3)], where we take n = 2; we set 

the orbital angular momentum operator, 
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T = t(Tl1 + T22 ), the kinetic energy operator of a free 
system, 

D=- (R l1 +R22 ), the dilation generator, 

the expansion generator, 
(9) 

C = t(S11 + ~2)' 

Q = t(S11 - ~2)} 
Q12 = S12 ' 

the mass-quadrupole momentum opera­
tors and their "derivatives": 

Q=R22 -Rl1 } Q=Tll - T22t 
Q12 = - (R 12 +R21 ' Q12 = 2T12 ) . 

The technical aspect of the classification and the re­
sults are given in Appendix C where, in every class of 
nonconjugate one-dimensional subalgebras, we tried to 
give the more characteristic Hamiltonian as represen­
tative element. 

There exist three nonconjugate compact subalgebras 
isomorphic to 50(2L One of the corresponding classes 
may be represented by T + C conjugate of the Hamilton­
ian T + wC of a system of particles in an external 
harmonic field 

exp(-iaD)(T+wC)exp(iQD)-T+C with Q=tlogw. 

Another class contains J which governs a system having 
a magnetic momentum in a static magnetic field. 

Finally one finds a one-parameter family of 50(2) 
algebras such that to every value of the parameter 
{) > ° there corresponds a unique 50(2) algebra up to a 
conjugation; representative elements can be written 
T + C + {)J. The motion of a charged system of spin zero 
in the plane perpendicular to a constant uniform mag­
netic field B is governed by the symmetric gauge 
Hamiltonian 

1 N ( C )2 H'O- 6 p(J.I.)- -B q(J.I.) , 
2m ".1 2c 

which in the "physical" basis becomes 

H'OT+(32C+f3J with (3'Oe!B!/2mc. (10) 

It is seen to be conjugate of T + C +J. For one particle 
one has the Hamiltonian of the Landau electron. 

All the other classes of the family {) *- 1 have in 
common an interesting representative element which is 
the Hamiltonian of a system of particles in an external 
anisotropic harmonic field, namely, 

H'Ot(Tl1+0'11S11+T22+0'22~2) with 0'11,0'22>0, 1711*1122 • 

Indeed, one can check that 

In all cases starting from a representative element, 
the whole corresponding class is generated by using 
the technics described in Appendix D. Then interesting 
connections between Hamiltonians may appear; for in­
stance, the Hamiltonian of the Landau electron conjugate 
of T + C +J is also conjugate of T11 + S11 the one-dimen-
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sional harmonic oscillator Hamiltonian as it has been 
emphasized in Ref. 4. 

All the remaining one-dimensional subalgebras are 
noncompact and among them one identifies: 

-the Hamiltonian of a system in an external "anti­
harmonic" field: T - C, the spectral analysis of which is 
done in Ref. 5. 

-the Hamiltonian of a free or isolated system given 
by T. 

Finally one finds harmonic anisotropic oscillator 
Hamiltonians containing damping terms, that is, of the 
form 

H = T11 + T22 + 1711S11 + 172ZS22 + P11R 11 +P22R22, 

which correspond to several nonconjugate one-dimen­
sional subalgebras of 5P(4, lR) according to the values of 
the two invariants ~J = 417 JJ - P~J (j = 1, 2) of the algebras 
50(2, l)J .. {TJJ , Sijl R JJ} [note that 92 = 2(~2 + ~1)]: 

~1 = ~2 < 0, H is conjugate of T - C 

~1 < 0, ~2 < 0, ~1 * ~2' H - T - C +,9 (Q - tQ) 

~1 < 0, ~2 = 0, 

with,9 =~, 

1
~2> !~1!' H-T+C+J, 
~2= !~1!r H-T+Q, 
~2< !~1 , H-T-C+Q-tQ, 

H".. T+C +t(Q-D), 

~1 = ~2 = 0, H - T, 

l ~2 * ~1I H - [(,91 - ,92)/ (,91 +,92)] J + T + C 

~1 > 0, ~2 > 0, with {Ji = (~~ + 1)/(~J + 1), 

~2"'~11 H-T+C. 

III. THE HEISENBERG ALGEBRA IN THE 
SCHRODINGER PICTURE 

In the Schrooinger picture the Heisenberg algebra 
takes an explicit time dependence governed by the action 
on it of the chosen Hamiltonian following the relation 

M = exp(- iHt)ff~ exp(iHt). (11) 

Obviously all the possible representations of H~ are 
obtained if we take for H the general element X of 
5P(4, m) given by Eq. (8) withj,k '=1, 2. We have then to 
exhibit the action of X onH~; but it must be noticed that 
the center of an algebra is kept invariant under the ac­
tion of any automorphismllC) so that the generator Mis 
not concerned by the transformation (11) and we have 
only to determine the time dependence of the P and K 
generators. Following the technics described in Ap­
pendix D, the explicit time dependence of P and K is 
established by constructing the 4 x 4 square matrix 
e~t such that 

[;~~!~) '" itl;~~~)~ 
K 1(t) e K

1
(O) , 

K 2(t) K 2(0) 

where ¥ is the coadjoint representation of X in the 
algebra HzoX: 
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TABLE II. One-dimensional nonconjugate subalgebras of 5p (4, R) and their embedding in misce llaneous (in particular maximal) 
suba 1gebras. 

92 94 Representative generators ;:0 
50(3,2) basis "Physical" .6 

basis :::: 

M12 +M20 T - C + Q12 + (1/2)Qt2 X 
T X 

N 
~ 
0 

V) 

X 
X 

-;:::; 

.f3 
0 

V) 

x 

~ 

G~~ 
"" • .6 

O_.6.~ 
~ 

x 
x 

... -E a 
;:0 

~ 

~ ..... ... -;:::; .f3 a c! 0 .6 ~ 
-::::s '--l 0 0 0 '--l '--l '--l 

x 
x x o MOO'+MtO 

J2(Mt2 -M3ol - (Moo' +MIO' T+ (1/2) Cf. + Q) + Qj2 .. X 
T - (1/2)Q 9! T - (1/2)Qt2 

o 
Mt2 +Moo' +MjO +M20• 

Mt2 J 
+ o MOO' T+C 

Mt2 -Moo' +M30 T+ (l/2)J 

+ 
2Mt2 +M20·-MtO T- C + (3/2)Q+Q 

2Moo' +MtO -M20• T+C + (1/2)«(1-D) 

Mt2 +>9Moo. (3 > 0) T+ C + (l/>9)J 

M30 T+D9!T-C 

Mt2 +M20-M3O' T+(1/2)Q-J-C- Q o 

M12 +MOO' + (1 +>9)Mto T- (1/2)[Q+>9(D+Q») 
+ (1 - >9)M2 o. (>9:> 0) 

T- C +>9(Q- !Q) 

o Mt2 +Moo' +M20• -MtO T+Q 

+ Mt2 ->9M30 (3 >1) T - C - (1/{)J 

o + Mt2 -M30 T-C-J9! T+D-J 

+ + Mt2 ->9M30 (0<>9<1) T+D- (1/>9)J 

4> = [ :~~ :~~ 2~~~ 2~~2~. (13) 
- 27"11 - 7"t2 - P11 - P12 

- 7"12 - 27"22 - P21 - P22 

It is possible to show that e'it depends on the invariants 
92 and 94 defined in Appendix C which partly character­
ize X as a subalgebra of 5P(4, 1R) through the charac­
teristic roots A' of ~: 

Af = - A~ = t(- 9 2 + v- 9 d!2, A~ = ~~ = t(- 9 2 - v- 9 4)1/2, 

(14) 

we have 

it 1 [:i3(sinhAlt sinhA3t):i2 ( h"t h' 't) e = 'It --- - --- + 'It cos 11.1 - cos 11.3 
Af2 - A~2 Af A~ 

:i(,,2 sinhA3t ,,2 sinhAf~ n (,,2 h"t,,2 h' 't~ + 'It 11.1 --,- - 11.3 --,- 11.1 cos 11.3 - 11.3 cos 11.1 . 
A3 AI 

(15) 

In the particular case 94 = 0 the formula (15) is no long­
er available and we must use the following one: 

e'it '9,"0 = (1/2A,2)[4>3(coshA't - sinhA't/A') + ~2A' sinhA't 

+ ~ (3A' sinhA't - A,2 coshA't) + n _(2A,2 coshA't 

- A,3 sinhA't)], (16) 

where A' =t v- 92' 
The Hamiltonians T + C and T - C belong to the above 

case, and Eq. (16) leads to tlie explicit time dependence 
which has been given in Ref. 1 (b) [Eq. (l1a), where a 
stands for A']. Again another relation corresponds to 

92 =94 =0: 
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X 

e'it '92=94=0 =n +4>t+ (~2/2!)t2 + (4)3/3! )t3
; 

x 

X 

and for the Hamiltonian T of a free system Eq. (17) 
furnishes the well-known Galilean form of K and P, 

i. e. , 

P(t) = P(O), K(t) = K(O) - tP(O). 

x 

(17) 

IV. POSSIBLE CHAINS OF INVARIANCE ALGEBRAS 
CONTAINED IN THE SYMPLECTIC ALGEBRA 

The one-dimensional nonconjugate subalgebras of 
5P(4,1R) being taken as Hamiltonians, it is interesting 
to look for the various chains of subalgebras included 
between the H's and the whole 5P(4, 1R) algebra, all 
these subalgebras being able to play the role of explicit 
time dependent invariance algebras. However, we do 
not give the full lattice of the nonconjugate subalgebras 
of 5P(4, 1R) because of the great number of the two- and 
three-dimensional subalgebras it contains. 

In Fig. 3 in Appendix C we give the top of the lattice, 
i. e., the daughters and grandchildren of 5P(4, 1R). 
Moreover, we have completed the chains which contain 
a three dimensional semisimple Lie algebra, i. e. , 
either 50(3) or one of the three nonconjugate 50(2, 1) 
algebras labelled I, II, and III. Let us note that some 
particular realizations of these semisimple Lie algebras 
are well known and are used in physical models; for 
instance: 

_ 5 0 (3) '" 5U(2) corresponds to the restriction to a 
two-dimensional space of the algebra used in the so­
called Elliott SU(3) nuclear model. 6 It is also the de­
generacy algebra of the harmonic oscillator Hamilton­
ian'" 50(2). Let us note that U2 = 50(2)(fJ 5U(2) is 
maximal compact in 5P(4, 1R). 
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- 50(2, 1h "" 5l(2, E) generated by {J, Q, Q12} is the re­
duction in a two-dimensional space of the 51(3, JR) 
algebra introduced in Ref. 7 to study the E2 transitions 
in nuclear rotational bands. 

- 50(2, l}u "" 5U(I~I), a basis of which is furnished 
by {T, c, D}, is the spectrum generating algebra of the 
harmonic oscillator Hamiltonian T + C. 

- 50(2, 1hu "" 5P(2, JR) is the spectrum generating 
algebra of the free Landau electron. A basis for 
5P(2, JR) is obtained by adding to HL the two following 
generators: 

A = ff-Q12 + {3Q - ~Q12' B = ff-Q - /3Q12 - ~Q. 

Moreover, in Table II the embedding of the one­
dimensional nonconjugate subalgebras (i. e., of the 
miscellaneous Hamiltonians) into the maximal sub­
algebras and into the four above-mentioned semi­
simple subalgebras is given. For instance we remark 
that: 

-The Galilean Hamiltonian T belongs to 50(2,1) 
EB 50(2) c max 5P(4, JR), which by acting on the Heisenberg 
algebra corresponds to the chain 

_ r-.J ""'-' 

q2 C 5ch2 cf)5P(4, JR). 

-The Landau electron Hamiltonian HL is contained 
in 

5P(2, JR) C 5P(2, JR)EB 5P(2, JR) C 5P(4, JR) 
max 

which corresponds to the chain 
r"'-.J 

H20 5P(2, JR) CH2 050 (2,2) C f) 5P(4, JR). 

Let us now give some properties of the Casimir 
operators. In the same conditions as in Sec. I, i. e., in 
the case of a system of one particle or in the relative 
motion of a two-body system or in the center of mass 
motion of any system, the Casimir operators C2 and 
C4 of 5P(4, JR) defined in Appendix B [Eq. (B8)] reduce 
to the following numbers: 

c2 =-f, C4 =0. 
For the 50(3,1) and 50(2,2) subalgebras whichAare 
also of rank two the Casimir operators C2 and C2 de­
fined in Appendix B [Eq. (B5)] become 

C2 = - t, C2 = o. 
This is due to the fact that in the three cases the cor­
responding realizations are irreducible unitary repre­
sentations of the discrete principal series of the 
algebras. 

Obviously the situation is more complex in what 
concerns the three-dimensional semisimple subalgebras 
of rank one to which the theorem of Ref. 3 does not 
apply. The Casimir of 50(2, Ihu always reduce to a 
number 

but, in the three other cases the Casimir operators ex­
press in terms of an extra generator, we have: 

-For 50(2, 1h: C2 =J2_ Q2_ Qi2=- (D2+1), where D 
generates the JR algebra in 50(2, Ih EB JR"1. 
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-For 50(2,lhl: c2=HT,C}+-tD2=~_t, whereJ 
is the generator of the 50(2) algebra in 50(2,1)11 
EB 50(2)". 

-For 50(3): C2 =~ + (2Q + Q)2 + (2Q12 + Qd2 = (T + C)2 
+ 1, where T + C generates 50(2) in 50(3) EB 50(2) ""U(2). 

Hence in these three cases, the Casimir operators 
eigenvalues depend on the eigenvalues of another simul­
taneously diagonalizable operator and consequently 
some constraints are imposed on the available repre­
sentation of the semisimple algebras. This fact is well 
known in the case of the three-dimensional harmonic 
oscillator problem for which the family of "triangular" 
5U(3) representation is realized only. 

V. THE SYMPLECTIC ALGEBRA IN THE 
SCHRODINGER PICTURE 

As in the case of the Heisenberg algebra the explicit 
time dependence of the symplectic algebra depends on 
the chosen Hamiltonian. We can still treat the general 
case by taking for Hamiltonian the general element X 
of 5P(4, JR), and we can use the results established in 
Appendix D which are basis independent; in particular, 
the column vector W can be as well constructed in the 
physical basis. Therefore, the explicit time depen­
dence of the generators of the 5P(4, m) algebra in the 
Schrooinger picture is given by 

Wet) = exp(- iXt)W(O) exp(iXt) = exp(At)W{O), (18) 

where exp(~) is deduced from exp(A) with At taking 
the place of A in Eqs. (D9), (Dll), (Dl7), (Dl8), (DI9) 
of Appendix D; note that by doing this all the charac­
teristic roots .\. are also multiplied by t. For instance, 
the relation (D9) becomes 

eAf = (11 + At) fl 
i-1, S. 5, 7 

(19) 

More explicitly we can treat as an example the ex­
plicit time dependence generated by the rotational sym­
metric Hamiltonian H = T + {3C + yD ({3, y Em) which cor­
responds ~o f) 2 = 4({3 - i) and 9 4 = 0; the analog of Eq. 
(Dll) for tJ must be used anClleads to the following 
explicit time dependence of the "physical" generators 
(where .\. =,;- f)2 '" 0): 

C(t) = ~OShAt + 2~ SinhAt) Co + ~ sinh.\.tDo + ;2 (coshAt - 1 )H, 

D(t) = ~OShAt - 2~ sinh.\.t)Do - ~ sinhAtCo 

+ 2(~ sinhAt- ~ (COSh.\.t-1»)H, 

Q(t) = [(~ +~ cosh.\.t+ 7' sinhAt- ~JQo 

(
2Y ( 1) . 1 .. 

+ .\.2 coshAt - 1) + ~ sinhAt Qo + ~ (cosh"-t - l)Qo, 
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Q(t) = [~- 4~) coshi\t + 4 ~~J Qo + (~ (1- cosh At) 

+~ sinhAt)Qo-2~ (2~(COshAt-1)+SinhAt)Qo, 

Q(t) = [(2S + 1) coshAt - 2~ sinhAt - 2 ~ }tio 

(20) 

+ 2~ (2 ~ (coshAt - 1) - sinhAt)Qo + 4 ~~ (coshAt - 1 )Qo. 

We do not write Q12(t), Q12(t), and Q12(t) since their ex­
pressions are deduced from the expressions Q(t), Q(t), 
3;nd Q(t), re~pectively, in which one has to r~~d Q12(0), 
Qu(O), and Q12(0) in place of Q(O), ~(O), and Q(O), 
respectively. This is due to the fact that {Q, Q, Q} 
and {Q12, Q12, Q12} are two isomorphic invariant sub­
spaces under the action of H. 

The angular momentum J does not take any explicit 
time dependence owing to the rotational invariance of 
the Hamiltonian [H, J] = O. {H, C, D} being also an in­
variant subspace under the action of H, the expressions 
of C(t) and D(t) are identical to the corresponding ones 
given in Ref. l(b) [Eq. (15a)] (in which 20' stands for 
A), where the 50(2, 1hr algebra generated by {H, C, D} 
has been considered only. 

When the parameters (3 and yare such that f) 2 = 0 the 
time dependence of the generators becomes a poly­
nomial one given by the analogous of Eq. (DIS). But 
',;.3 = 0, so that the generators are second order poly­
nomials in t: 

C(t) = (1 + 2yt)Co + tDo + t2H, 

D(t) = (1- 2yt)Do - 4itCo + 2t(1 - yt)H, 

Q(t) = (1 + yt)2Qo + t(l + yt)Qo + WQo, (21) 

Q(t) = (1 - 2it2)Qo + t(l - yt)Qo - 2y2t(1 + yt)Qo, 

Q(t) = (1- yt)2Qo + 2y4t2Qo - 2y2t(1- yt)Qo. 

Now if we take y = 0 in the above expressions we ob­
tain the time dependence generated by the free Hamil­
tonian H= T, already given in Ref. l(a) [Eqs. (19) and 
(21)] in the three space-dimensional case. 
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VI. THE MUTUAL INTERACTION PROBLEM 
Up to now we have shown that the general element X 

of 5P(4, m) can be associated with Hamiltonians de­
scribing a collection of particles submitted to mis­
cellaneous external fields except in the case where X 

reduces to T. But it is also possible to introduce in X 
some mutual interaction V. At the one-dimensional 
5P(4, m) subalgebra level we have just to ensure that V 
does not modify the action on the Heisenberg algebra 
of the Hamiltonian. So V must not act on H2, i. e. , 
[V,H2] = 0, This condition is satisfied as long as V de­
pends on the relative coordinates defined in Eq. (6) 
only. 

The situation becomes more complicated when the 
Hamiltonian is included in an 5P(4, m) subalgebraA 
because of the commutation relation it must verify. 
Hence V is submitted to some constraints which differ 
according to the "kinds" of commutation relations 
which appear inA. By degrees we find: 

-The commutation relations of the form [H,X",] 
= C~a (in a basis where H is one generator: H U {X",} 
=A c 5P(4, m» imply [V, X"'] = 0 only. 

-The commutation relations of the form [H,X",] 
=cH + C~a to be conserved require the X acts as a 
dilatation on V, i. e., [X"" V] = c V. 

-The more stringent situation comes from the riSing 
of H on the right-hand side of commutation relations 
which do not involve H [X""Xa] =cH + C",/Xy • We are 
then in a Poincare-like situation: Either several gen­
erators must contain interaction terms or there is no 
possible interaction, i. e., V= O. But our approach does 
not permit the coexistence of several Hamiltonians. So 
the Dirac solution cannot be retained8 and we are left 
with V", 0, 

Therefore, given one Hamiltonian, it belongs to 
several 5P(4, m) subalgebras, and the choice of one of 
them as invariance algebra depends on the mutual inter­
action terms we want to keep in H. 

It is worth noticing that in all cases the 5P(4, m) 
algebra does not suffer any mutual interaction. 

To illustrate the above discussion, the constraints 
imposed on the possible mutual interactions associated 
with a free system of particles by enlarging the in­
variance algebra from H2 up to !/SP(4, m) are exhibited 
in Fig. 1. The chains of algebras are stopped when V 
disappears or when it cannot contain any dependence on 
the q (J.1., II). Moreover, only two-body terms are given 
but three- and four-body terms are possible as well. 9 

We denote by V(x,y .. ·) the fact that V only depends on 
x, y • •• and V L (x, y ••• ) denotes any linear function of 
X,y'" with coefficients which commute with D, i. e. , 
which depends on terms of the type QJ(J.1., II)Pk(J.1., II) only. 

The essential feature is the fast melting of V as the 
invariance algebra increases. 

CONCLUSION 

In this paper we began to study the properties of the 
one-element central extension of the inhomogeneous 
symplectic algebra from the quantum mechanical "point 
of view" of explicit time dependent invariance algebra 
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FIG. 2. Chains d. nonconjugate 9Sp(6, R) subalgebras contain­
ing the extended Galllean algebra. 

in the SchrOdinger picture. This Lie algebra approach 
corresponds to the existence of an unique unitary ray 
representation of the group of real inhomogeneous 
linear canonical transformations of phase space the role 
of which in elementary (Galilean) quantum mechanics is 
comparable to that of the Poincar~ group in relativistic 
physics. ,,10 The same algebra was also considered in 
Ref. 11 as a "limitable" dynamical algebra, i. e., as 
an algebra which contains the geometrical subalgebra 
C;' and possesses an integrable representation describ­
ing the interacting system. The interaction part in the 
Hamiltonian is such that it can be switched off by a lim­
iting procedure, giving rise to a representation of the 
dynamical algebra of a free particle. In Ref. 11 a 
representation was constructed using Nelson extensions 
which describes spinless one-particle systems with 
second-order polynomials in q,p as Hamiltonians. 

r-
The algebra gSP(6, JR) is the central extension of the 

derivation algebra of the Heisenberg algebra up to a 
nonphysical dilation but, by following a more general 
procedure described in Ref. 1 (a), it was introduced as 
the maximal subalgebra of the split extension HoD(H) 
mapped via an injective homomorphism into the envelop­
ing algebra [(0) of the fundamental observables 
{q(J.L), p(J.L), m(J.L)} characterizing the individual consti­
tuents of the quantum mechanical system. In fact we 
have shown in Sec. I that there are two distinct injec­
tive homomorphisms: One of them leads to the SP(6, JR)A 
realization related to the absolute motion of the system; 
the other one corresponds to the center of mass motion 
and can be considered as an injective homomorphism 
into [(K,P,M)c[(O). 

In Secs. II and IV we tried to exhibit the largest num­
ber of known Hamiltonians associated with one-dimen­
sional SP(4, JR) subalgebras, and the related known de­
generacy (symmetry) algebras and spectrum generating 
algebras contained in SP(4, JR). In particular we give a 
complete classification of the harmonic oscillator 
Hamiltonians with linear damping terms. 

Working with two-dimensional space systems greatly 
lightens the algebraic part without a too big loss of in­
formation; however, it seems interesting to give (Fig. 
2) the chains of nonconjugate subalg~bras of fSp(6, R) 
which contain the Galilean algebra g 3' 
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Section VI deals with the problem of introducing a 
mutual interaction term in the Hamiltonians. It is worth 
noticing that a given invariance algebra does not charac­
terize the possible interaction term in general, but both 
chosen Hamiltonian and invariance algebra strongly 
limit the dependence on the relative coordinates of the 
individual constituents of the system which can be in­
troduced in the mutual interaction term. Moreover, no 
Hamiltonians contai~ relative interactions can 
possess the whole fSp(6, JR) as invariance algebra. 

Finally in Secs. m and V we give the explicit time 
dependence of ffSp(4, JR) in the SchrOdinger picture 
justifying the introduction of this algebra as a time de­
pendent invariance algebra. We emphasize this concept 
of explicit-time dependent algebra in the SchrOdinger 
picture which is intimately related to the various notions 
of dynamical algebras including symmetry or degenera­
cy algebras and spectrum generating algebras12 in the 
Heisenberg picture, and allowed us to get the right non­
relativistic interpretation of the Wigner-Inonii contrac­
tion-extension procedure of the de Sitter algebras. 13 
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APPENDIX A: SYMMETRIC DECOMPOSITIONS OF 
THE 5 p(2n, IR) ALGEBRA 

It is well known that the SP(2n,JR) algebra admits the 
direct vector space decompOSition 

(AI) 

where !I,. and !I; are two r-dimensional [r = ~(n + 1)] 
Abelian algebras related by an involutive inner auto­
morphism 0 of Sp(2n, JR) such that 

o .~,. =~~ and 0 .~~ =~,.. 
Moreover, 

[~,.,~~] = gl(n, JR) and [gl(n, JR),~,.] C!{,.. 

Then the above relations imply 

O·gl(n,JR)cgl(n,JR) and [gl(n,JR),!{~]c~t. 

Therefore the decomposition given in (AI) makes two. 
conjugate semidirect sums appear, 

~rO gl(n, JR) and ~ to gZ(n, JR), 

and the above properties can be summarized in the ex­
plicit notation 

Sp(2n, JR) ""(:;) ~ gl(n, JR). (A2) 

A basis reflecting the decomposition is given by the 
following set of 2r +n2 =n(2n + 1) generators {Ti~ = Tkl> 
Sill = Ski' R ik} satisfying the commutation relations 

[Rill, Rtm] =i(l5kIR im - l5imR II,), the gl(n, JR) algebra, 

[Sik' Slm] = [Tik , TIm] = 0, the !I,. and !It algebras, 

(A3) 
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[R Jk' S,,,,] = - i(6j1S,.m + 6imSk/ ), 

[SjR' T, ,,,] =i(6J1Rmk + 6jr"R 'k + 6klR mi + 6kmR ,j), 

wherej,k,Z, m =1, 2, ... ,no 

Let us also note that gl(n, m):o: 51(n, m) Ell mal, where 
the dilatations mal are generated by Li=l R JJ and that the 
involutive inner automorphism 0 can be associated with 
one of the group elements exp[W Li=l (Ti ) + Sull, ,') taking 
the values ±7T/4, ±37T/4. Moreover, the set {LJ=lRjj, 
Li=l Sjj' Li=l T jj } generates an 5P(2, m) algebra. 

But there exists another symmetric vector space 
decomposition of the 5P(2n, lR) algebra given by 

5P(2n, m) =H n-l EIlC 5P (2 (n - 1), lR) Ell fr.-I , 
where H n-l denotes the (2n - 1)-dimensional solvable 
Heisenberg algebra 

[
Qr(q) Qf (P)] = m(m) Un-l,un-l , the c enter of H n-l, 

and 

(A4) 

(A5) 

(A6) 

(the upperscripts q,p, m and d1>d2 are just introduced to 
differentiate the diverse ~ and lR algebras). 

Therefore, (A4) appears as a canonical decomposition 
of the 5P(2n, m) algebra. Again an involutive inner auto­
morphism 0' of 5P(2n, lR) is such that 0'· Hn-l =Ht1> 
and we have the following properties: 

5P(2k, m)O 5P(2(n - k), JR), 5P(2, JR)O 50(n), 

where 50(n) c 51(n, m). Curiously only the maximal 
compact algebra U(n) does not appear. 

APPENDIX B; THE ISOMORPHY BETWEEN 
5 p(4,R,)AND,SO(3,2}. RELATED BASIS AND 
CASIMIR OPERATORS 

(A8) 

The first kind of symmetric decomposition described 
in the Appendix A also give a canonical decomposition 
of the 50(p, q) algebra indeed 

50 (P, q) =[~~""-2J I2J C 50 (P - 1,q -1), 
~P""_2 

(B1) 

whereC50(P,q):o:50(P,Q)EIlmd. It is then interesting to 
remark that (B1) and (A2) coincide for P=3, q=2, and 
n = 2 since 

gZ(2, m):o: 51(2, JR)EIllR:o: 50(2, 1)EIlm:o:C50(2, 1) 

so that we obtain the well-known isomorphy between 
5P(4, JR) and 50(3,2). 

An usual 50(3,2) basis is given by the ten skew­
symmetric Mjk with j, k = 0, 0', 1, 2, 3 satisfying the fol­
lowing commutation relations: 

[Mjk' M,m] =i(gjmMkl +gkIM}m- gilMkm - gkmMJI) (B2) 

with goo =go'o'=- gl1 = - g22 = - g33 -= 1, and we choose the 
following relations between the above basis and the 
5P(4, m) basis satisfying (A3): 

[H / m(m) lD(m~l = It* /JR(m~ (1/* /m(m~ lR(m)1=H /JR(m) Tl1 + T22 = 2 (Mo'O +M30 ), T22 - Tll = 2 (M32 +MO'2), 
n-1 ,11.\ nn-1 , nn_1 , n-1, 

[Hnjm(m) ,ftn_/lR(m~l = 5P(2(n - 1), lR); T12 =M13 + MiD', 

moreover, {JR(m), JR(m~, ma2} generates an 5P(2, m) 
algebra. 

Likewise there are two conjugate semidirect sums 

Hn_l0C5P(2(n-1),m) and ;r._IoC5P(2(n-1),m), 

and so we can write the second symmetric decomposi­
tion under the form 

5P(2n, lR) ,,J Hn-l] I2J C 5P (2 (n - 1), m). 
lm-l 

(A7) 

From the relations (A3) it is easy to deduce that 
5P(2(n-l),JR) is generated, for instance, by {Tjk,Rik , 
S jk} with j, k = 1, 2, ... , n - 1, the dilatation generator of 
JW2 being Rnn. The Heisenberg algebra H n-I (respective­
ly 1/;'-1) being given by 

~~~l :0: {Rnj}({Sjn}) , ~~~l ,.,{TnJ({R jn}), 

Then the involutive automorphism 0' corresponds to 
the group elements exp[i{) (Tnn + Sn"ll with,') =± 7T/4, 
±3rr/4. 

It should be mentioned that many structural prop­
erties can be deduced from the existence of both above 
symmetric decompositions; in particular, the following 
nonexceptional maximal subalgebras of 5P(2n, lR) can 
be extracted: 

~rlJ gZ(n, lR), Hn-l0 C Sp(2(n - 1), JR), 
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S11 + S22 = 2 (Mo'l) - Mso), S22 - S11 = 2 (MS2 - MO'2), 

S12 = M13 - M10" 

Rl1=Mso·-M20, R22=Mso,+M20, RI2 = MOl +M12' 

R21 =,MOI - M 12• 

The quadratic Casimir operator of the 5P(2n, JR) 
algebra is given by 

(B3) 

(B4) 

But in the SP(4, lR) case it is more convenient to use the 
isomorphy with 50(3,2), and so we gain the nice prop­
erties of the 50(P, q) Casimir operators for P +q odd, 
which are expressed in terms of the Casimir operators 
of the containedSO(p', q') algebras such that P' +q' 
=P +q -1. In 50(3,2) there are two conjugate 50(3,1) 
algebras 

and 

50(3, l)IV ,.,{Mjk Ij, k = 0,1,2, 3}, 

and three conjugate 50(2,2) algebras labelled I, ill, V 
and generated respectively by the M Jk such that j, k 
E (0,0',1,2), (0,0',2,3), (0,0',3,1). All these algebras 
possess two quadratic Casimir operators denoted by C2 
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~ 

and C2 and given by 

C _l..,.,(Jkl<!mlM M C _l..,.,<ikHlmlM M* (B5) 
2 - 2,/ Jk 1m' 2 - 2'/ Jk 1m, 

where 7)!Jkl(lml is the element of the Killing form asso­
ciated with the pair of generators Mik' Mkl belonging to 
50(3,1) [50(2,2)] and defined by 

7)(lkl(lml = tr(AdMi"AdM,m), (B6) 

the symbol Ad being defined by Eq. (01), and 

(B7) 

epqrs being the Levi-Civita alternating symbol defined for 
the standard ordered sets of indices above given and 
characterizing the various 50(3,1) and 50(2,2) algebras. 

Then the Casimir operators of 5P(4, lR) '" 50(3,2) can 
be written 

C2 = fB C~K), where K E {r, n, III, IV, V}, 
K 

(B8) 

APPENDIX C. DAUGHTERS' GRANDCHILDREN, AND 
AND ONE-DIMENSIONAL NONCONJUGATE 
SUBALGEBRAS OF 5 p(4, R) '" oS 0(3,2) 

The maximal nonconjugate subalgebras (daughters) of 
5P(4, lR) have been classified as the stabilizers of the 
three kinds of vectors and of the three kinds of two­
plane of the pseudo-Euclidean space E(3, 2) on which 
50 (3,2) has a natural action. This can be done either 
by making use of the representation 

(Cl) 

which acts on the vectors ~ E E(3, 2), or by introducing 
the algebra ~ 3+2 050(3,2) where 50(3,2) acts on the 
generators V, of the Abelian algebra according to 

Then we find 

Maximal subalgebras 
(daughters) 

~2+1DC50(2,1)"'W2,1 (Weyl) 

(C2) 

Corresponding invariant 
subspaces of E(3, 2) 

"lightlike" vectors 
such as 1;0 + e 
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FIG. 3. Daughters, grandchndre~ and nonconjugate three-di­
mensional simple subalgebras of jp (4, lR) ~5 0(3,2). 

5P(2, lR) $ 5P(2, lR) '" 50(2,2) "spacelike" vectors 
s.a. e 

50(3,1) "timelike" vectors 
s. a. 1;0 

H 10 C 5 P (2, lR) "lightlike" two-plane 
s. a. (1;0 + ~1 , ~o' + 1;2) 

5 0 (3)$ 50(2) "'U(2) "timelike" two-plane 
s. a. (1;0, 1;0') 

5P(2, lR)$ 50(2) "'U(l, 1) "spacelike" two-plane 
s. a. (e, ~2) 

Hence 5P(4, lR) contains the exceptional maximal sub­
algebra 50(3, 1) besides the expected ones given in 
(A8). 

We have also classified the grandchildren (maximal 
nonconjugate subalgebras of the daughters) by using 
powerful theorems developed in Ref. 14. The results 
are given in Fig. 3, where the chains crossing the 
three-dimensional simple nonconjugate Lie algebras 
have been completed. 

The one-dimensional subalgebras have been obtained 
according to the following property: Every one-dimen­
sional subalgebra stabilizes at least one vector belong­
ing to the E(3, 2) space. So the problem reduces only to 
classifying the one-dimensional subalgebras of the 
stabilizers of the three kinds of vectors in E(3, 2), and 
then to take into account for the "new" conjugations 
coming from the embedding into the 50(3,2) algebra. 

The one-dimensional subalgebras of 50(3, 1) are 
well known. 15 Those of the Weyl algebra W2,1 have been 
obtained from the knowledge of the one-dimensional 
Poincare subalgebras in presence of one more dilation 
generator. Finally the one-dimensional 50(2,2) sub­
algebras have been constructed by coupling the one­
dimensional ones coming from both members of the 
direct sum 5P(2, lR)$ 5P(2, lR) '" 50(2,2). It should be 
mentioned that 50(3,1) does not bring any extra algebra 
besides those furnished by W2.1 and 50(2,2); this must 
be related to the exceptional origin of the 50(3,1) 
algebra into 5P(4, lR). 
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The results are summarized in Table II in which the 
embeddings of the nonconjugate one-dimensional sub­
algebras into the daughters and into the three-dimen­
sional simple subalgebras of 5P(4, lR) are pointed out. 
Obviously the continuous invariants f) 2 and f) 4 are not 
sufficient to classify the one-dimensional subalgebras 
and let many degeneracies subsist. Let us recall that 
the invariants [) 2 and [) 4 are formally obtained from the 
Casimir operators C2 and C4 given in Eq. (B8) by sub­
stituting the coefficients J1. Jk of the general element 
%J1. 1k

Mlk of 5P(4, lR) to the corresponding generators 
M Jk • 

APPENDIX D: AUTOMORPHISMS INDUCED BY THE 
GENERAL ELEMENT OFS,p(4, IR) 

Each element x in a Lie algebraA gives rise to a 
linear operator Adx acting in A, defined for all y in A 
by 

(Adx)y = (x, y]. (D1) 

Adx is an inner derivation of A, the mapping Ad is a 
linear mapping from the Lie algebraA into the space of 
linear operators on A; moreover, it is a (not faithful in 
general) representation called the adjoint representation 
ofA. 

Let us denote (C/, (3Y) the structure constants of the 
Lie algebra defined by 

(D2) 

then the element x'" is given by a matrix A", in the ad­
joint representation the components of which are 

(Aal8 = (C/, (3Y). 

Now it is important to note that 

(expx)y[exp(- x)] = (expAdx)y 

(D3) 

(D4) 

is not only a shorthand notation of the Baker-Hausdorff 
formula 

(expx)y[exp(- x)] =y + [x, y] + (1/2! )(x, [x, y]] + ... , 

but also permits us to obtain the conjugate elements of 
all the generators of A under the action of the auto­
morphism induced by the general element of A. To see 
this, let us return to the specific case of 5P(4, lR), the 
general element of which can be written in the 50(3,2) 
basis defined in Eq. (B2) 

X=htikMjk (llik"'-llkiElR). (D5) 

Then 

AdX '" (i/2)1l J~ A(}k) =iA, (D6) 

where A is a 10 >< 1 0 square matrix. But to our purpose 
we prefer to use the coadjoint representation which acts 
on the dual vector space of the Lie algebra and is just 
the transpose of the adjoint representation 

(D7) 

Let us denote by W a column vector the ten components 
of which are the generators M jk ; then we obtain the con­
jugate elements of every generator, and therefore of 
any element of SP(4, lR), under the action of the general 
element X by considering 
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[exp(- iX)]W(expiX) '" [expAd(- iX)]W '" (exp~)W. 

(DB) 

So we have to compute the exponential function of the 
IOXIO matrix X. As a consequence of the Cayley­
Hamilton theorem expt. is expressed in terms of the nine 
first powers of A and, by using the Lagrange Sylvester 
interpolation polynomial, 16 can be written as follows: 

(-2 2) - - A - Ail 
expA= (l +A). n Ai 

J=1, 3, 5, T i 

(D9) 

where the A's are the nonzero roots of the characteristic 
polynomial of A which are function of the invariants f) 2 

and [) 4 defined in Appendix C, we have 

A1 =- A2'" (- [)2 + v- f) 4)1/2, 

A3 = - A4 = (- [) 2 - r-y.J1!2, 

1 [(J ((J 2 ()1 /2)1/2 A5=-As=- -(12+ (12 -(14 , 
f2 

(D10) 

But in the particular case where [) 4 vanishes A1 = A3 = AT 

and A5 = 0, the relation (D9) is no longer available and 
we must use the following one: 

- [- (1 3\-2 (1 3)-31 (:;.2-Ail)2 
eXP Ai[)4=o= U+A+ 2T + AU A + 3f + AI A"j -Af 

+ [u + (1- ;:J(~- A1U)+~ (1 + 35~tIA1) 

x (X- A1U)2] ~~ eA1 (X + Aj l)3 - [U + (1 + ::) 

x (~+ A1 U) + ~ (1 + 35 ~tIA1J (X+ A1l)2] 

-4 
X sA 7e~A1(A- A1U)3. (D11) 

A1 

Obviously the relations (D9), (DIl) can be reduced to 
every 5P(4, lR) subalgebra; in particular, it is interest­
ing to give the reductions to the 50(2,2) and 50(3,1) 
subalgebras which possess nice properties. Let us in­
troduce the vector W*, analogous of the vector W, but 
constructed from the M*'s defined by Eq. (B7) and the 
matrix A* defined by 

~*W"'- AW*. (D12) 

Then, for any 50(2,2) or 50(3,1) subalgebra associated 
respectively with an index K odd (even), we have 

tr(AK)2=-4f)?), tr(~tXK)=(_)K+149~K) (DI3) 

and 

(D14) 

The useful property is that AK , (AK )\ ~t, and (At)2 
furnish a basis for the powers of XK ; indeed 
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(A)L () (Klt. + a (Klt.* .... K - - it 2 K if 2 K, 

:i{.(:iK)2 = - fJ ~Klt.~ + (- )K+lj ~Klt.K' (015) 

Finally the coefficients of the exponential terms with 
A5 and A7 vanish in (D9) and the other parts can be 
managed so that exp:iK is given by a relation formally 
identical to (D9) with two A's only which are the charac­
teristic roots of :iK : 

AiKl = [- f) tl + (- )K(K+2)+11~KlF /2 = _ A~K), 

,(Kl [ () (Kl ()K(K+2l+10(Kl]1 /2 _ ,(K) 
"3 = - it 2 - - (! 2 - - "4 • 

(016) 

Now by taking into account the relations (D15), the 
particular case f)?l = 0 can be deduced which also cor­
responds to the reduction to 50(2,2) or 50(3,1) of the 
relation (D9). Then we obtain a formula formally identi­
cal to the one which can be directly computed starting 
from a 50(2, 1} algebra, we have 

- 1 (:iK)2 +~4Kl t.K [A(- 'n) -A(t. An)] 
exp6.K P?l=o = fJ ~K - 2f)4Kl e 6.K + " + e K - , 

where A=(_f)~Kl)1/2. (017) 

The last particular case corresponds to fJ 2 = fJ 4 = 0; then 
there is only one null root of multiplicity nine and we 
obtain 

9 --I " Ll.m 
expLl. () =() =0 =n + LJ -, • 

(! 2 (! 4 m=l m . 
(018) 

whereas for the 50(2,2) and 50(3,1) subalgebras, if 
fJi K )==1iK )=0, again we obtain a formula analogous to 
the 50(2, 1) case due to the relations (D15), we have 
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Erratum: Four examples of the inverse method as a canonical 
transformation [J. Math. Phys. 16, 96 (1975)] 

D. W. McLaughlin 

Department of Mathematics. University of Arizona. Tucson, Arizona 85721 
(Received 14 March 1975) 

PACS numbers: 01.85., 02.30.H, 02.30.Q 

In our initial computations, a condition was checked 
which is necessary, but not sufficient, for the maps to 
be canonical. Since then, following Zakharov and 
Manakov [Theor. Math. Phys. 19, 332 (1974)] we have 
checked the invariance of the Poisson brackets and have 

found errors, primarily normalization errors, in the 
Toda Lattice column of Table I. Because of these 
errors, as well as several minor errors and misprints 
in the other columns, it seems best to publish a cor­
rected table. 

TABLE I. The main results. 

Toda lattice Nonlin. Schrod. Sine-Gordon Korteweg-deVries 

1. Nonlin- Qn = exp (Qn-l - Qn) 11 = iu:r;x + i'J.ifu* Iv=u U = 6uux - urxx 
ear dy- - exp(Qn - Qn+l) 

ux=sin(u) • ~ ( ) V=SlnU 
amics 

~ 2 
H = L~oo[cos (f: ooV (r) dx') - 1] dx 2. Hamil- H = 'E P; + [exp~) - (1 + A,,) I H = if."'oo[PxQx - ('J./2)p2Q!1 dx H = .C..,lu3 + U;/2] d:l 

tonians 11"-00 

• aH Q= 6H =_ iQ _ i1.PQ! 
a 6H a 6H 

Qn= aE =P" V=-- u=--
6P xx ax 6v ax 6u n 

• aH • 6H iF. '1.p2 Q = ;;1X 

dx' sin(i: v{r') d~) a 
3. Canoni- E =--= eL>n- et.,,+I' P=- 6Q = xx+ z = ax[3if -urxl 

cal eq. 
n aQn 

fromH A" == Qn.l - Qn 

N N N 

4. Hamilton- I< = L: ![b'f- b)1 + In (b}) I< 2i t (*3 3) I< =-2iL: e(P/4l I< == - ;GL:p5/2 
=-3'J. Pj -Pj 5 j=1 ~ 

ian j=1 j=1 j=1 

-"action 
+£' 2sin(</»p(</»d</> +1: 4~2p (~) d~ 11""1 +f 00 8~3p (~) d~ angle" -- -p(~)d~ 

2 ~ 
0 .00 

5. Canoni- qf~~ = (t j -tjl) 
• al< 2i 2 q = al< = _i... e <P j /4l •. = al< = _ 16p 3/2 

cal eq. qj= apj =yPj j apj 2 q} apj ~ 

"action 
q(<p) = 61< =2 sin(<p) q(~) = 61< =4~2 • ) 01< 1 q(~) = oH = 8~3 

a~le" 6p 6p q(~ =6j=-2[ 6p 
"p :::::0" 

6. Canoni- P (</» = (l/rr) sin(</» In{1 + I b 12} p(~) = (-2i/'J.rr) In{1- I b 12} p(~) =- (2/rr~) In{1- I b 12} P (~) = (Urr) In{1 + I b 12} 

cal maps q(</» =argb(ei<t» q(O =argb(~) q(~) =argb(O q(O=argb(V 

p.=- (bj+tjl) Pj= 2ib' P
j 

= -41n~j Pj =- b) 
4j = In[- cJ1;j a' (1;j) 1 qj=- &/~)lncj % = Incj qj = 2 In[icj a' (/;)1 
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